
Distributed Scheduling

Goal: enable transparent execution of programs on
networked computing systems

Motivations: reduce response time of program
execution through load balancing

An aspect of current interest in “grid computing” systems
•globus
•legion

Opportunities for Task Distribution

P
: p

ro
ba

bi
lit

y
of

 ta
sk

 d
is

tr
ib

ut
io

n

0.2

0.4

0.6

0.8

1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Server utilization

Task Distribution
P

: p
ro

ba
bi

lit
y

of
 ta

sk
 d

is
tr

ib
ut

io
n

0.2

0.4

0.6

0.8

1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Server utilization

In lightly loaded
systems there is
not much
opportunity for
task distribution
because most
servers are
underutilized

Task Distribution
P

: p
ro

ba
bi

lit
y

of
 ta

sk
 d

is
tr

ib
ut

io
n

0.2

0.4

0.6

0.8

1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Server utilization

In heavily loaded
systems there is not
much opportunity
for task distribution
because no server
is free to accept a
task

Task Distribution

In moderately loaded
systems there are good
opportunities to
distribute tasks from
over-utilized to under-
utilized systems

P
: p

ro
ba

bi
lit

y
of

 ta
sk

 d
is

tr
ib

ut
io

n

0.2

0.4

0.6

0.8

1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Server utilization

Characteristics of Approaches

Goals:
•load sharing (distribute load) vs.
•load balancing (equalize load)

Information:
•static (invariant of system state)
•dynamic (uses system state)
•adaptive (changes actions with system state)

Transfers:
•preemptive (interrupts task for transfer) vs.
• non-preemptive (transfers only new tasks)

Component Policies

•Transfer determines whether a node is in a state to participate
in load transfers and in what role

•Selection determines which local task is involved in the transfer

•Location determines a pair of nodes to participate in task transfer

•Information determines what information is collected and how

•demand-driven (obtained when needed)
•periodic (at regular intervals)
•state-change-driven (obtained when nodes change state)

Kinds of Algorithms
sender-initiated : an overloaded node searches for a

underloaded node to take one of its tasks

location policies: random, polling-first found, polling-least loaded
stability: unstable/ineffective at high system loads

receiver-initiated : an underloaded node searches for a task to
take from an overloaded node

location policies: random, polling
stability: stable at high system loads
drawback: uses preemptive transfers in many cases

symmetrically-initiated : senders and receivers search for
each other

Above-Average Algorithm

sender
upper threshold (UT)

This node’s estimate of the systems average load

lower threshold (LT)
receiver

*thresholds equidistant from average

Basic Step

sender receiver
if (< LT)

Accept

TooLow

TooHighif (> UT)

Task

if (receiver)
{ increment load;

send accept;
}if (still sender)

{
send task;

}

broadcast

Basic Step

sender receiver

if (still sender)

TooHigh

TooHighif (> UT)

TooLow if (< LT)

broadcast

.

.

.

Timers

receiversender

start timer

TooHighif (> UT)

RaiseAverage

(timer expires)

broadcast

Timers

receiversender

TooLow if (< LT)

start timer

(timer expires)

LowerAverage

broadcast

A Stable, Symmetrically Initiated Algorithm

sender/overloaded

receiver/underloaded

OK

Transfer Policy:

Load is measured by
CPU queue length

Stable, Symmetrically Initiated Algorithm

Each node maintains three lists that are searched in the following
orders:

receiver search

sender search 1receiver OK sender

3 2

Sender Protocol

task

poll from ipoll node at head
of receiver list

.

.

.

sender i receiverj

reply current statestate j
if (== receiver)
{

send task;
done;

}
else
{ put j on head of

sender or OK list
depending on
state

}

state j

j

Sender continues
polling until receiver
list empty or task
is transferred.

Receiver Protocol

receiver continues
polling until poll
limit is reached or
task is transferred.

task

poll from j poll next node

sender i receiverj

execute task
if received

if (load > UT)
{

send task;
}
else
{ put j at head of

receiver list;
}

send current state state i
put i at head of
appropriate list

Stability
At high loads:

• sender-initiated polling stops
because receiver list becomes empty

• receiver-initiated polling has low overhead
because it will quickly find a task to transfer

At low loads:
•receiver-initiated polling will usually fail
but overhead is acceptable and other nodes are updated

•sender initiated polling will quickly succeed

At intermediate loads:
•receiver-initiated and sender-initiated both work

A Stable Sender-Initiated Algorithm

Similar to previous algorithm except that it has a modified receiver
protocol. Each node maintains a state vector, SV, indicating on
which list the node is on at all other nodes.

[j]

on node i SV:

sender/receiver/OK

Note: the movement of node i to a different list on node j can only
occur as a result of an interaction between nodes i and j. Thus, it is
possible for node i to keep its information current.

Sender Protocol

task

poll from ipoll node at head
of receiver list;
set SV[j] = sender;

.

.

.

sender i receiverj

reply current state;
set SV[i] = state

state j

Sender continues
polling until receiver
list empty or task
is transferred.

put i at head of sender list

j
if (== receiver)
{

send task;
done;

}
else
{ put j on head of

sender or OK list
depending on
state

}

state j

Receiver Protocol

sender i receiverj

j is receiver

when load < LT then:

for all i:
if (SV[i] != receiver)
{

send update;
set SV[i] = receiver;

}

put j at head of
receiver list;

Note: receiver only informs
selected nodes of its status
change.

Advantages

The sender-initiated algorithm:

• avoids broadcasting of receiver state

• does not transfer preempted tasks
(because it is sender-initiated)

• is stable (as for previous algorithm)

Selecting a Scheduling Algorithm

no high loads sender-initiated

has high loads stable algorithm

wide fluctuations stable symmetric

 wide fluctuations
and high migration
cost

stable sender-initiated

	Distributed Scheduling
	Opportunities for Task Distribution
	Task Distribution
	Task Distribution
	Task Distribution
	Characteristics of Approaches
	Component Policies
	Kinds of Algorithms
	Above-Average Algorithm
	Basic Step
	Basic Step
	Timers
	Timers
	A Stable, Symmetrically Initiated Algorithm
	Stable, Symmetrically Initiated Algorithm
	Sender Protocol
	Receiver Protocol
	Stability
	A Stable Sender-Initiated Algorithm
	Sender Protocol
	Receiver Protocol
	Advantages
	Selecting a Scheduling Algorithm

