# Labels and Event Processes in the Asbestos Operating System Petros Efstathopoulos, Maxwell Krohn, et al. KARTHIK ANANTAPUR BACHERAO 10/28/2005

# MOTIVATION

- Computer Systems do not provide adequate security
- Exploitable software flaws (Buffer Overflows,etc)

### Source of Problem:

- Bugs in Software.
- Users willing to run untrusted code.
- No isolation of services

# Motivation (Contd)

- Principle of Least Privilege (POLP) not enforced.
   Each bit of code that executes in a machine should run with
- Developers should follow five requiremen
- Split application into protection of
- Assign exact privileges to t
- Engineer communication between compartments.
   Compartments about the isolated from one prother.
- Should be easy to perform a security audit

# OUTLINE

- SECURITY MODELS
- ASBESTOS OS
- ASBESTOS LABELS
- ASBESTOS EVENT PROCESSES
- PERFORMANCE

### Security Models

- Mandatory Access Control:
  - Power with the owner of the system.
  - Uses labels.
  - Generally employs a variant of the \*-Property
     Whenever a process P can observe Object O1 and modify Object O2, O2's security level should dominate O1's
- Discretionary Access Control
- Security by Ownersh
- POLP with MAC

### Asbestos: A New Operating System

"Asbestos should support efficient, unprivileged and large-scale server applications whose application-defined users are isolated from one another by the operating system, according to application policy."

- A message passing micro-kernel based architecture.
- New Labeling and isolation mechanism
- Asbestos labels provide both mandatory and
  - Decentralized MAC
  - A process can bypass the \*-property by declassifying information

### Asbestos: A New Operating System (Contd)

- Event Processes
  - Helps to support and isolate multiple concurrent users.
  - Provides light-weight isolated contexts.

### Asbestos Labels (Contd)

### LABEL BASICS

- Labels:
  - A function from handles to levels.
     Eg. (a 0, b 1, 2)
     Label Comparison:

     A ≤ B iff A(h) ≤ B(h) for all h.
- ( A U B )(h) = max(A(h),B(h)) Greatest Lower Bound (A  $\cap$  B)(h) = min(A(h),B(h))

### Asbestos Labels (Contd)

- Label Basics (Contd)
  - - A send label Ps
    - A receive label Pr
  - A process P may send to process Q if
  - contaminated by Ps send label



# Asbestos Labels (Contd) Four Levels: Default labels are in the middle of the labeling

|    | A       | В       | С       |
|----|---------|---------|---------|
| Ps | {h 3,1} | - {1}   | {h 2,1} |
| Qr | {2}     | {h 0,2} | {h 1,2} |



### Asbestos Labels (Contd)

### Declassification Privileges

- Uses \*-level to decentralize declassification.
- A process P with Ps(h) = \*, is said to have
- declassification with respect to h.Modified equation:
  - Qs = Qs U (Es ∩ Qs\*) is same as
     Qs(h) = Qs(h), if Qs(h) =

### Asbestos Labels (Contd)

#### Decontamination

- A process with declassification privilege can
- Deep hydrographic their conductors
- receive labels
- Uses two optional arguments Ds and Dr to the send system call
  - Woothed Equations
    - = 0 = (0 + 0) = (0 + 0) = 0

### Asbestos Labels (Contd)

- Preventing Contamination
  - To prevent processes from getting contaminated unwillingly.
    - Every port p is associated with a port receive la
    - pr\_\_\_\_
    - This acts like a verification label imposed by the receiver rather than the sender.
    - - $Fr = Or \cap V \cap pr$

### **Event Processes**

- Handling multiple users data:
  - User level threads
  - Separate Process per user
- Simple event-driven dispatch loop:
  - while(1){
  - user = looki
  - user. process event
  - No isolation of user states

## Asbestos Event Process

- Isolates different event process's state.
- Each event process associated with one base process
- Event process's kernel state consists of:
   Send label, Receive label, Receive rights for a port and a set of memory pages and book keeping information.

# Asbestos Event Process (contd)

- A typical event process dispatch loop ep\_checkpoint(&msg);
  - nnstate.mitialized){
  - state.reply = new\_port();
  - ep\_yield();
- Uses the following system calls:
  - ep\_checkpoint, ep\_yield, ep\_clean, ep\_ex



### Web Server Design using Asbestos

Limit a; + 2 Genet a; + 1 Genet a; +

Title F

#

Data Path of a Web Request:

- 1. netd accepts incoming connection . Sets Ucr to {Uc 0, 2}
- 4. If authenticated, idd grants ok-demux Ut, Ug at level \*

- If the requested service exists in W, ok-demux forwards Uc, grants Ug \* and contaminates it with Ut 3
- W returns from ep\_checkpoint into W(u).
   W(u) creates new port Uw, grants it to netd at \*.
   W(u) calls ep\_exit.

- Performance
- Memory Use
- Cached session: Requires additionally ~1.5 4KB pages
   Active sessions: Requires additionally ~9.5 4KB pages
- Web Server Performance
  - Throughput
  - With one cached session, the avg no. of connections is greater than that of apache's
  - Latency
    With 1000 cached sessions, almost same as that of apache's
- Label Costs



