
Eraser
 A Dynamic Data-Race Detector

for Multi-Threaded Programs

MultiRace
An Efficient On-the-Fly Data-Race Detection Tool

 for Multi-Threaded C++ Programs

John C. Linford

Detecting Data Races in
Multi-Threaded Programs

Slide 1 / 31

Key Points

1. Data races are easy to cause and
hard to debug.

2. We can't detect all data races.

3. Detection of feasible races relies on
detection of apparent data races.

4. Data race detection tools are either static or
dynamic (on-the-fly and postmortem).

Slide 2 / 31

Key Points Cont.

5. Data races can be prevented by following a
locking discipline.

6. Commonly used detection algorithms are
Lockset and DJIT (Happens-Before).

7. Lockset maintains a set of candidate locks
for each shared memory location. If a
shared location is accessed when this set is
empty, there has been a violation of the
locking discipline.

Slide 3 / 31

Key Points Cont.

8. Lockset is vulnerable to false alarms.

9. DJIT uses a logging mechanism. Every
shared memory access is logged to see
that it “happens before” prior accesses to
the same location.

10. DJIT is dependent on the scheduler and
thread interleaving.

11. Combining happens-before with Lockset
can improve detection accuracy.

Slide 4 / 31

Data Race Review

● At least one access is a write,
● Simultaneous access is not prevented.

● Example (variable X is global and shared)
Thread 1 Thread 2
 X = 2.7 X = 3.1
 Z = 2 T = X

Two threads access a shared variable

E
xecution

Slide 5 / 31

Data Race Demonstration

● Data races often lead to
unexpected and even
nondeterministic behavior

● The outcome may be
dependent on specific
execution order
(threads' interleaving)

● Click image to start

Slide 6 / 31

file:///home/johnlinford/Documents/VTwork/Year1/Semester1/cs5204/Eraser Presentation/DataRaceApplet/bin/run.sh

Data Race Demonstration Cont.

t1 = new Thread() {
 public void run() {
 while(t1 != null) {
 ...
 shared[0] = shared[0] + 1;
 ...
 }
 ...

t2 = new Thread() {
 public void run() {
 while(t2 != null) {
 ...
 shared[0] = shared[0] + 1;
 ...
 }
 ...

int[] shared = new int[1];
Thread t1, t2;
public DataRace() {
 // Initialize and start threads (shown below)
}

Slide 7 / 31

We Can't Detect All Data Races

● For t threads of n instructions each, the
number of possible orders is about tn*t.

● All possible inputs would have to be tested.

● Adding detection code or debugging
information can change the execution
schedule.

[Pozniansky & Schuster, 2003]

Slide 8 / 31

Feasible Data Races

● Races based on possible behavior of the
program.

● Actual data races which could manifest in
any execution.

● Locating feasible races requires a full
analysis of the program's semantics.

● Exactly locating feasible races is NP-hard
[Pozniansky & Schuster, 2003].

Slide 9 / 31

Apparent Data Races

● Approximations of feasible data races based
on synchronization behavior in an execution.

● Easier to detect, but less accurate.

● Apparent races exist if and only if at least
one feasible race exists.

● Locating all apparent races is NP-hard
[Pozniansky & Schuster, 2003].

Slide 10 / 31

Eraser
[Savage, Burrows, et al., 1997]

● On-the-fly tool.
● Lockset algorithm.
● Code annotations to flag

special cases.
● Can be extended to

handle other locking
mechanisms (IRQs).

● Used in industry.
● Slows applications by a

factor of 10 – 30.

Slide 11 / 31

The Lockset Algorithm
(Simple Form)

Let locks_held(t) be the set of
locks held by thread t
For each shared memory location v,
initialize C(v) to the set of all locks
On each access to v by thread t,

Set C(v) := C(v) ∩ locks_held(t)
If C(v) := {}, then issue a warning

● Detects races not manifested in one execution.
● Generates false alarms.

Lockset
Refinement

Slide 12 / 31

Lockset Refinement Example

Program locks_held C(v)
int v;
v := 1024;

lock(mu1);

v := v + 1;

unlock(mu1);

lock(mu2);

v := v + 1;

unlock(mu2);

{}

{mu1}

{}

{mu2}

{}

{mu1, mu2}

{mu1}

{} Warning!

Slide 13 / 31

Simple Lockset is too Strict

● Variables initialized without locks held.

● Read-shared data read without locks held.

● Read-write locking mechanisms
(producer / consumer).

Lockset will produce false-positives for:

Slide 14 / 31

Lockset State Diagram

Virgin

Exclusive

Shared

Shared-Modified

wr

rd,
2nd thread wr

wr, 2nd thread

rd / wr,
1st thread

rd

Warnings are issued only in the Shared-Modified state

Slide 15 / 31

Lockset State Example

Program locks_held C(v) State(v)

int v;
v := 1024;

lock(mu1);

v := v + 1;

unlock(mu1);

lock(mu2);

v := v + 1;

unlock(mu2);

{}

{mu1}

{}

{mu2}

{}

{mu1, mu2}

{mu1}

{}

Virgin

Exclusive

Shared
Shared-Modified

T1

T2

T1
Race detected

correctly

Slide 16 / 31

The Lockset Algorithm
(Extended)

Let locks_held(t) be the set of locks
held in any mode by thread t
Let write_locks_held(t) be the set of
locks held in write mode by thread t
For each shared memory location v,
initialize C(v) to the set of all locks
On each read of v by thread t,

Set C(v) := C(v) ∩ locks_held(t)
If C(v) = {}, then issue a warning

On each write of v by thread t,
Set C(v) := C(v) ∩ write_locks_held(t)
If C(v) = {}, then issue a warning

Slide 17 / 31

Unhandled Cases in Eraser

● Memory reuse
● Unrecognized thread API
● Initialization in different thread
● Benign races

if(fptr == NULL) {
lock(fptr_mu);
if(fptr == NULL) {

fptr = open(filename);
}
unlock(fptr_mu);

}

Slide 18 / 31

Unhandled Cases in Eraser
Cont.

