
Concurrency Abstractions in C#

Concurrency
• critical factor in behavior/performance
• affects semantics of all other constructs
• advantages of language vs. library

• compiler analysis/optimization
• clarity of syntax

•asynchronous communication
• occurs at various levels
• requires language support

1

Basic Constructs – Asynchronous Methods

Syntax:

async postEvent (EventInfo data) {
// method body using data

}

• calls to async methods return “immediately”
• method body scheduled for execution in another thread
• no return result
• similar to sending message/event

2

Basic Constructs - Chords
Example:

public class Buffer {
public string Get() & public async Put (string s) {

return s;
}

}

• illustrates a single chord with two methods
• chord body is executed only when all methods in the chord have been called
• non-async method call implicitly blocked/queued until chord complete
• async method calls are queued until matched (caller not blocked)
• at most one non-async method per chord
• non-deterministic selection of method calls matched by chord
• chord body executes in thread of non-async caller (unless all methods in chord

are async methods, in which case a new thread is created)

3

Executing Chords

[a] [b]

…[a] [b] [c]

[b] [c]

invocation queues
(one per method)

methods

4

bitmaps
(one per chord)

execute [a,b] chord

execute [b.c] chord

“Counting” via Methods

class Token
public Token (int initial_tokens) {

for (int i=0; i < initial_tokens; i++) Release();
}
public int Grab (int id) & public async Release() {

return id;
}

}

• allows clients to Grab and Release a limited number of tokens
• argument on Grab returned to client

5

Recording “State” via Methods

public class OneCell {
public OneCell() {empty();}

public void Put(object o) & private async empty() {
contains (o); }

public object Get() & private async contains (object o) {
empty();
returns o;}

}

• methods empty and contains are declared private
• methods empty and contains “carries” the state of the cell

6

Reader-Write Example

class ReaderWriter
{

ReaderWriter () { idle(); }

public void Shared () & async idle() { s(1); }
public void Shared() & async s(int n) { s(n+1); }
public void ReleaseShared() & async s(int n) {

if (n == 1) idle(); else s(n-1); }
public void Exclusive() & async idle() {}
public void ReleaseExclusive() { idle(); }

}

7

Active Object (Actor): Base Class

public abstract class ActiveObject {
protected bool done;

abstract protected void ProcessMessage();

public ActiveObject() {
done = false;
mainLoop(); }

async mainLoop() {
while(!done) {ProcessMessage(); }}

}

• actor: thread per object; repeatedly processes received messages
• note: thread created by call to async mainLoop()
• abstract class creates basic actor infrastructure/pattern

8

Active Object (Actor): Event Example

public class StockServer : ActiveObject {
private ArrayList clients = new ArrayList();

public async AddClient (Client c)
& override protected void ProcessMessage() { clients.Add(c); }

public async WireQuote (Quote q)
& override protected void ProcessMessage() {

foreach (Client c in clients) { c.UpdateQuote(q) }}

public async CloseDown()
& override protected void ProcessMessage() { done = true; }

}

• message reception/processing driven by ProcessMessage invocations
in mainLoop

9

Implementation Outline

chord bitmap, one bit for each
method in the chord

async method
with argument(s) of type m

mQ: to hold message
(e.g., intQ)

async method
with no arguments

voidQ: a counter

synchronous method threadQ: for blocking
caller threads

10

Performance

11

operations/sec (thousands)
Benchmark Test

polyphonic non-polyphonic

ping pong 115 240

bounded buffer
(1 prod/1 cons)

682 115

bounded buffer
(2 prod/2 cons)

423 118

ping pong 66 70

bounded buffer
(1 prod/1 cons)

288 250

bounded buffer
(2 prod/2 cons)

125 42

dual processor

single processor

Syntactic Extension
class ReaderWriter {

async idle();
async s(int);

ReaderWriter() { idle(); }
public void Shared()

when idle() {s(1); }
when s(int n) { s(n+1); }

public void ReleaseShared()
when s(int n) { if (n ==1) idle(); else s(n-1);}

public void Exclusive()
when idle() {}

public void ReleaseExclusive() { idle (); }
}

12

	Concurrency Abstractions in C#
	Basic Constructs – Asynchronous Methods
	Basic Constructs - Chords
	Executing Chords
	“Counting” via Methods
	Recording “State” via Methods
	Reader-Write Example
	Active Object (Actor): Base Class
	Active Object (Actor): Event Example
	Implementation Outline
	Performance
	Syntactic Extension

