Content-Based Communication

Identify-based communication:
- Identities of one or more the communicating parties is necessary
- Examples:
 - CSP - both sender and receiver identity is needed
 - RPC/CORBA/SOAP - identity of receiver is needed

Content-based communication:
- Message delivery is achieved based on the message’s type/structure/values
- Examples:
 - tuple spaces
 - event models
Tuple Space Concepts
Tuple Space Operations

tuple: a series of typed fields
 examples: (“label”, 10, 2.15)
 (5, “term”)
 (100)

Operations
 • out(t) insert the tuple t into the tuple space (non-blocking)
 • in(t) find and remove a “matching” tuple from the tuple space; block until a matching tuple is found
 • rd(t) like in(t) except that the tuple is not removed
 • eval(t) add the active tuple t to the tuple space
Tuple Matching

Let \(t(i) \) denote the \(i \)th field in the tuple \(t \).

A tuple \(t \) given in a \(\text{in}(t) \) or \(\text{rd}(t) \) operation “matches” a tuple \(t' \) in the tuple space iff:

1. \(t \) and \(t' \) have the same number of fields, and
2. for each field
 - if \(t(i) \) is a value then \(t(i) = t'(i) \)
 - or
 - if \(t(i) \) is of the form \(?x\) then \(t'(i) \) is a valid value for the type of variable \(x \)

If more than one tuple in the tuple space matches, then one is selected nondeterministically.

As a result of tuple matching if \(t(i) \) is of the form \(?x\), then \(x := t'(i) \)
Examples of Tuple Matching

The tuple defined by:

```c
int i;
float f;
(“label”, i, f, 10)
```

Matches these:
- (“label”, 20, 1.5, 10)
- and i := 20; f := 1.5;
- (“label”, 0, 2.7, 10)
- and i := 0; f := 2.7

Does not match any of these:
- (“label”, 20, 1.5)
- (“label”, 20, 1.5, 10, 2)
- (“other”, 20, 1.5, 10)
- (“label”, 20, 1.5, 5)
- (“label”, “20”, 1.5, 10)
- (“label”, 20, “1.5”, 10)
Client-Server Example

(client) → (server) → (client)

in: "server index", i
out: "client", i, resp

(client) → (server)

in: "server", i, req
out: "client", i, resp

(server) → (client)

in: "server", i, req
out: "client", i, resp
Client-Server Example

```c
server()
{  int index = 1;
    request req;
    response resp;
    . . .
    while(1) {
        in("server", index, ?req);
        //compute resp
        out("client", index, resp);
        index = index + 1;
    }
}
```

```c
client()
{  int index;
    request req;
    response resp;
    . . .
    in("server index", ?index);
    out("server index", index+1);
    . . .
    out("server", index, req);
    in("client", index, ?resp);
}
```
Uses of Tuple Spaces

As a coordination language: added to existing programming languages to facilitate distributed and parallel programming

As a distributed registry of names, events, information among loosely coupled processes
Events

Definition

On-Line Computing Dictionary: an occurrence or happening of significance to a task or program.

Webopedia: an action or occurrence detected by a program.

High Tech Dictionary: An occurrence that is significant to a program, and which may call for a response from the program.

Examples

information monitoring: “tell me when the price of stock X drops below Y dollars per share”

collaborative computing: “tell me when this document has been changed by another user.”

command-control: “tell me when anyone enters the building”
Event Operations

terminology: publish-subscribe model
Event Delivery Concepts

Event Supplier
- time=0; produce event1
- time=2; produce event2
- time=4; produce event3
- time=6; produce event4
- ...

Event Model Infrastructure

Event Consumer X
- time=1; subscribe to events
- time=2; receive event2
- time=3; unsubscribe

Event Consumer Y
- time=1; subscribe to events
- time=2; receive event2
- time=4; receive event3
- time=5; unsubscribe

From: Nigel Edwards
Delivery Models

push-model

pull-model

combination

12
Event Filters

Filter: a set of criteria determining which subset of events for which a consumer is subscribed are delivered to that consumer.

Filters may be based on: values, time, history.
Filters may alter an events properties: priority.
Typed Events

To support subscription, advertising, and filtering events are often structured (or typed).

Example: Corba Notification Service

From Nigel Edwards
Filter Expressions

Cambridge Event Model

Event Definition:
Badge: INTERFACE =
 Seen : EVENTCLASS [badge : BadgeId;
 sensor: SensorId];
END.

General Filter Definition:
template = EventTypeName(par1, …, par n);

Examples:
templateWhere = Seen(17, R);
templateWho = Seen (P, 29)
templateAll = Seen (P, R)

SIENA

Filter Definition:
A filter is specified by attribute names, their types and constraints on their values.

Example:
string event == account/*
time date >= 01.01.2000
float amount > 10000.00