
Processing
(threads, agents, formalism)

How can processing activity be structured on a single 
processor?

How can application-level information and system-level 
information be combined to provide efficient scheduling of 
processing activities? 

Why is mobility of a processing activity desired and how can it 
be achieved?

How can the concepts of communication, processing, and 
mobility be represented in a formal model?

1



Context

Support for concurrent and parallel programming
co

nc
ur

re
nt

pa
ra

lle
l

conform to application semantics

respect priorities of applications

no unnecessary blocking

fast context switch

high processor utilization

functional

2

performance

relative importance



“Heavyweight” Process Model

. . .
user

kernel

• simple, uni-threaded model
• security provided by address space boundaries
• high cost for context switch
• coarse granularity limits degree of concurrency

3



“Lightweight” (User-level) Threads

. . .
user

kernel

• thread semantics defined by application
• fast context switch time (within an order of magnitude of

procedure call time)
• system scheduler unaware of user thread priorities
• unnecessary blocking (I/O, page faults, etc.)
• processor under-utilization

4



Kernel-level Threads

. . .
user

kernel

• thread semantics defined by system
• overhead incurred due to overly general implementation and cost of 
kernel traps for thread operations

• context switch time better than process switch time by an order of 
magnitude, but an order of magnitude worse than user-level threads

• system scheduler unaware of user thread state (e.g, in a critical region)
leading to blocking and lower processor utilization

5



Problem

• Application has knowledge of the user-level thread state but has 
little knowledge of or influence over critical kernel-level events (by 
design! to achieve the virtual machine abstraction)

• Kernel has inadequate knowledge of user-level thread state to make 
optimal scheduling decisions

Solution: a mechanism that facilitates exchange of 
information between user-level and kernel-level 
mechanisms.

A general system design problem: communicating 
information and control across layer boundaries while 
preserving the inherent advantages of layering, 
abstraction, and virtualization.

6



Scheduler Activations: Structure

. . .

kernel support

user

kernel

• change in processor
allocation

• change in thread 
status

• Change in processor
requirements thread

library

Scheduler activations

7



Communication via Upcalls

The kernel-level scheduler activation mechanism 
communicates with the user-level thread library by 
a set of upcalls:

Add this processor (processor #)
Processor has been preempted (preempted activation #, machine state)
Scheduler activation has blocked (blocked activation #)
Scheduler activation has unblocked (unblocked activation #, machine state)

The thread library must maintain the association 
between a thread’s identity and thread’s scheduler 
activation number.

8



Role of Scheduler Activations

9

virtual 
multiprocessor

user-level 
threads

. . .

. . .

P1 P2 Pn . . .

. . .

SA SA SA

kernel

thread 
library

Invariant: there is one running 
scheduler activation (SA) for 
each processor assigned to the 
user process.

abstraction implementation



Avoiding Effects of Blocking

10

user

kernel

user

kernel

3: new

1

2

4: upcall

5: start

1: system call

2: block

Kernel threads Scheduler Activations



Resuming Blocked Thread

user

kernel

2: preempt

1: unblock

3: upcall

5
4

4: preempt
5: resume

11



Performance

Operation FastThreads on
Topaz Threads

FastThreads on
Scheduler Activations Topaz Threads Ultrix process

Null fork

Signal-Wait

34

37

37

42

948

441

11300

1840

12


	Processing(threads, agents, formalism)
	Context
	“Heavyweight” Process Model
	“Lightweight” (User-level) Threads
	Kernel-level Threads
	Problem
	Scheduler Activations: Structure
	Communication via Upcalls
	Role of Scheduler Activations
	Avoiding Effects of Blocking
	Resuming Blocked Thread
	Performance

