Authentication

• Digital signature validation proves:
 – message was not altered in transmission
 – came from owner of the private key

• How does a “relying party” know to whom the private key belongs?
 – Key Servers
 – Certificates

Key Server

• The key server stores [identity, public key] pairs
• The key request can be in plaintext
• The key server reply is encrypted using the private key of the key server
• The public key of key server is known to the relying party
• The key server can be a point of attack or performance bottleneck
• The key server must be trustworthy
• Observations:
 • the relying party only cares about the reply
 • the reply can be precomputed and distributed
Authentication using a Key Server

Alice

1. \(A, B \)

2. \(K_{A,KDC}(K_{A,B}), K_{B,KDC}(K_{A,B}) \)

KDC

Bob

3. \(A, K_{B,KDC}(K_{A,B}) \)

Needham-Schroeder Protocol

Alice

1. \(R_{A1}, A, B \)

2. \(K_{A,KDC}(R_{A1}, B, K_{A,B}, K_{B,KDC}(A, K_{A,B})) \)

KDC

Bob

3. \(K_{A,B}(R_{A2}), K_{B,KDC}(A, K_{A,B}) \)

4. \(K_{A,B}(R_{A2}^{-1}, R_{B}) \)

5. \(K_{A,B}(R_{B}^{-1}) \)
Certificates

- the certificate
 - contains an (identity, public key) pair
 - is signed with the private key of the CA

- the repository
 - need not be trusted
 - is read-only
 - may be duplicated for performance

- the certificate can be "pushed" to the relying party

Chain of Trust

- trusted CA (root CA, trust anchor)
 - identity
 - signed by
 - identity
 - presented identity certificate
 - identity
 - signed by
X.509 Certificate Format

Example Certificate

Certificate:

Data:

Version: 3 (0x2)
Serial Number: 1097588 (0x10bf74)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=US, ST=Massachusetts, O=Massachusetts Institute of Technology, OU=Client CA v1
Validity
Not Before: Jul 31 14:07:49 2000 GMT
Not After: Jul 31 14:07:49 2001 GMT
Subject: C=US, ST=Massachusetts, O=Massachusetts Institute of Technology, OU=Client CA v1, CN=Jeffrey I Schiller/E-mail=jis@MIT.EDU
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA PublicKey (1024 bit):

Modulus (1024 bit):

Exponent: 65537 (0x10001)
X509v3 extensions:
X509v3 Key Usage:

1.2.840.113554.1.3.1:

Signature Algorithm: md5WithRSAEncryption

Signature:

2a:be
Revocation

- Is a certificate still valid?
 - Private key compromise
 - CA compromise
 - Affiliation changed
 - Superseded
 - CA ceased operation
 - ...

- Certificate Revocation List (CRL) provides a list of the unexpired certificates that should no longer be used

CRL Format

- `CRL Format`
- `v1 or v2`
- `C=US, S=VA, O=RSA Labs`
- `12/25/01`
- `RSA with SHA-1`
- `11/25/01`
- `12345`
- `9/27/01`
- `9/27/01`
- `12345`
PKIX Architecture

PKIX Elements

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>PRIMARY ROLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Entity</td>
<td>End Entity is a generic term used to denote end-users, devices (e.g., servers, routers), or any other entity that can be identified as the subject field of a public key certificate. End entities typically consume and/or support PKI-related services.</td>
</tr>
<tr>
<td>Certification Authority (CA)</td>
<td>The CA is the issuer of certificates and usually CRLs. It may also support a variety of administrative functions, although these are often delegated to one or more Registration Authorities.</td>
</tr>
<tr>
<td>Registration Authority (RA)</td>
<td>The RA is an optional component that can assume a number of administrative functions from the CA. The RA is often associated with the End Entity registration process, but can assist in a number of other areas as well.</td>
</tr>
<tr>
<td>Repository</td>
<td>A repository is a generic term used to denote any method for storing certificates and CRLs so that they can be retrieved by End Entities.</td>
</tr>
<tr>
<td>CRL Issuer</td>
<td>The CRL Issuer is an optional component that a CA can delegate to publish CRLs.</td>
</tr>
</tbody>
</table>
Role of the CA

- Verifies certificate request information
- Generates and digitally signs the certificate
- Revokes certificate if information changes
- Revokes certificate if private key is disclosed
- Support certificate hierarchies
- Optional services
 - Key generation
 - Issue hardware token

CA Topologies
Cross Certification