
1

Distributed File Systems

Case Studies:
Sprite
Coda

2

Sprite (SFS)
• Provides identical file hierarchy to all users
• Location transparency
• Pathname lookup using a prefix table

– Lookup simpler and more efficient
– Allows dynamic reconfiguration

• Caching
– Client-caching in main memory
– Delayed write policy

3

Name Lookup in Sprite

Remote link

(Server, Domain)

m

n

(Y, D4)

/

a b c

g
h i

(X, D1)

j k

(Z, D3)

(X, D2)

d e f

D4Y/c/i/j
D3Z/c/i
D2X/a
D1X/

TokenServerPrefix

Prefix Table

A specially marked file
containing its own name.

4

Constructing the Prefix Tables

D1X/

TokenServerPrefix

open /c/i/k

(open, /c/i/k, D1)
X

(/c/i , remote link)

(find-prefix, /c/i)broadcast

(/c/i, Z, D3)

D3Z/c/i

D1X/

TokenServerPrefix Z

(open, k, D3)

(file-designator)

update

find

client

5

Prefix Table Advantages
• Efficient name lookup (in comparison to component-at-a-

time lookup as in NFS)
• Added fault tolerance (once an entry for a domain is

loaded in the prefix table of a client, that client can
access files in the domain regardless of failures to other
servers)

• Allows dynamic reconfiguration (if a known server stops
responding, broadcast the path again to find its new
location)

• Permits private domains (a client adds to its prefix table
the path to the root of the private subtree and refuses to
respond to broadcast requests for that path name)

6

Caching in Sprite
• Client memory cache of accessed disk blocks
• Empirical observations

– 20-30% of new data is deleted within 30 s
– 75% of files are open for less than 0.5 s
– 90% of all files are open for less than 10 s

• Delayed write policy
– Check by daemon every 5 s
– Changed blocks not accessed for 30 s are written back

to server (or if ejected from cache by LRU policy)
– Transfer from server cache to server disk in 30 s to 60 s

7

Cache Consistency
• Server-initiated invalidation
• Concurrent write sharing

– Detected at open of second write
– Server notifies client with write access to flush all modified

blocks to server
– Server notifies all clients that the file is no longer cachable

• Sequential write sharing
– Each file has a version number incremented at each open for

write access
– Version number allows client to detect outdated blocks
– Server maintains identify of last client with write access
– When file is opened, last writer is asked to flush to the server any

modified blocks

8

CODA
• Derived from Andrew File System (AFS)
• Single location-transparent UNIX file system
• Scalability in CODA

– Small set of trusted servers used for file storage/management
– Caching; cache coherence through callbacks
– Whole-file philosophy

• Entire file is transfered to client on open
• Entire file is cached in client
• Infrequent updating of shared files
• Working set of typical user fits into cache

• Additional CODA goals
– Support for disconnected operations
– Greater reliability/availability vs. AFS
– Relaxed emulation of UNIX semantics

9

CODA Architecture

local file system

virtual file system

User
program

Venus

RPC stub

Vice

RPC Stub

10

Opening a File

• User process issues open(FileName, mode) call
• UNIX kernel passes request to Venus.
• Venus check if file is in cache. If not, or no valid

callback promise, retrieve file from Vice
• Vice copies file to Venus, with a callback

promise. Logs callback promise.
• Venus places copy of file in local cache.
• Unix kernel opens file and returns file descriptor

to application.

11

Volumes and Replication
• Volume

– Directory sub-tree
– Unit of replication
– Volume storage group (VSG) – set of servers hosting a given volume
– Accessible VSG (AVSG) – currently accessible subset of VSG
– Expansion/contraction of AVSG detected by periodic probes
– The AVSG for each cached file is recorded by client

• File identifier
– Unique internal identifier for each file/directory
– FID = (volume#, vnode#, uniquifier)
– Does not contain location information
– Replicas of a file have the same file identifier
– Directory entry: <name, FID>

• Volume location database
– Replicated on each server
– Used to locate volumes/files

12

Replication and Caching
• Actions on a cache-miss

– Retrieve data from a preferred server (PS) in AVSG
– Collect status/version information from all servers in AVSG
– If replicas are in conflict – abort
– If some replicas are stale – notify AVSG asynchronously
– If PS is stale – select new PS

• When file is returned
– Cache file on client
– Cache location information
– Establish callback on server

• On close after modification
– Transfer file to all members of AVSG

13

Replica Management
• A storeid = <client-id, timestamp> is associated with

each file modification that the client performs on a server
• Each server conceptually maintains an update history of

storeids
• The most recent storeid is the lastest storeid (LSID)
• Replicas on A and B are:

– Equal: if LSIDA = LSIDB
– A dominates B: LSID’s are different and LSIDB is in A’s history
– A is submissive to B: LSID’s are different and LSIDA is in B’s

history
– A and B are inconsistent, otherwise

14

History Approximation
• It is impractical to maintain the entire history
• The history of each replica is represented by the

history’s length
• Each replica maintains a vector (CVV – coda

version vector) recording the length of each
replica’s history

• Two replicas are compared as follows:
– Strong equality: LSIDA = LSIDB and CVVA = CVVB
– Weak equality: LSIDA = LSIDB and CVVA != CVVB
– Dominance/submission: LSIDA != LSIDB and CVVA >=

CVVB
– Inconsistent: otherwise

