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Distributed DBMS Model
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Serialization 
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Serialization 

OPERATIONS

READ(X): read any one copy of X
R1 (X3)

WRITE (Z): write all copies of Z
W3(Z2) and W3 (Z3)
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Serialization 

DB is acceptable if it is guaranteed to have resulted from any 
one of:

T1 T2 T3
T2 T1 T3
T2 T3 T1
T1 T3 T2
T3 T1 T2
T3 T2 T1
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Serialization 

Consider two concurrent transactions executed at only one DM 

LOG: R1(X) R2(Y) R1(Y) W1(Z) W1(X) W2(X) R2(Z)
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Serialization 

Consider two concurrent transactions executed at only one DM 

LOG: R1(X) R2(Y) R1(Y) W1(Z) W1(X) W2(X) R2(Z)

R2(Y) W2(X) R2(Z) ; R1(X) R1(Y) W1(Z) W1(X)

Serial 
Order:
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Serialization 

Consider two concurrent transactions executed at only one DM 

LOG: R1(X) R2(Y) R1(Y) W1(Z) W1(X) W2(X) R2(Z)

R2(Y) W2(X) R2(Z) ; R1(X) R1(Y) W1(Z) W1(X)

2

1
Serial 
Order:
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1

2

last write conflict
read source conflict
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Serialization 

Consider two concurrent transactions executed at only one DM 

LOG: R1(X) R2(Y) R1(Y) W1(Z) W1(X) W2(X) R2(Z)

R1(X) R1(Y) W1(Z) W1(X) ; R2(Y) W2(X) R2(Z)

Serial 
Order:
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Serialization 

Consider two concurrent transactions executed at only one DM 

LOG: R1(X) R2(Y) R1(Y) W1(Z) W1(X) W2(X) R2(Z)

R1(X) R1(Y) W1(Z) W1(X) ; R2(Y) W2(X) R2(Z)

Serial 
Order:
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Distributed Transaction Processing 

T1 : READ(X); WRITE(Y);

T2 : READ(Y); WRITE(Z);

T3 : READ(Z); WRITE(X);

X1
Y1

DM1

Y2
Z2

DM2

Z3
X3

DM3

Transactions:
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Distributed Transaction Processing 

LOGS:

L1 : R2(Y1) R1(X1) W1(Y1) W3(X1) 

L2 : R3(Z2) W2(Z2) W1(Y2) 

L3 : W3(X3) W2(Z3)

T1 : READ(X); WRITE(Y);

T2 : READ(Y); WRITE(Z);

T3 : READ(Z); WRITE(X);

X1
Y1

DM1

Y2
Z2

DM2

Z3
X3

DM3

Transactions:
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Distributed Transaction Processing 

Question: 
Are these logs equivalent to some serial execution of 
the transactions?

LOGS:

L1 : R2(Y1) R1(X1) W1(Y1) W3(X1) 

L2 : R3(Z2) W2(Z2) W1(Y2) 

L3 : W3(X3) W2(Z3)

T1 : READ(X); WRITE(Y);

T2 : READ(Y); WRITE(Z);

T3 : READ(Z); WRITE(X);

X1
Y1

DM1

Y2
Z2

DM2

Z3
X3

DM3

Transactions:
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Serialization of Distributed Logs 
Conflict: Pj(AX) and Qi(BY) conflict if

(1) P and Q are not both READ, and
(2) A = B
(3)  i ≠ j
(4) X = Y
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Serialization of Distributed Logs 
Conflict: Pj(AX) and Qi(BY) conflict if

(1) P and Q are not both READ, and
(2) A = B
(3)  i ≠ j
(4) X = Y

LOGS:

L1 : R2(Y1) R1(X1) W1(Y1) W3(X1) 

L2 : R3(Z2) W2(Z2) W1(Y2) 

L3 : W3(X3) W2(Z3)
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Serialization of Distributed Logs 
Conflict: Pj(AX) and Qi(BY) conflict if

(1) P and Q are not both READ, and
(2) A = B
(3)  i ≠ j
(4) X = Y

LOGS:

L1 : R2(Y1) R1(X1) W1(Y1) W3(X1) 

L2 : R3(Z2) W2(Z2) W1(Y2) 

L3 : W3(X3) W2(Z3)

2

1
3

=> T1 → T3

=> T2 → T1

=> T3 → T2

1
2
3

Contradictory
∴ No total order
∴ Not serializable
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Serialization of Distributed Logs 

Theorem: Distributed logs are serializable if 
there exists a  total ordering of the transactions 
such that for conflicting operations Pj and Qi
Pj → Qi in a LOG only if Tj → Ti

LOGS:

L1 : R2(Y1) R1(X1) W1(Y1) W3(X1) 

L2 : R3(Z2) W2(Z2) W1(Y2) 

L3 : W3(X3) W2(Z3)

2

1
3

=> T1 → T3

=> T2 → T1

=> T3 → T2

1
2
3

Contradictory
∴ No total order
∴ Not serializable
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Locking 
• transactions must use Two Phase Locking (2PL)

Ti
time

no locks released no new locks requested

locking phase release phase

• only the following lock requests are granted

current lock state
lock request not locked READ locked WRITE locked

READ OK OK DENY
WRITE OK DENY DENY
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Locking 
Ti

concurrency 
controller

Ri(X)

Wi(Y)

lock(X)

release(X,Y)
lock(Y)

• request lock before accessing a data item
• release all locks at the end of transaction

This guarantees serializability [ESWAREN]


