
1

Distributed File Systems

Case Studies:
Sprite
Coda

Sprite (SFS)
• Provides identical file hierarchy to all users
• Location transparency
• Pathname lookup using a prefix table

– Lookup simpler and more efficient
– Allows dynamic reconfiguration

• Caching
– Client-caching in main memory
– Delayed write policy

2

Name Lookup in Sprite

Remote link

(Server, Domain)

m

n

(Y, D4)

/

a b c

g
h i

(X, D1)

j k

(Z, D3)

(X, D2)

d e f

D4Y/c/i/j

D3Z/c/i

D2X/a

D1X/

TokenServerPrefix

Prefix Table

A specially marked file
containing its own name.

Constructing the Prefix Tables

D1X/

TokenServerPrefix

open /c/i/k

(open, /c/i/k, D 1)

X
(/c/i , remote link)

(find-prefix, /c/I)broadcast

(/c/i, Z, D3)

D3Z/c/i

D1X/

TokenServerPrefix Z

(open, k, D 3)

(file-designator)

update

find

client

3

Prefix Table Advantages

• Efficient name lookup (in comparison to component-at-a-
time lookup as in NFS)

• Added fault tolerance (once an entry for a domain is
loaded in the prefix table of a client, that client can
access files in the domain regardless of failures to other
servers)

• Allows dynamic reconfiguration (if a known server stops
responding, broadcast the path again to find its new
location)

• Permits private domains (a client adds to its prefix table
the path to the root of the private subtree and refuses to
respond to broadcast requests for that path name)

Caching in Sprite

• Client memory cache of accessed disk blocks
• Empirical observations

– 20-30% of new data is deleted within 30 s
– 75% of files are open for less than 0.5 s
– 90% of all files are open for less than 10 s

• Delayed write policy
– Check by daemon every 5 s
– Changed blocks not accessed for 30 s are written back

to server (or if ejected from cache by LRU policy)
– Transfer from server cache to server disk in 30 s to 60 s

4

Cache Consistency

• Server-initiated invalidation
• Concurrent write sharing

– Detected at open of second write
– Server notifies client with write access to flush all modified

blocks to server
– Server notifies all clients that the file is no longer cachable

• Sequential write sharing
– Each file has a version number incremented at each open for

write access
– Version number allows client to detect outdated blocks
– Server maintains identify of last client with write access
– When file is opened, last writer is asked to flush to the server any

modified blocks

CODA

• Derived from Andrew File System (AFS)
• Single location-transparent UNIX file system
• Scalability in CODA

– Small set of trusted servers used for file storage/management
– Caching; cache coherence through callbacks
– Whole-file philosophy

• Entire file is transfered to client on open
• Entire file is cached in client
• Infrequent updating of shared files
• Working set of typical user fits into cache

• Additional CODA goals
– Support for disconnected operations
– Greater reliability/availability vs. AFS
– Relaxed emulation of UNIX semantics

5

CODA Architecture

local file system

virtual file system

User
program

Venus

RPC stub

Vice

RPC Stub

Opening a File

• User process issues open(FileName, mode) call
• UNIX kernel passes request to Venus.
• Venus check if file is in cache. If not, or no valid

callback promise, retrieve file from Vice
• Vice copies file to Venus, with a callback

promise. Logs callback promise.
• Venus places copy of file in local cache.
• Unix kernel opens file and returns file descriptor

to application.

6

Volumes and Replication
• Volume

– Directory sub-tree
– Unit of replication
– Volume storage group (VSG) – set of servers hosting a given volume
– Accessible VSG (AVSG) – currently accessible subset of VSG
– Expansion/contraction of AVSG detected by periodic probes
– The AVSG for each cached file is recorded by client

• File identifier
– Unique internal identifier for each file/directory
– FID = (volume#, vnode#, uniquifier)
– Does not contain location information
– Replicas of a file have the same file identifier
– Directory entry: <name, FID>

• Volume location database
– Replicated on each server
– Used to locate volumes/files

Replication and Caching

• Actions on a cache-miss
– Retrieve data from a preferred server (PS) in AVSG
– Collect status/version information from all servers in AVSG
– If replicas are in conflict – abort
– If some replicas are stale – notify AVSG asynchronously
– If PS is stale – select new PS

• When file is returned
– Cache file on client
– Cache location information
– Establish callback on server

• On close after modification
– Transfer file to all members of AVSG

7

Replica Management

• A storeid = <client-id, timestamp> is associated with
each file modification that the client performs on a server

• Each server conceptually maintains an update history of
storeids

• The most recent storeid is the lastest storeid (LSID)
• Replicas on A and B are:

– Equal: if LSIDA = LSIDB

– A dominates B: LSID’s are different and LSIDB is in A’s history
– A is submissive to B: LSID’s are different and LSIDA is in B’s

history
– A and B are inconsistent, otherwise

History Approximation

• It is impractical to maintain the entire history
• The history of each replica is represented by the

history’s length
• Each replica maintains a vector (CVV – coda

version vector) recording the length of each
replica’s history

• Two replicas are compared as follows:
– Strong equality: LSIDA = LSIDB and CVVA = CVVB
– Weak equality: LSIDA = LSIDB and CVVA != CVVB
– Dominance/submission: LSIDA != LSIDB and CVVA >=

CVVB
– Inconsistent: otherwise

