
1

Distributed File Systems

Concepts & Overview

Goals and Criteria
• Goal: present to a user a coherent, efficient, and manageable system

for long-term data storage in a distributed environment.

• Criteria:
– Transparency: the degree to which the user is aware of the

existence of the underlying distribution of data (naming schemes)
– Performance: the difference in time between access to local vs.

remote data (caching vs. remote operations)
– Fault tolerance: the ability of the system to provide acceptable

service in the presence of failures to clients, servers, and the
network (stateful vs. stateless; replicas)

– Scaleability: the ability of the system to exhibit sustained
performance against increases in the number of users and the
volume of data

– Security: a guarantee that data access conforms to stated policies

2

Transparency

• Network: the same interface is presented for
access to local and non-local files

• Acess: the user has the same view of the file
system regardless of the physical point of
access

• Naming:
– Location transparency (the name conveys no

information about the location of the data)
– Location independence (the name of a file need not

be changed if/when the location of the file is changed)

Naming Schemes

• Location evident: host-name::local-name
• Mounting: assigning the root of a remote

file system to an already accessible
directory (e.g., NFS)

• Single image: all users see the same
integrated name structure for all files (e.g.,
Sprite)

3

Mounting

/

usrbindev

client

/

resultsdatafiles

file server

mount
point

• Creates names such as /usr/data
• Location transparent
• Allows different users to see different

name structures
• Potential administrative costs
• Client maintains “mount table”

Semantics

• “Unix” semantics:
– reflects familiar semantics of a non-distributed file

system
– Allows existing applications to be run without change
– value read is the value stored by last write
– writes to an open file are visible immediately to others

that have this file opened concurrently
– easy to implement if one server and no caching

4

Semantics

• Session semantics
– Acknowledges difficulty in reflecting changes

immediately to other readers
– Write to an open file are not immediately

visible to remote readers (are visible to local
readers)

– Changes are visible to those readers who
open the file after the file is closed by the
writer (not visible to those reading
concurrently with the writer)

Semantics

• Immutable shared files
– A shared file cannot be changed
– File names cannot be reused
– Simple to implement

• Transaction:
– Operations conform to ACID properties
– Requires greater system support

5

Caching
client

server

Caching vs. remote service
Units of caching: block or file
Local cache: disk or memory
Update policy:

• Write through
• Delayed write
• Write-on-close

Consistency
• Client initiated validity check
• Server-initiated callback
• Leases

Disk vs. Memory Caches

• Disk caches
– More reliable (survive failures)
– Avoids reloading on recovery

• Memory caches
– Allow diskless workstations
– Faster access on client machine
– Since servers use memory caching, allows a

single uniform mechanism

6

Update policy
• Write-through

– reliable: little loss of information in the event of a
client failures

– slow: defeats purpose of cache
• Delayed-write

– Optimizes network traffic for successive writes to
same/nearby blocks

– Avoids overhead for data that will be overwritten (20-
30% of data is deleted within 30 seconds)

• Write-on-close
– Works best for files open for a short period
– Susceptible to loss of data for files in long use

Fault Tolerance:
Stateful vs. Stateless Servers

• Stateful
– Server maintains information about a file opened by a

client (e.g., file pointer, mode)
– Mechanism: on open, the server provides a “handle”

to the client to use on subsequent operations
• Stateless

– Server maintains no information about client access
to files

– Mechanism: each client operation must provide
context information for that operation

7

Comparison

• Failure recovery
– Stateful server looses its state information

• Recovery protocol needed to restablish
synchronization with clients or abort client
operations

• Server needs to know of client failures so that it
can discard state information

– Stateless server
• Server failure/recover transparent to client
• Recovered server can respond to self-contained

client request

Comparison

• Costs for stateless service
– Longer messages (to carry state information)
– Slower processing of requests (to recreate

state)
• Stateless service not always possible

– Incompatible with some caching policies (e.g.,
server initiated cache invalidation)

– Some operations inherently stateful (e.g, Unix
file offset style file operations)

8

Fault Tolerance: Replication
• Purpose

– Improve reliability/availability (one replica always
available)

– Allow load balancing among servers
• Issues

– Replica transparency
• replicas must be invisible to higher levels
• replicas must be distinguishable at lower levels

– Replica consistency
• server failure or
• network partition

Sun NFS
• File system sharing among networked

workstations in a client-server model
• Each workstation may be both a client and a

server (no dedicated role)
• Services defined for implementation on

heterogeneous architectures and file systems
using machine-independent protocol

• Key protocols:
– Mount (define hierarchical structure)
– NFS (read/write operations)

• Employs stateless operations (until V4)

9

NFS Architecture

client server

System call layer

Virtual file system

Local file system

RPC Stub

NFS client

System call layer

Virtual file system

Local file system

RPC Stub

NFS server

(XDR)

Mounting

usr

local

dir2

dir3

usr

shared

dir1

Client Server1 Server2

Mount Server1:/usr/shared on client:/usr/local
usr

local

dir1

10

Mounting

usr

local

dir2

dir3

usr

shared

dir1

Client Server1 Server2

Mount Server2:/dir2/dir3 on client:/usr/local/dir1
usr

local

dir1

Mount Protocol

• Mount operation specifies remote file system
and local directory mount point
– Request translated to RPC and forwarded to server
– Server maintains export list: local file systems it will

allow to be mounted and clients that can mount them
• Server returns file handle that uniquely identifies

the exported file system to the server.
• Mount operation does not change server’s view

of the file system – only the clients view is
changed.

11

NFS Protcol

• Provides a set of RPCs for name
translation and file manipulation (reading
and writing)

• Path-name translation:
– Separate NFS lookup performed on each

component of path name
– Client side cache used to speed-up lookup

operation
• Uses remote service paradigm

