
Effects of Clock Resolution on the Scheduling of
Interactive and Soft Real-Time Processes

Yoav Etsion∗ Dan Tsafrir Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University, 91904 Jerusalem, Israel

{etsman,dants,feit}@cs.huji.ac.il

ABSTRACT
It is commonly agreed that scheduling mechanisms in gen-
eral purpose operating systems do not provide adequate sup-
port for modern interactive applications, notably multime-
dia applications. The common solution to this problem is to
devise specialized scheduling mechanisms that take the spe-
cific needs of such applications into account. A much simpler
alternative is to better tune existing systems. In particu-
lar, we show that conventional scheduling algorithms typ-
ically only have little and possibly misleading information
regarding the CPU usage of processes, because increasing
CPU rates have caused the common 100 Hz clock interrupt
rate to be coarser than most application time quanta. We
therefore conduct an experimental analysis of what happens
if this rate is significantly increased. Results indicate that
much higher clock interrupt rates are possible with accept-
able overheads, and lead to much better information. In
addition we show that increasing the clock rate can provide
a measure of support for soft real-time requirements, even
when using a general-purpose operating system. For ex-
ample, we achieve a sub-millisecond latency under heavily
loaded conditions.

Categories and Subject Descriptors
D.4.1 [Process Management]: Scheduling; D.4.8 [Perfor-
mance]: Measurements; C.4 [Performance of Systems]:
Design studies

General Terms
Measurement, Performance

Keywords
Clock interrupt rate, Interactive process, Linux, Overhead,
Scheduling, Soft real-time, Tuning

∗Supported by a Usenix scholastic grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’03, June 10–14, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-664-1/03/0006 ...$5.00.

1. INTRODUCTION
Contemporary computer workloads, especially on the desk-

top, contain a significant multimedia component: playing
of music and sound effects, displaying video clips and an-
imations, etc. These workloads are not well supported by
conventional operating system schedulers, which prioritize
processes according to recent CPU usage [18]. This defi-
ciency is often attributed to the lack of specific support for
real-time features, and to the fact that multimedia applica-
tions consume significant CPU resources themselves.

The common solution to this problem has been to design
specialized programming APIs that enable applications to
request special treatment, and schedulers that respect these
requests [19, 8, 22]. For example, applications may be re-
quired to specify timing constraints such as deadlines. To
support such deadlines, the conventional operating system
scheduler has to be modified, or a real-time system can be
used.

While this approach solves the problem, it suffers from
two drawbacks. One is price. Real-time operating systems
are much more expensive than commodity desktop oper-
ating systems like Linux or Windows. The price reflects
the difficulty of implementing industrial strength real-time
scheduling. This difficulty, and the requirement for care-
ful testing of all important scenarios, are the reasons that
many interesting proposals made in academia do not make
it into production systems. The other drawback is the need
for specialized interfaces, that may reduce the portability of
applications, and require a larger learning and coding effort.

An alternative is to stick with commodity desktop op-
erating systems, and tune them to better support modern
workloads. While this may lead to sub-optimal results, it
has the important benefit of being immediately applicable
to the vast majority of systems installed around the world.
It is therefore worth while to perform a detailed analysis
of this approach, including what can be done, what results
may be expected, and what are its inherent limitations.

1.1 Commodity Scheduling Algorithms
Prevalent commodity systems (as opposed to research sys-

tems) use a simple scheduler that has not changed much in
30 years. The basic idea is that processes are run in pri-
ority order. Priority has a static component (e.g. operating
system processes have a higher initial priority than user pro-
cesses) and a dynamic part. The dynamic part depends on
CPU usage: the more CPU cycles used by a process, the
lower its priority becomes. This negative feedback (running
reduces your priority to run more) ensures that all processes

172

get a fair share of the resources. CPU usage is forgotten af-
ter some time, in order to focus on recent activity and not
on distant history.

While the basic ideas are the same, specific systems em-
ploy different variations. For example, in Solaris priorities
of processes that wake up after waiting for an event are set
according to a table, and the allocated quantum duration
is longer if the priority is lower [17]. In Linux the relation-
ship goes the other way, with the same number serving as
both the allocation and the priority [5, 4]. In Windows NT
and 2000, the priority and quanta allocated to threads are
determined by a set of rules rather than a formula, but the
effect is the same [24]. For example, threads that seem to
be starved get a double quantum at the highest possible pri-
ority, and threads waiting for I/O or user input also get a
priority boost.

