
1

1

Communicating Sequential Processes (CSP)

• single thread of control
• autonomous
• encapsulated
• named
• static

• synchronous
• reliable
• unidirectional
• point-to-point
• fixed topology

sequential
process

communication
channel

2

Communicating Sequential Processes (CSP)
operators:

? (receive)

! (send)

usage:

Send to

message

Receive from

buffer

A B

B!x A?y

x y

B!x A?y

2

3

Communicating Sequential Processes (CSP)

• rendezvous semantics: senders (receivers) remain blocked
at send (receive) operation until a matching receive (send)
operation is made.

• typed messages: the type of the message sent by the
sender and the type of the message expected by the
receiver must match (otherwise abort).

A!vec(x,y) B?vec(s,t)

OK

A!count(x) B?index(y)

NO

4

Communicating Sequential Processes (CSP)

Guarded Commands

<guard> <command list>

boolean expression

at most one ? , must be at end of
guard, considered true iff
message pending

Examples

n < 10 A!index(n); n := n + 1;
n < 10; A?index(n) next = MyArray(n);

3

5

Communicating Sequential Processes (CSP)

Alternative Command
[G1 S1 [] G2 S2 [] ... [] Gn Sn]

1. evaluate all guards
2. if more than on guard is true, nondeterministically select one.
3. if no guard is true, terminate.

Note: if all true guards end with an input command for which there is no pending
message, then delay the evaluation until a message arrives. If all senders have
terminated, then the alternative command terminates.

Repetitive Command
* [G1 S1 [] G2 S2 [] ... [] Gn Sn]

repeatedly execute the alternative command until it terminates

6

Communicating Sequential Processes (CSP)

Examples:

[x >= y --> m := x [] y >= x --> m := y]

assign x to m if x is greater than or equal to y
assign y to m if y is greater than or equal to x
assign either x or y to m if x equals y

* [c: character; west?c --> east!c]

Transmit to the process named east a character received
from the process named west until the process named west
terminates.

4

7

Communicating Sequential Processes (CSP)

SEARCH
i := 0; * [i < size; content(i) != n --> i := i + 1]

Scan the array context until the value n is found or until
the end of the array of length size is reached

LISTMAN:: *[n : integer; X?insert(n) --> INSERT
 []
 n : integer; X?has(n) --> SEARCH; X!(i < size)
]

LISTMAN has a simple protocol defined by two messages - an
insert message and a has message. The types insert and has
are used to disambiguate the integer value passed on each
communication with X. INSERT is code (not shown) that adds
the value of n to the array content. SEARCH is the code shown
above. LISTMAN replies with a boolean value to each has
message.

8

Signals between Processes

A message bearing a type but no data may be used to convey

a “signal” between processes. For example:

Semaphore::

 val:integer; val = 0;

 *[X?V()--> val = val + 1

 []

 val > 0; Y?P()--> val = val - 1

]

5

9

Communicating Sequential Processes (CSP)

BoundedBuffer::

buffer: (0..9) portion;

in, out : integer; in := 0; out := 0;

* [in < out + 10; producer?buffer(in mod 10)

--> in := in + 1;

[]

 out < in; consumer?more()

--> consumer!buffer(out mod 10);

 out := out + 1;

]

Implements a bounded buffer process using the array buffer

to hold up to a maximum of 10 values of type portion. Note

how the guarded commands do not accept producer messages when

the buffer is full and do not accept consumer messages when

the buffer is empty.

10

Communicating Sequential Processes
lineimage:(1..125) character;

i: integer; i:=1;

* [c:character; X?c -->

 lineimage(i);+ c;

 [i <= 124 --> i := i+1;

 []

 i = 125 --> lineprinter!lineimage; i:=1;

]

]

 [I = 1 --> skip

 []

 i>1 --> *[i <= 125 --> lineimage(i):= space; i:= i+1;]

 lineprinter!lineimage

]

Read a stream of characters from X and print them in

lines of 125 characters on a lineprinter completing the

last line with spaces if necessary.

6

11

Arrays of Processes

X(i: 1..100):: […process definition…]

declares an array of processes all with the same code

but with different names (e.g., X(1), X(2),…, X(100))

Communication among processes in the array is facilitated

by the use of input/output commands as illustrated in this

code fragment:

*[(i:1..100)X(i)?(params) --> …; X(i)!(result)]

where the bound variable i is used to identify the

communicating partner process

12

CSP - Comparison with Monitors
Guarded Commands
• Monitor: begin executing every call as soon as

possible, waiting if the object is not in a proper state
and signaling when the state is proper

• CSP: the called object establishes conditions under
which the call is accepted; calls not satisfying these
conditions are held pending (no need for programmed
wait/signal operations).

Rendezvous
• Monitor: the monitor is passive (has no independent

task/thread/activity)
• CSP: synchronization between peer, autonomous

activities.

7

13

CSP

Distribution:
– Monitor: inherently non-distributed in outlook and

implementation

– CSP: possibility for distributed programming using
synchronous message passing

send

receivesend
receive

reply message

call message

14

Rendezvous in ADA
task bounded-buffer is

entry store(x : buffer);
entry remove(y: buffer);

end;
task body bounded-buffer is
...declarations...
begin

loop
select

when head < tail + 10 =>
accept store(x : buffer) ... end store;

or
when tail < head =>
accept remove(y: buffer) ... end remove;

end select;
end loop

end

