Time and Ordering

The two critical differences between centralized and distributed
systems are:

« absence of shared memory

» absence of a global clock

We will study:

e how programming mechanisms change as a result of these
differences

 algorithms that operate in the absence of a global clock
 algorithms that create a sense of a shared, global time

 algorithms that capture a consistent state of a system in the
absence of shared memory

Event Ordering
I:)2

D &Y

I:)1
pP— o<

Q, Q, Qs
Q S o S
How can the events on P be related to the events on Q?
Which events of P “happened before” which events of Q?
Partial answer: events on P and Q are strictly ordered. So:
and

Q-—>Q, ——>Q;

Event Ordering

I:)1 PZ P3
P S S O >
Message
Q. Q, Qs
Q—=© S O =

Realization: the only events on P that can causally affect
events on Q are those that involve communication between P

and Q.

If P, Is a send event and Q, Is the corresponding receive event
then it must be the case that:

P, -—>Q,

Event Ordering

I:)1 PZ P3
P S S O >
Message
Q. Q, Qs
Q—=© S O =

“Happened Before” relation:

* If E; and E; are two events of the same process, then E; ——> E; if 1 <].

*If E; and E; are two events of different processes, then E; -—> E;

If E IS a message send event and E; Is the correspondlng message
receive event.

*The relation Is transitive.

Lamport's Algorithm

Lamport's algorithm is based on two implementation rules that define how
each process's local clock is incremented.

Notation:

 the processes are named P; ,

 each process has a local clock, C,

« the clock time for an event a on process P; is denoted by C. (a).
Rule 1:

If a and b are two successive events in P, and a --> b
then C; (b) = C; (a) + d where d > 0.

Rule 2:

I aPis ﬁ message send event on P; and b is the message receive event on
. then:
]

 the message is assigned the timestamp t_ = C, (a)
* C;(b)=max (C,, t, +d)

Example of Lamport’s Algorithm

Limitation of Lamport's Algorithm

In Lamport's algorithm two events that are causally related will be related
through their clock times. That is:

If a ——> b then C(a) < C(b)

However, the clock times alone do not reveal which events are causally
related. That is, iIf C(a) < C(b) then it is not known if a —-> b or not. All

that is known is:
If C(a) < C(b) thenb -/->a

It would be useful to have a stronger property - one that guarantees that
a—-—> biff C(a) < C(b)

This property is guaranteed by Vector Clocks.

Vector Clock Rules

Fachhprocess P. is equipped with a clock C; which is an integer vector of
ength n

Ci(a) is referred to as the timestamp event a at P
Ci[i], the ith entry of C, corresponds to P;’s own logical time.
C;li], J=11s P;’s best guess of the logical time at P;

Implementation rules for vector clocks:

[IR1] Clock C; is incremented between any two successive events in
process P;

C[i] :=Ci[i] +d (d > 0)

[IR2] If event a is the sending of the message m by process P;, then
message m is assigned a vector timestamp t.. = C.(a); on recelvmg the same
message m by process P;, C; Is updated as follows:

vk, cj[k] := max(C;[K], t,, [KI)

Vector Clocks

(1,0,0) (2,0,0) (3.4,1)
P,—e® o *—
\ (2,3,1) /
P, @ @ ®
(0,1,0) (2,2,0) (2,4,1)
P, @ @
(0,0,1) (0,0,2)

Causal Ordering of Messages

Send(M,)

P

Send(M,)

-
w
* @

Time

10

Birman-Schiper-Stephenson Protocol

1. Before broadcasting a message m, a process P; increments the vector
time VTg;[1] and timestamps m. Note that (VTg;[1] - 1) indicates how many
messages from P; precede m.

2. A process P; #P;, upon receiving message m timestamped VT, from P;,
delays its delivery until both the following conditions are satisfied.

a. VT[] = VT,[i] - 1

b. VTp[K] = VT [K] Vk € {1,2,.....n} - {i}
where n is the total number of processes.

Delayed messages are queued at each process in a queue that is
sorted by vector time of the messages. Concurrent messages are
ordered by the time of their receipt.

3. When a message Is delivered at a process P;, VT, Is updated according to
the vector clocks rule [IR2]

11