In all cases, processes that do not use the CPU very much
— such as I/O-bound processes — enjoy a higher priority for
those short bursts in which they want it. This was sufficient
for the interactive applications of twenty years ago. It is no
longer sufficient for modern multimedia applications (a class
of applications that did not exist when these schedulers were
designed), because their CPU usage is relatively high.

1.2 The Resolution of Clock Interrupts
Computer systems have two clocks: a hardware clock that

governs the instruction cycle, and an operating system clock
that governs system activity. Unlike the hardware clock, the
frequency of the system clock is not predefined: rather, it
is set by the operating system on startup. Thus the system
can decide for itself what frequency it wants to use. It is
this tunability that is the focus of the present paper.

The importance of the system clock (also called the timer
interrupt rate) lies in the fact that commodity systems mea-
sure time using this clock, including CPU usage and when
timers should go off. The reason that timers are aligned with
clock ticks is to simplify their implementation and bound the
overhead. The alternative of setting a special interrupt for
each timer event requires more bookkeeping and risks high
overhead if many timers are set with very short intervals.

The most common frequency used today is 100 Hz: it is
used in Linux, the BSD family, Solaris, the Windows family,
and Mac OS X. This hasn’t changed much in the last 30
years. For example, back in 1976 Unix version 6 running on
a PDP11 used a clock interrupt rate of 60 Hz [16]. Since
that time the hardware clock rate has increased by about 3
orders of magnitude, from several megahertz to over 3 giga-
hertz [23]. As a consequence, the size of an operating system
tick has increased a lot, and is now on the order of 10 mil-
lion cycles or instructions. Simple interactive applications
such as text editors don’t require that many cycles per quan-
tum1, making the tick rate obsolete — it is too coarse for
measuring the running time of an interactive process. For
example, the operating system cannot distinguish between
processes that run for a thousand cycles and those that run
for a million cycles, because using 100 Hz ticks on a 1 GHz
processor both look like 0 time.

A special case of time measurement is setting the time

1Interestingly, this same consideration has also motivated
the approach of making the hardware clock slower, rather
than making the operating system clock faster as we pro-
pose. This has the benefit of reducing power consumption
[10].

desired frames per second
20 30 40 50 60

ac
hi

ev
ed

 fr
am

es
 p

er
 s

ec
on

d

20

30

40

50

60 1000 Hz

100 Hz

Figure 1: Desired and achieved frame rate for the Xine
MPEG viewer, on systems with 100 Hz and 1000 Hz clock
interrupt rates.

that a process may run before it is preempted. This du-
ration, called the allocation quantum, is also measured in
clock ticks. Changing the clock resolution therefore implic-
itly effects the quantum size. However in reality these two
parameters need not be correlated, and they can be set in-
dependently of each other. The question is how to set each
one.

A related issue is providing support for soft real-time ap-
plications such as games with realistic video rendering, that
require accurate timing down to several milliseconds. These
applications require significant CPU resources, but in a frag-
mented manner, and are barely served by a 100 Hz tick rate.
In some cases, the limited clock interrupt rate may actually
prevent the operating system from providing required ser-
vices.

An example is given in Figure 1. This shows the desired
and achieved frame rates of the Xine MPEG viewer showing
500 frames of a short clip that is already loaded into memory,
when running on a Linux system with clock interrupt rates of
100 Hz and 1000 Hz. For this benchmark the disk and CPU
power are not bottlenecks, and the desired frame rates can
all be achieved. However, when using a 100 Hz system, the
viewer repeatedly discards frames because the system does
not wake it up in time to display them if the desired frame
rate is 60 frames per second. This is an important deficiency,
as 60 frames/sec is mandated by the MPEG standard.

