
1

1

Distributed DBMS Model

transaction manager

physical database

transactions

….
T T

…
.

T

T

data manager
…

.T

T

DM

DM

DM

network

TM

TM

TM

2

Serialization

T1 :

T2 :

T3 :

concurrent execution

DBlog :

1

2

1

1

1 1 1

2

2

2

22

4

3 33

3

3

3 4

44

2

3

Serialization

OPERATIONS

READ(X): read any one copy of X
R1 (X3)

WRITE (Z): write all copies of Z
W3(Z2) and W3 (Z3)

T1 :

T2 :

T3 :

concurrent execution

DBlog :

1

2

1

1

1 1 1

2

2

2

22

4

3 33

3

3

3 4

44

4

Serialization

DB is acceptable if it is guaranteed to have resulted from any
one of:

T1 T2 T3
T2 T1 T3
T2 T3 T1
T1 T3 T2
T3 T1 T2
T3 T2 T1

T1 :

T2 :

T3 :

concurrent execution

DBlog :

1

2

1

1

1 1 1

2

2

2

22

4

3 33

3

3

3 4

44

3

5

Serialization

Consider two concurrent transactions executed at only one DM

LOG: R1(X) R2(Y) R1(Y) W1(Z) W1(X) W2(X) R2(Z)

6

Serialization

Consider two concurrent transactions executed at only one DM

LOG: R1(X) R2(Y) R1(Y) W1(Z) W1(X) W2(X) R2(Z)

R2(Y) W2(X) R2(Z) ; R1(X) R1(Y) W1(Z) W1(X)

Serial
Order:

4

7

Serialization

Consider two concurrent transactions executed at only one DM

LOG: R1(X) R2(Y) R1(Y) W1(Z) W1(X) W2(X) R2(Z)

R2(Y) W2(X) R2(Z) ; R1(X) R1(Y) W1(Z) W1(X)

2

1
Serial
Order:

2

1

2

last write conflict
read source conflict

8

Serialization

Consider two concurrent transactions executed at only one DM

LOG: R1(X) R2(Y) R1(Y) W1(Z) W1(X) W2(X) R2(Z)

R1(X) R1(Y) W1(Z) W1(X) ; R2(Y) W2(X) R2(Z)

Serial
Order:

5

9

Serialization

Consider two concurrent transactions executed at only one DM

LOG: R1(X) R2(Y) R1(Y) W1(Z) W1(X) W2(X) R2(Z)

R1(X) R1(Y) W1(Z) W1(X) ; R2(Y) W2(X) R2(Z)

Serial
Order:

10

Distributed Transaction Processing

T1 : READ(X); WRITE(Y);

T2 : READ(Y); WRITE(Z);

T3 : READ(Z); WRITE(X);

X1
Y1

DM1

Y2
Z2

DM2

Z3
X3

DM3

Transactions:

6

11

Distributed Transaction Processing

LOGS:

L1 : R2(Y1) R1(X1) W1(Y1) W3(X1)

L2 : R3(Z2) W2(Z2) W1(Y2)

L3 : W3(X3) W2(Z3)

T1 : READ(X); WRITE(Y);

T2 : READ(Y); WRITE(Z);

T3 : READ(Z); WRITE(X);

X1
Y1

DM1

Y2
Z2

DM2

Z3
X3

DM3

Transactions:

12

Distributed Transaction Processing

Question:
Are these logs equivalent to some serial execution of
the transactions?

LOGS:

L1 : R2(Y1) R1(X1) W1(Y1) W3(X1)

L2 : R3(Z2) W2(Z2) W1(Y2)

L3 : W3(X3) W2(Z3)

T1 : READ(X); WRITE(Y);

T2 : READ(Y); WRITE(Z);

T3 : READ(Z); WRITE(X);

X1
Y1

DM1

Y2
Z2

DM2

Z3
X3

DM3

Transactions:

7

13

Serialization of Distributed Logs
Conflict: Pj(AX) and Qi(BY) conflict if

(1) P and Q are not both READ, and
(2) A = B
(3) i ≠ j
(4) X = Y

14

Serialization of Distributed Logs
Conflict: Pj(AX) and Qi(BY) conflict if

(1) P and Q are not both READ, and
(2) A = B
(3) i ≠ j
(4) X = Y

LOGS:

L1 : R2(Y1) R1(X1) W1(Y1) W3(X1)

L2 : R3(Z2) W2(Z2) W1(Y2)

L3 : W3(X3) W2(Z3)

8

15

Serialization of Distributed Logs
Conflict: Pj(AX) and Qi(BY) conflict if

(1) P and Q are not both READ, and
(2) A = B
(3) i ≠ j
(4) X = Y

LOGS:

L1 : R2(Y1) R1(X1) W1(Y1) W3(X1)

L2 : R3(Z2) W2(Z2) W1(Y2)

L3 : W3(X3) W2(Z3)

2

1
3

=> T1 → T3

=> T2 → T1

=> T3 → T2

1
2
3

Contradictory
∴ No total order
∴ Not serializable

16

Serialization of Distributed Logs

Theorem: Distributed logs are serializable if
there exists a total ordering of the transactions
such that for conflicting operations Pj and Qi
Pj → Qi in a LOG only if Tj → Ti

LOGS:

L1 : R2(Y1) R1(X1) W1(Y1) W3(X1)

L2 : R3(Z2) W2(Z2) W1(Y2)

L3 : W3(X3) W2(Z3)

2

1
3

=> T1 → T3

=> T2 → T1

=> T3 → T2

1
2
3

Contradictory
∴ No total order
∴ Not serializable

9

17

Locking
• transactions must use Two Phase Locking (2PL)

Ti
time

no locks released no new locks requested

locking phase release phase

• only the following lock requests are granted

current lock state
lock request not locked READ locked WRITE locked

READ OK OK DENY
WRITE OK DENY DENY

18

Locking
Ti

concurrency
controller

Ri(X)

Wi(Y)

lock(X)

release(X,Y)
lock(Y)

• request lock before accessing a data item
• release all locks at the end of transaction

This guarantees serializability [ESWAREN]

