Distributed Scheduling

Goal: enable transparent execution of programs on
networked computing systems

Motivations: reduce response time of program
execution through load balancing

An aspect of current interest in “grid computing” systems
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P : probability of task distribution
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In moderately loaded
systems there are good
opportunities to
distribute tasks from
over-utilized to under-
utilized systems



Characteristics of Approaches

Goals:

eload sharing (distribute load) vs.
eload balancing (equalize load)

Information:

estatic (invariant of system state)
edynamic (uses system state)
sadaptive (changes actions with system state)

Transfers:

spreemptive (interrupts task for transfer) vs.
 non-preemptive (transfers only new tasks)




Component Policies

eTransfer determines whether a node is in a state to participate
In load transfers and in what role

eSelection determines which local task is involved in the transfer

|_ocation determines a pair of nodes to participate in task transfer

eInformation determines what information is collected and how

edemand-driven (obtained when needed)
esperiodic (at regular intervals)
estate-change-driven (obtained when nodes change state)



Kinds of Algorithms

sender-initiated : an overloaded node searches for a
underloaded node to take one of its tasks

location policies: random, polling-first found, polling-least loaded
stability: unstable/ineffective at high system loads

receiver-initiated : an underloaded node searches for a task to
take from an overloaded node

location policies: random, polling
stability: stable at high system loads
drawback: uses preemptive transfers in many cases

symmetrically-initiated : senders and receivers search for
each other




Above-Average Algorithm

sender {
—— <«—— upper threshold (UT)
—— <«—— This node’s estimate of the systems average load

— «—— lower threshold (LT)
receiver {

*thresholds equidistant from average
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Timers
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A Stable, Symmetrically Initiated Algorithm

sender/overloaded {
Transfer Policy:

/

oK <

Load is measured by
CPU queue length

-

receiver/underloaded {




Stable, Symmetrically Initiated Algorithm

Each node maintains three lists that are searched in the following
orders:

receiver search

sender search receiver OK sender @
A A




sender .

poll node at head
of receiver list

if ( state j== receiver)
{

send task;
done;

}

else

{ put jon head of
sender or OK list
depending on
state j

}

Sender Protocol

y

poll from i

receiverj

A

A

state J

task

y

reply current state

Sender continues
polling until receiver
list empty or task

Is transferred.




Recelver Protocol

sender i receiverj

if (load > UT) < poll from j poll next node
{

send task;
| S R T | execute task
else task if received
{ put j at head of

receiver list;
}
send current state | state; » Putiathead of

appropriate list

receiver continues
polling until poll

limit is reached or
task is transferred.




Stability

At high loads: _
 sender-initiated polling stops
because receiver list becomes empty

 receiver-initiated polling has low overhead
because it will quickly find a task to transfer

At low loads:

erecelver-initiated polling will usually fail
but overhead Is acceptable and other nodes are updated

sender initiated polling will quickly succeed

At intermediate loads:
erecelver-initiated and sender-initiated both work




A Stable Sender-Initiated Algorithm

Similar to previous algorithm except that it has a modified receiver
protocol. Each node maintains a state vector, SV, indicating on
which list the node is on at all other nodes.

[J]

onnodei SV:

— sender/receiver/OK

Note: the movement of node i to a different list on node j can only
occur as a result of an interaction between nodes i and j. Thus, it is

possible for node i to keep its information current.



sender .

poll node at head
of receiver list;
set SV[j] = sender;

if ( state j== receiver)
{

send task;
done;

}

else

{ put jon head of
sender or OK list
depending on
state

}

Sender Protocol

y

poll from i

recelver-.

y

A

A

state J

task

y

J

put i at head of sender list

reply current state;
set SV[i] = state i

Sender continues
polling until receiver
list empty or task

Is transferred.




Recelver Protocol

sender i receiverj
when load < LT then:
for all i:
if (SV[i] !'= receiver)
{

put j at head of
receiver list;

A
A

send update;
set SVI[i] = receiver;

J Is receiver

}

Note: receiver only informs
selected nodes of its status
change.




Advantages

The sender-initiated algorithm:
e avoids broadcasting of receiver state

e does not transfer preempted tasks
(because it Is sender-initiated)

* Is stable (as for previous algorithm)



Selecting a Scheduling Algorithm

no high loads sender-initiated
has high loads stable algorithm
wide fluctuations stable symmetric

wide fluctuations
and high migration stable sender-initiated
cost
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