● Race on and will be missed if executes first

int[] shared = new int[1];
Thread t = new Thread() {
 public void run() {
 shared = shared + 1;
 ...
};
...
shared = 512;
t.start();
shared = shared + 256;
...

[Seragiotto, 2005]
Slide 19 / 31

Unhandled Cases in Eraser
Cont.

Program State(shared)

Data race is not detected!

int[] shared = new int[1];

shared = 512;

t.start();
shared = shared + 256;

Thread t = new Thread() {
 public void run() {
 shared = shared + 1;
 ...
};
...

Virgin

Exclusive

Shared
Shared-Modified

locks_held C(v)

{} {mu1}

{}

Slide 20 / 31

Unhandled Cases in Eraser
Cont.

Data race is detected!

Program State(shared)

int[] shared = new int[1];

shared = 512;

t.start();
Thread t = new Thread() {
 public void run() {
 shared = shared + 1;
 ...
};

shared = shared + 256;

Virgin

Exclusive

Shared
Shared-Modified

locks_held C(v)

{} {mu1}

{}

Slide 21 / 31

Improved Lockset
State Diagram [Seragiotto, 2005]

Initialized
(Exclusive)

Initialized
and Read

Shared Shared-Modified

Initialized
and Written

Virgin

rd,
2nd thread

rd,
not 2nd thread

wr, any

rd / wr,
not 2nd thread

wr,
2nd thread

wr, 2nd thread

wr,
not 2nd thread

first
access

rd / wr,
1st thread

rd,
2nd thread

rd,
any

rd / wr,
2nd thread

Slide 22 / 31

Implementations: Eraser

● Maintains hash table of sets of locks.

● Represents each set of locks with an index.

● Every shared memory location has shadow
memory containing lockset index and state.

● Shadow memory is located by adding offset
to shared memory location address.

Slide 23 / 31

Implementations: Eraser

v

Program
Memory

Shadow
Memory

&v +
Shadow
Offset

Lockset
Index
Table

mu1

mu2

Lock
Vector

Shared memory location v
is associated with locks

mu1 and mu2

[Savage, Burrows, et al., 2005]
Slide 24 / 31

Implementations: Ladybug
[Seragiotto, 2005]

● GC Eraser:
– Maintains lock list for threads and variables.
– Uses weak references (less memory usage).

● Fast Eraser:
– Maintains lock list for threads and variables.
– Uses strong references (faster).

● Vanilla Eraser:
– Same as eraser, but keeps hash table of lock

sets already created.

Slide 25 / 31

Ladybug Demonstration

● Rewrite class file
– java -cp Ladybug.jar
br.ime.usp.ladybug.LadybugClassRewriter
DataRace.class

● Run modified class
– java -cp Ladybug.jar:. DataRace

● Races reported as exceptions
br.ime.usp.ladybug.RCException: [line 9]
Race condition detected: t2 of DataRace (hash code = 1b67f74) with Thread-0
 at br.ime.usp.ladybug.StaticLadybug.warn(StaticLadybug.java:1014)
 at br.ime.usp.ladybug.eraser.EraserGC.writeField(EraserGC.java:47)
 ...
 at DataRace.access$202(DataRace.java:9)
 at DataRace$1.run(DataRace.java:37)

● Can also use GUI

Slide 26 / 31

MultiRace
[Pozniansky & Schuster, 2003]

● On-the-fly tool.
● Improved Lockset

and DJIT+.
● Significantly fewer

false alarms than
Eraser.

● Minimal impact on
program speed.

Slide 27 / 31

DJIT

● Based on Lamport's Happens-Before
relationship.

● Detects the first apparent data race when it
actually occurs.

● Can be extended to detect races after the
first (DJIT+).

● Dependent on scheduling order.

Slide 28 / 31

Benefits of Combining
 Lockset and DJIT

● Races are in the intersection of warnings.

● Lockset's insensitivity compensates for
DJIT's sensitivity to thread interleaving.

● Lockset reduces DJIT execution overhead.

● Lockset warnings are “ranked” by DJIT.

● Implementation overhead is minimized.

Slide 29 / 31

Conclusion

1. Data races are easy to cause and
hard to debug.

2. Data race detection tools are either static or
dynamic (on-the-fly and postmortem).

3. Commonly used detection algorithms are
Lockset and DJIT (Happens-Before).

4. Lockset is vulnerable to false alarms.
5. DJIT is dependent on the scheduler and

thread interleaving.
6. Combining happens-before with Lockset

can improve detection accuracy.
Slide 30 / 31

References

● S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T.E.
Anderson. Eraser: A Dynamic Data Race Detector for
Multithreaded Programs. In ACM Transactions on Computer
Systems, 15(4): pp. 391-411, 1997.

● E. Pozniansky and A. Schuster. Dynamic Data-Race
Detection in Lock-Based Multi-Threaded Programs. In
Principles and Practice of Parallel Programming, pp. 170-
190, 2003.

● E. Pozniansky and A. Schuster. MultiRace: Efficient Data
Race Detection Tool for Multithreaded C++ Programs. 2005.
http://dsl.cs.technion.ac.il/projects/multirace/MultiRace.htm.

● C. Seragiotto. Ladybug: Race Condition Detection in Java.
2005. http://www.par.univie.ac.at/~clovis/ladybug/

Slide 31 / 31

http://dsl.cs.technion.ac.il/projects/multirace/MultiRace.htm
http://www.par.univie.ac.at/~clovis/ladybug/

