
1

Distributed File Systems

Concepts & Overview

Goals and Criteria
• Goal: present to a user a coherent, efficient, and manageable system 

for long-term data storage in a distributed environment.

• Criteria:
– Transparency: the degree to which the user is aware of the 

existence of the underlying distribution of data (naming schemes)
– Performance: the difference in time between access to local vs. 

remote data (caching vs. remote operations)
– Fault tolerance: the ability of the system to provide acceptable

service in the presence of failures to clients, servers, and the
network (stateful vs. stateless; replicas)

– Scaleability: the ability of the system to exhibit sustained 
performance against increases in the  number of users and the 
volume of data

– Security: a guarantee that data access conforms to stated policies
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Transparency

• Network: the same interface is presented for 
access to local and non-local files

• Acess: the user has the same view of the file 
system regardless of the physical point of 
access

• Naming:
– Location transparency (the name conveys no 

information about the location of the data)
– Location independence (the name of a file need not 

be changed if/when the location of the file is changed)

Naming Schemes

• Location evident: host-name::local-name
• Mounting: assigning the root of a remote 

file system to an already accessible 
directory (e.g., NFS)

• Single image: all users see the same 
integrated name structure for all files (e.g., 
Sprite)
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Mounting
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• Creates names such as /usr/data
• Location transparent
• Allows different users to see different

name structures
• Potential administrative costs
• Client maintains “mount table”

Semantics

• “Unix” semantics: 
– reflects familiar semantics of a non-distributed file 

system
– Allows existing applications to be run without change
– value read is the value stored by last write
– writes to an open file are visible immediately to others 

that have this file opened concurrently
– easy to implement if one server and no caching
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Semantics

• Session semantics
– Acknowledges difficulty in reflecting changes 

immediately to other readers
– Write to an open file are not immediately 

visible to remote readers (are visible to local 
readers)

– Changes are visible to those readers who 
open the file after the file is closed by the 
writer (not visible to those reading 
concurrently with the writer)

Semantics

• Immutable shared files
– A shared file cannot be changed
– File names cannot be reused 
– Simple to implement

• Transaction:
– Operations conform to ACID properties
– Requires greater system support
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Caching
client

server

Caching vs. remote service
Units of caching: block or file
Local cache: disk or memory
Update policy:

• Write through
• Delayed write
• Write-on-close

Consistency
• Client initiated validity check
• Server-initiated callback
• Leases

Disk vs. Memory Caches

• Disk caches
– More reliable (survive failures)
– Avoids reloading on recovery

• Memory caches
– Allow diskless workstations
– Faster access on client machine
– Since servers use memory caching, allows a 

single uniform mechanism
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Update policy
• Write-through

– reliable: little loss of information in the event of a 
client failures

– slow: defeats purpose of cache
• Delayed-write

– Optimizes network traffic for successive writes to 
same/nearby blocks

– Avoids overhead for data that will be overwritten (20-
30% of data is deleted within 30 seconds)

• Write-on-close
– Works best for files open for a short period
– Susceptible to loss of data for files in long use

Fault Tolerance: 
Stateful vs. Stateless Servers

• Stateful
– Server maintains information about a file opened by a 

client (e.g., file pointer, mode)
– Mechanism: on open, the server provides a “handle” 

to the client to use on subsequent operations
• Stateless

– Server maintains no information about client access 
to files

– Mechanism: each client operation must provide 
context information for that operation
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Comparison

• Failure recovery
– Stateful server looses its state information

• Recovery protocol needed to restablish
synchronization with clients or abort client 
operations

• Server needs to know of client failures so that it 
can discard state information

– Stateless server
• Server failure/recover transparent to client
• Recovered server can respond to self-contained 

client request

Comparison

• Costs for stateless service
– Longer messages (to carry state information)
– Slower processing of requests (to recreate 

state)
• Stateless service not always possible

– Incompatible with some caching policies (e.g., 
server initiated cache invalidation)

– Some operations inherently stateful (e.g, Unix 
file offset style file operations)



8

Fault Tolerance: Replication
• Purpose

– Improve reliability/availability (one replica always 
available)

– Allow load balancing among servers
• Issues

– Replica transparency
• replicas must be invisible to higher levels
• replicas must be distinguishable at lower levels

– Replica consistency 
• server failure or 
• network partition

Sun NFS
• File system sharing among networked 

workstations in a client-server model
• Each workstation may be both a client and a 

server (no dedicated role)
• Services defined for implementation on 

heterogeneous architectures and file systems 
using machine-independent protocol

• Key protocols:
– Mount (define hierarchical structure)
– NFS (read/write operations)

• Employs stateless operations (until V4)
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NFS Architecture
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Mounting
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Mount Protocol

• Mount operation specifies remote file system 
and local directory mount point
– Request translated to RPC and forwarded to server
– Server maintains export list: local file systems it will 

allow to be mounted and clients that can mount them
• Server returns file handle that uniquely identifies 

the exported file system to the server.
• Mount operation does not change server’s view 

of the file system – only the clients view is 
changed.
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NFS Protcol

• Provides a set of RPCs for name 
translation and file manipulation (reading 
and writing)

• Path-name translation:
– Separate NFS lookup performed on each 

component of path name
– Client side cache used to speed-up lookup 

operation
• Uses remote service paradigm


