Security Considerations

Factors:

- reliance on unknown, vulnerable intermediaries (e.g., Internet routers)
- parties may have no personal or organizational relationship (e.g., e-commerce)
- use of automated surrogates (e.g., agents)

Goals:

- privacy/confidentiality information not disclosed to unauthorized entities
- integrity information not altered deliberately or accidentally
- authentication validation of identity of source of information
- non-repudiation source of information can be objectively established

Threats:

- replay of messages
- interference (inserting bogus messages)
- corrupting messages

Cryptography

Forms of Cryptosystems

• Private Key (symmetric) :

A single key is used for both encryption and decryption.

Key distribution problem - a secure channel is needed to transmit the key before secure communication can take place over an unsecure channel.

• Public Key (asymmetric):

The encryption procedure (key) is public while the decryption procedure (key) is private.

Requirements:

- 1. For every message M, D(E(M)) = M
- 2. E and D can be efficiently applied to M
- 3. It is impractical to derive D from E.

Combining Public/Private Key Systems

Public key encryption is more expensive than symmetric key encryption For efficiency, combine the two approaches

- (1) Use public key encryption for authentication; once authenticated, transfer a shared secret symmetric key
- (2) Use symmetric key for encrypting subsequent data transmissions

Secure Communication in a Public Key System

User Z

Rivest-Shamir-Adelman (RSA) Method

Encryption Key for user Y

Decryption Key for user Y

RSA Method

1. Choose two large (100 digit) prime numbers, p and q,and set $n = p \ge q$

2. Choose any large integer, d, so that: GCD(d, ((p-1)x(q-1)) = 1

3. Find e so that:

 $e x d = 1 \pmod{(p-1)x(q-1)}$

Example:

1.
$$p = 5$$
, $q = 11$ and $n = 55$.
(p-1)x(q-1) = 4 x 10 = 40

2. A valid d is 23 since GCD(40, 23) = 1

3. Then e = 7 since: 23 x 7 = 161 modulo 40 = 1

(Large) Document Integrity

Digest properties:

- fixed-length, condensation of the source
- efficient to compute
- irreversible computationally infeasible for the original source to be reconstructed from the digest
- unique difficult to find two different sources that map to the same digest (collision resistance)

Also know as: fingerprint

Examples: MD5 (128 bits), SHA-1 (160 bits)

(Large)Document Integrity

Guaranteeing Integrity

Digital Signatures (Public Key)

Requirements:

unforgable and unique

receiver: knows that a message came from the sender (authenticity) sender: cannot deny authorship(non-repudiation)

message integrity

sender & receiver: message contents preserved (integrity)

(e.g., cannot cut-and-paste a signature into a message)

Public Key System:

sender, A: $(E_A : public, D_A : private)$ receiver, B: $(E_B : public, D_B : private)$

sender(A) ---- C= $E_B (D_A (M))$ ---> receiver(B) receiver(B) -- M = $E_A (D_B (C))$ ---> M

Secure Communication (Public Key)

Handshaking

 I_A , I_B are "nonces" nonces can be included in each subsequent message