Distributed Scheduling

Goal: enable transparent execution of programs on
networked computing systems

Motivations: reduce response time of program
execution through load balancing

An aspect of current interest in “grid computing” systems

globus
elegion

Opportunities for Task Distribution

1.0—

0.8——

0.6——

-/

0.2——

P : probability of task distribution

Server utilization

P : probability of task distribution

1.0—

0.8——

0.6——

0.4—

0.2

Task Distribution

Server utilization

In lightly loaded
systems there is
not much
opportunity for
task distribution
because most
Servers are
underutilized

P : probability of task distribution

1.0—

0.8——

0.6

0.4—

0.2

Task Distribution

Server utilization

In heavily loaded
systems there Is not
much opportunity
for task distribution
because no server
Is free to accept a
task

P : probability of task distribution

1.0——

0.8——

0.6——

0.4——

0.2——

Task Distribution

Server utilization

In moderately loaded
systems there are good
opportunities to
distribute tasks from
over-utilized to under-
utilized systems

Characteristics of Approaches

Goals:

eload sharing (distribute load) vs.
eload balancing (equalize load)

Information:

estatic (invariant of system state)
edynamic (uses system state)
sadaptive (changes actions with system state)

Transfers:

spreemptive (interrupts task for transfer) vs.
 non-preemptive (transfers only new tasks)

Component Policies

eTransfer determines whether a node is in a state to participate
In load transfers and in what role

eSelection determines which local task is involved in the transfer

|_ocation determines a pair of nodes to participate in task transfer

eInformation determines what information is collected and how

edemand-driven (obtained when needed)
esperiodic (at regular intervals)
estate-change-driven (obtained when nodes change state)

Kinds of Algorithms

sender-initiated : an overloaded node searches for a
underloaded node to take one of its tasks

location policies: random, polling-first found, polling-least loaded
stability: unstable/ineffective at high system loads

receiver-initiated : an underloaded node searches for a task to
take from an overloaded node

location policies: random, polling
stability: stable at high system loads
drawback: uses preemptive transfers in many cases

symmetrically-initiated : senders and receivers search for
each other

Above-Average Algorithm

sender {
—— <«—— upper threshold (UT)
—— <«—— This node’s estimate of the systems average load

— «—— lower threshold (LT)
receiver {

*thresholds equidistant from average

sender

if (>UT)

if (still sender)
{

send task:

}

¢

&

y

Basic Step

ToolLow

receiver

A

& if (< LT)

TooHigh

A

if (receiver)
{ increment load,;
send accept;

A

Accept

Task

y

}

@—— broadcast

Basic Step

sender receiver

&
A

TooHigh

if (>UT) @

TooLow

A

A
D

) if (< LT)

if (still sender)

y

TooHigh >

@—— broadcast

Timers

sender receiver

TooHigh

&
A

if (>UT) ¢

start timer 4’@

A

(timer expires)

& » RaiseAverage

@—— broadcast

Timers

sender receiver

A
T

> if (<LT)

W start timer

ToolLow

(timer expires)

§
O

LowerAverage

@—— broadcast

A Stable, Symmetrically Initiated Algorithm

sender/overloaded {
Transfer Policy:

/

oK <

Load is measured by
CPU queue length

-

receiver/underloaded {

Stable, Symmetrically Initiated Algorithm

Each node maintains three lists that are searched in the following
orders:

receiver search

sender search receiver OK sender @
A A

sender .

poll node at head
of receiver list

if (state j== receiver)
{

send task;
done;

}

else

{ put jon head of
sender or OK list
depending on
state j

}

Sender Protocol

y

poll from i

receiverj

A

A

state J

task

y

reply current state

Sender continues
polling until receiver
list empty or task

Is transferred.

Recelver Protocol

sender i receiverj

if (load > UT) < poll from j poll next node
{

send task;
| S R T | execute task
else task if received
{ put j at head of

receiver list;
}
send current state | state; » Putiathead of

appropriate list

receiver continues
polling until poll

limit is reached or
task is transferred.

Stability

At high loads: _
 sender-initiated polling stops
because receiver list becomes empty

 receiver-initiated polling has low overhead
because it will quickly find a task to transfer

At low loads:

erecelver-initiated polling will usually fail
but overhead Is acceptable and other nodes are updated

sender initiated polling will quickly succeed

At intermediate loads:
erecelver-initiated and sender-initiated both work

A Stable Sender-Initiated Algorithm

Similar to previous algorithm except that it has a modified receiver
protocol. Each node maintains a state vector, SV, indicating on
which list the node is on at all other nodes.

[J]

onnodei SV:

— sender/receiver/OK

Note: the movement of node i to a different list on node j can only
occur as a result of an interaction between nodes i and j. Thus, it is

possible for node i to keep its information current.

sender .

poll node at head
of receiver list;
set SV[j] = sender;

if (state j== receiver)
{

send task;
done;

}

else

{ put jon head of
sender or OK list
depending on
state

}

Sender Protocol

y

poll from i

recelver-.

y

A

A

state J

task

y

J

put i at head of sender list

reply current state;
set SV[i] = state i

Sender continues
polling until receiver
list empty or task

Is transferred.

Recelver Protocol

sender i receiverj
when load < LT then:
for all i:
if (SV[i] !'= receiver)
{

put j at head of
receiver list;

A
A

send update;
set SVI[i] = receiver;

J Is receiver

}

Note: receiver only informs
selected nodes of its status
change.

Advantages

The sender-initiated algorithm:
e avoids broadcasting of receiver state

e does not transfer preempted tasks
(because it Is sender-initiated)

* Is stable (as for previous algorithm)

Selecting a Scheduling Algorithm

no high loads sender-initiated
has high loads stable algorithm
wide fluctuations stable symmetric

wide fluctuations
and high migration stable sender-initiated
cost

	Distributed Scheduling
	Opportunities for Task Distribution
	Task Distribution
	Task Distribution
	Task Distribution
	Characteristics of Approaches
	Component Policies
	Kinds of Algorithms
	Above-Average Algorithm
	Basic Step
	Basic Step
	Timers
	Timers
	A Stable, Symmetrically Initiated Algorithm
	Stable, Symmetrically Initiated Algorithm
	Sender Protocol
	Receiver Protocol
	Stability
	A Stable Sender-Initiated Algorithm
	Sender Protocol
	Receiver Protocol
	Advantages
	Selecting a Scheduling Algorithm