Even finer timing services are required in other, non-desktop
applications. Video rates of up to 1000 frames per second are
used for recording high-speed events, such as vehicle crash
experiments [26]. Similar high rates can also be expected
for sampling sensors in various situations. Even higher rates
are necessary in networking, for the implementation of rate-
based transmission [25, 2]. Full utilization of a 100 Mb/s
Fast Ethernet with 1500-byte packets requires a packet to
be transmitted every 120 µs, i.e. 8333 times a second. On a
gigabit link, the interval drops to 12 µs, and the rate jumps
up to 83,333 times a second.

Increasing the clock interrupt rate may be expected to
provide much better timing support than that available to-
day with 100 Hz. However, this comes at the possible ex-
pense of additional overhead, and has therefore been dis-

173

couraged by Linux developers (this will probably change as
the 2.5 development kernel has switched to 1000 Hz for the
prevalent Intel architecture; in the past, such a rate was
recommended only for the Alpha processor, which accord-
ing to the kernel mailing list was “strong enough to handle
it”) and by Sun documentation (“exercise great care if you
are considering setting high-resolution ticks2 ... this setting
should never, ever be made on a production system without
extensive testing first” [17, p. 56]). Our goal is to investigate
this tradeoff more thoroughly.

1.3 Related Work
Other approaches to improving the soft real-time service

provided by commodity systems include RT-Linux, one-shot
timers, soft timers, firm timers, and priority adjustments.
The RT-Linux project uses virtual machine technology to
run a real-time executive under Linux, only allowing Linux
to run when there are no urgent real-time tasks that need the
processor [3]. Thus Linux does not run on the native hard-
ware, but on a virtual machine. The result is a juxtaposition
of a hard real-time system and a Linux system. In partic-
ular, the real-time services are not available for the Linux
processes, so real time applications must be partitioned into
two independent parts. However, communication between
the two parts is supported.

One-shot timers do not have a pre-defined periodicity. In-
stead, they are set according to need. The system stores
timer requests sorted by time. Whenever a timer event is
fired, the system sets a timer interrupt for the next event.
Variants of one-shot timers have been used in several sys-
tems, including the Pebble operating system, the Nemesis
operating system for multimedia [15], and the KURT real-
time system [25]. The problem is that this may lead to
high overhead if many timing events are requested with fine
resolution.

In soft timers the timing of system events is also not tied
to periodic clock interrupts [2]. Instead, the system oppor-
tunistically makes use of convenient circumstances in order
to provide higher-resolution services. For example, on each
return from a system call the system may check whether
any timer has become ready, and fire the respective events.
As such opportunities occur at a much higher rate than the
timer interrupts, the average resolution is much improved
(in other words, soft timers are such a good idea specifically
because the resolution of clock interrupts is so outdated).
However, the timing of a specific event cannot be guaran-
teed, and the original low-resolution timer interrupts serve
as a fallback. Using a higher clock rate, as we suggest, can
guarantee a much smaller maximal deviation from the de-
sired time.

Firm timers combine soft timers with one-shot timers [13].
This combination reduces the need for timer interrupts, alle-
viating the risk of excessive overheads. Firm timers together
with a preemptible kernel and suitable scheduling have been
shown to be effective in supporting time-sensitive applica-
tions on a commodity operating system.

Priority adjustments allow a measure of control over when
processes will run, enabling the emulation of real-time ser-
vices [1]. This is essentially similar to the implementation
of hard real-time support in the kernel, except for the fact
that it is done by an external process, and can only use the
primitives provided by the underlying commodity system.

2This specifically means 1000 Hz.

Finally, there are also various programming projects to
improve the responsiveness and performance of the Linux
kernel. One is the preemptible kernel patch, which has been
adopted as part of the 2.5 development kernel. It reduces
interrupt processing latency by allowing long kernel opera-
tions to be preempted.

A major difference between the above approaches and ours
is that they either require special APIs, make non-trivial
modifications to the system, or both. Such modifications
cannot be made by any user, and require a substantial re-
view process before they are incorporated in standard soft-
ware releases (if at all). For example, one-shot timers and
soft timers have been known since the mid ’90s, but are yet
to be incorporated in a major system. By contradistinc-
tion, we focus on a single simple tuning knob — the clock
interrupt rate, and investigate the benefits and the costs of
turning it to much higher values than commonly done. Pre-
vious work on multimedia scheduling, with the exception of
[19], has made no mention of the underlying system clock,
and focused on designs for meeting deadline and latency
constraints.

