
1

Peer-to-Peer Storage
Systems

• Cooperative File System (CFS)
• PAST
• Freenet
• FreeHaven

2

Peer-to-Peer Systems
• Definition: “Peer-to-peer systems can be characterized

as distributed systems in which all nodes have identical
capabilities and responsibilities, and all communication is
symmetric.” –Rowstron-

• Popular Examples:
– Napster
– Gnutella

• Goals (from Dabek, et. al.)
– Symmetric and decentralized
– Operate with unmanaged voluntary participants
– Fast location of data
– Tolerate frequent joining/leaving by servers
– Balanced load

3

CFS: Properties
• Decentralized control (use ordinary Internet

hosts)
• Scalability (overhead at most logarithmic in the

number of servers)
• Availability (placement of replicas on unrelated

servers)
• Load balance (block distribution and caching)
• Persistence (renewable lifetimes)
• Quotas (source-limited insertions)
• Efficiency (comparable to FTP access)

4

CFS: Architecture

Chord

DHash

CFS •Read-only file system interface

•Block distribution/fetching
•Caching/replication
•Quota enforcement

•Block lookup

A generic, distributed block store

cl
ie

nt

se
rv

er

5

CFS: Content-hash indexing
• Each block (except for the root block of a file system) is identified by

an index obtained from a hash (e.g., SHA-1) of its contents

• A root block is signed by the author; the index of the root block is a
hash of the user’s public key

B1

B2

data block

data block

Inode block

F

directory
block H(B1)

H(B2)

H(F)

D

root block
H(D)

H(public key)

timestamp

signature

6

Chord: Mapping
• server s stores all values indexed by key k for

which s is the successor of k (successor(k) is
the node whose identifier is the smallest one
greater than k)

• each Chord server maintains two lists:
– a finger table for searching
– r immediate successors and their latency

information

server

H(IP address +
virtual index) block

H(block)successor

7

Chord: Searching (1)

n1

n3

n2 A

B

C

D

M

M = n1 + 2m-1

…

n3[C,D)C = n1 + 22

n3[B,C)B = n1 + 21

n2[A,B)A = n1 + 20

nodeintervalstart

finger table for n1

8

Chord: Searching (2)

9

Chord: performance

10

Chord: Adding Servers (1)
Two Invariants maintained:

• Successor information is correct
• Successor(k) is responsible for key k

Steps:
1. By out-of-band means, locate an existing server, n
2. Update tables

• Update successor/predecessor links
• Creates finger tables for new server
• Update other server’s finger tables

3. Redistribute responsibility for keys to n from its successor
• Call higher (DHash) layer

11

Chord: Adding Servers (2)

Adding a new node at 6 assuming that node 6
knows, by out-of-band means, of node 3

12

DHash: Interface

• put_h(block) – stores block using content-hashing
• put_s(block, pubkey) – stores block as a root block; key

is hash of pubkey
• get(key) – finds/returns block associated with key

13

DHash: replication

• Places replicas on k servers following successor
• Note: each Chord server maintains a list of r immediate

successors. By keeping r >= k, it is easy for DHash to
determine replica locations

• Existence of replicas eases reallocation when node
leaves the system

• By fetching the successor list from Chord, the DHash
layer can select the most efficient node from which to
access a replica of a desired block

14

DHash: caching, load balancing, quotas

• Caching is effective because searches
from different clients converge toward the
end of the search

• Virtual servers hosted on one machine
allow for more capable machines to store
a larger portion of the identifier space

• Each server enforces a fixed, per-IP
address quota on publishing nodes

15

DHash: replication and caching

server

target server

identifier

replicas

