Distributed File Systems

Concepts & Overview

Goals and Criteria

Goal: present to a user a coherent, efficient, and manageable system
for long-term data storage in a distributed environment.

Criteria:

Transparency: the degree to which the user is aware of the
existence of the underlying distribution of data (haming schemes)
Performance: the difference in time between access to local vs.
remote data (caching vs. remote operations)

Fault tolerance: the ability of the system to provide acceptable
service in the presence of failures to clients, servers, and the
network (stateful vs. stateless; replicas)

Scaleability: the ability of the system to exhibit sustained
performance against increases in the number of users and the
volume of data

Security: a guarantee that data access conforms to stated policies

Transparency

* Network: the same interface is presented for
access to local and non-local files

» Acess: the user has the same view of the file
system regardless of the physical point of
access

e Naming:

— Location transparency (the name conveys no
information about the location of the data)

— Location independence (the name of a file need not
be changed if/when the location of the file is changed)

Naming Schemes

e Location evident: host-name::local-name

« Mounting: assigning the root of a remote
file system to an already accessible
directory (e.g., NFS)

« Single image: all users see the same
integrated name structure for all files (e.qg.,
Sprite)

Mounting

client
* Creates names such as /usr/data

« Location transparent

« Allows different users to see different
name structures

« Potential administrative costs

« Client maintains “mount table”

dev bin

mount A
point

files data results

file server

Semantics

e “Unix” semantics:

— reflects familiar semantics of a non-distributed file
system

— Allows existing applications to be run without change
— value read is the value stored by last write

— writes to an open file are visible immediately to others
that have this file opened concurrently

— easy to implement if one server and no caching

Semantics

e Session semantics

— Acknowledges difficulty in reflecting changes
immediately to other readers

— Write to an open file are not immediately
visible to remote readers (are visible to local
readers)

— Changes are visible to those readers who
open the file after the file is closed by the
writer (not visible to those reading
concurrently with the writer)

Semantics

* Immutable shared files
— A shared file cannot be changed
— File names cannot be reused
— Simple to implement

» Transaction:
— Operations conform to ACID properties
— Requires greater system support

Caching

client Caching vs. remote service
; Units of caching: block or file
i Local cache: disk or memory
; Update policy:
|
|
|
|

» Write through
« Delayed write
« Write-on-close
Consistency
« Client initiated validity check
« Server-initiated callback
* Leases

server

Disk vs. Memory Caches

» Disk caches
— More reliable (survive failures)
— Avoids reloading on recovery

 Memory caches
— Allow diskless workstations
— Faster access on client machine

— Since servers use memory caching, allows a
single uniform mechanism

Update policy

» Write-through

— reliable: little loss of information in the event of a
client failures

— slow: defeats purpose of cache
* Delayed-write

— Optimizes network traffic for successive writes to
same/nearby blocks

— Avoids overhead for data that will be overwritten (20-
30% of data is deleted within 30 seconds)

* Write-on-close

— Works best for files open for a short period
— Susceptible to loss of data for files in long use

Fault Tolerance:
Stateful vs. Stateless Servers

o Stateful

— Server maintains information about a file opened by a
client (e.qg., file pointer, mode)

— Mechanism: on open, the server provides a “handle”
to the client to use on subsequent operations
» Stateless

— Server maintains no information about client access
to files

— Mechanism: each client operation must provide
context information for that operation

Comparison

 Failure recovery

— Stateful server looses its state information

» Recovery protocol needed to restablish
synchronization with clients or abort client
operations

» Server needs to know of client failures so that it
can discard state information
— Stateless server
» Server failure/recover transparent to client

* Recovered server can respond to self-contained
client request

Comparison

» Costs for stateless service
— Longer messages (to carry state information)

— Slower processing of requests (to recreate
state)

» Stateless service not always possible

— Incompatible with some caching policies (e.g.,
server initiated cache invalidation)

— Some operations inherently stateful (e.g, Unix
file offset style file operations)

Fault Tolerance: Replication

» Purpose

— Improve reliability/availability (one replica always
available)

— Allow load balancing among servers

* Issues

— Replica transparency

* replicas must be invisible to higher levels

* replicas must be distinguishable at lower levels
— Replica consistency

* server failure or

* network partition

Sun NFS

* File system sharing among networked
workstations in a client-server model

» Each workstation may be both a client and a
server (no dedicated role)

« Services defined for implementation on
heterogeneous architectures and file systems
using machine-independent protocol

» Key protocols:

— Mount (define hierarchical structure)
— NFS (read/write operations)

* Employs stateless operations (until V4)

NFS Architecture

System call layer System call layer |
virtual file system Virtual file system
L i S NFES client NFS server Local file system
RPC Stub RPC Stub
client server
(XDR)

Mounting
Client Serverl Server2
usr dir2

local shared dir3

dirl

Mount Serverl:/usr/shared on client:/usr/local

Mounting

Client Serverl Server2

usr .
usr dir2

local shared dir3

dirl

Mount Server2:/dir2/dir3 on client:/usr/local/dirl

dirl

Mount Protocol

* Mount operation specifies remote file system
and local directory mount point
— Request translated to RPC and forwarded to server
— Server maintains export list: local file systems it will

allow to be mounted and clients that can mount them

» Server returns file handle that uniquely identifies
the exported file system to the server.

* Mount operation does not change server’s view
of the file system — only the clients view is
changed.

10

NFS Protcol

* Provides a set of RPCs for name
translation and file manipulation (reading
and writing)

 Path-name translation:

— Separate NFS lookup performed on each
component of path name

— Client side cache used to speed-up lookup
operation

« Uses remote service paradigm

11

