
1

The Model

node channel

Node properties:
• No shared memory
• No global clock

Node properties:
• No shared memory
• No global clock

Channel properties:
• FIFO
• loss free
• non-duplicating

Channel properties:
• FIFO
• loss free
• non-duplicating

2

The Problem

$500 $200
C1:empty

C2:empty

$450 $200
C1:transfer $50

C2:empty

$450 $250
C1:empty

C2:empty

3

Problems:
• recording a “consistent” state of the global computation

• checkpointing for fault tolerance (rollback, recovery)
• testing and debugging
• monitoring and auditing

• detecting stable properties in a distributed system via snapshots.
A property is “stable” if, once it holds in a state, it holds in all
subsequent states.
• termination
• deadlock
• garbage collection

Distributed Snapshot
(Global State Recording)

4

Local State and Actions:
local state: LSi
message send: send(mij)
message receive: rec(mij)
time: time(x)
send(mij) ε LSi iff time(send(mij)) < time(LSi)
rec(mij) ε LSj iff time(rec(mij)) < time(LSj)

Predicates:
transit(LSi , LSj) =

{mij | send(mij) ε LSi Λ !(rec(mij) ε LSj)) }
inconsistent(LSi , LSj) =

{mij | !(send(mij) ε LSi) Λ rec(mij) ε LSj) }

Consistent Global State:
∀ i, ∀ j : 1 <= i, j <= n :: inconsistent(LSi , LSj) = Φ

Definitions

5

Marker-Sending Rule for a Process p:
For each channel c, incident on, and directed away from p: p sends one
marker along c after p records its state and before p sends further messages
along c.

Marker-Receiving Rule for a Process q:
if (q has not recorded its state) then

begin q records its state;
q records the state of c as the empty sequence;

end
else q records the state of c as the sequence of message

received along c after q's state was recorded and before
q received the marker along c.

Detecting a Stable Property
begin

record a global snapshot, S*;
test for the stable property in S*;

end;

Global-State-Detection Algorithm

6

p
empty

empty
q

state A state C

S0 p records its state (A) and sends
marker M on channel

p
M

empty
q

state A state C

S1
before receiving the marker, q
changes its state and sends
message D.

p
M

D
q

state A state D

S2

q receives the marker and records
its state (D) and the incoming
channel as empty; q send marker
M' on its outgoing channel.

p
M

M’
q

state B state D

S3 on receiving the marker, p records
the channel as having D

p
empty

D
q

state A state D

recorded
state

7

Snapshot/State Recording Example

M = Marker

p500 q

r

500

500

c3c4

c2
c1

Node Recorded state
c1 c2 c3 c4

p {} {}
q {}
r {}

8

Snapshot/State Recording Example (Step 1)

Node Recorded state
state c1 c2 c3 c4

p 490 {} {}
q {}
r {}

p490 q

r

470

500

c3c4

c2
c1
M 10

20

10

9

Snapshot/State Recording Example (Step 2)

Node Recorded state
state c1 c2 c3 c4

p 490 {} {}
q 480 {}
r {}

p490 q

r

480

475

c3
c4

c2
c1

20

10

M
M

25

10

Snapshot/State Recording Example (Step 3)

Node Recorded state
state c1 c2 c3 c4

p 490 {} {}
q 480 {}
r 485 {}

p470 q

r

480

485

c3
c4

c2
c1

20

20

M

M

25

11

Snapshot/State Recording Example (Step 4)

Node Recorded state
state c1 c2 c3 c4

p 490 {20} {}
q 480 {}
r 485 {}

p490 q

r

500

485

c3
c4

c2
c1

M

25

12

Snapshot/State Recording Example (Step 5)

Node Recorded state
state c1 c2 c3 c4

p 490 {20} {25}
q 480 {}
r 485 {}

p515 q

r

500

485

c3
c4

c2
c1