1.4 Preview of Results
Our goal is to show that increasing the clock interrupt rate

is both possible and desirable. Measurements of the over-
heads involved in interrupt handling and context switching
indicate that current CPUs can tolerate much higher clock
interrupt rates than those common today (Section 3). We
then go on to demonstrate the following:

• Using a higher tick rate allows the system to perform
much more accurate billing, thus giving a better dis-
crimination among processes with different CPU usage
levels (Section 4).

• Using a higher tick rate also allows the system to pro-
vide a certain “best effort” style of real-time process-
ing, in which applications can obtain high-resolution
timing measurements and alarms (as exemplified in
Figure 1, and expanded in Section 5). For applica-
tions that use time scales that are related to human
perception, a modest increase in tick rate to 1000 Hz
may suffice. Applications that operate at smaller time
scales, e.g. to monitor certain sensors, may require
much higher rates and shortening of scheduling quan-
tum lengths (Section 7).

We conclude that improved clock resolution — and the shorter
quanta that it makes possible — should be a part of any solu-
tion to the problem of scheduling soft real-time applications,
and should be taken into account explicitly.

2. METHODOLOGY AND APPLICATIONS
Before presenting detailed measurement results, we first

describe the experimental platform and introduce the appli-
cations used in the measurements.

2.1 The Test Platform
Most measurements were done on a 664 MHz Pentium-

III machine, equipped with 256 MB RAM, and a 3DFX
Voodoo3 graphics accelerator with 16 MB RAM that sup-
ports OpenGL in hardware. In addition, we performed
cross-platform comparisons using machines ranging from Pen-
tium 90 to Pentium-IV 2.4 GHz. The operating system is

174

a 2.4.8 Linux kernel (RedHat 7.0), with the XFree86 4.1 X
server. The same kernel was compiled for all the different
architectures, which may result in minor differences in the
generated code due to architecture-specific ifdefs. The de-
fault clock interrupt rate is 100 Hz. We modified the kernel
to run at up to 20,000 Hz. The modifications were essen-
tially straightforward, and involved extending kernel ifdefs
to this range and correcting the calculation of bogomips3.

The measurements were conducted using klogger, a kernel
logger we developed that supports fine-grain events. While
the code is integrated into the kernel, its activation at run-
time is controlled by applying a special sysctl call using the
/proc file system. In order to reduce interference and over-
head, logged events are stored in a sizeable buffer in memory
(we typically use 4 MB), and only exported at large inter-
vals. This export is performed by a daemon that wakes up
every few seconds (the interval is reduced for higher clock
rates to ensure that events are not lost). The implemen-
tation is based on inlined code to access the CPU’s cycle
counter and store the logged data. Each event has a 20-
byte header including a serial number and timestamp with
cycle resolution, followed by event-specific data. The over-
head of each event is only a few hundred cycles (we estimate
that at 100 Hz the overhead for logging is 0.63%, at 1000
Hz it is 0.95%, and at 20,000 Hz 1.18%). In our use, we
log all scheduling-related events: context switching, recal-
culation of priorities, forks, execs, and changing the state of
processes.

2.2 The Workload
The system’s behavior was measured with different clock

rates and different workloads. The workloads were com-
posed of the following applications:

• A classic interactive application — the Emacs text ed-
itor. During the test the editor was used for standard
typing at a rate of about 8 characters per seconds.

• The Xine MPEG viewer, which was used to show a
short video clip in a loop. Xine’s implementation is
multithreaded, making it a suitable representative of
this growing class of applications [11]. Specifically,
Xine uses 6 distinct processes. The two most impor-
tant ones are the decoder, which reads the data stream
from the disk and generates frames for display, and the
displayer, which displays the frames at the appropriate
rate. The displayer keeps track of time using alarms
with a resolution of 4 ms. On each alarm it checks
whether the next frame should be displayed, and if so,
sends the frame to the X server. If it is too late, the
frame is discarded. If it is very late, the displayer can
also notify the decoder to skip certain frames.

In the experiments, audio output was sent to /dev/null
rather than to the sound card, to allow focus on inter-
actions with the X server.

• Quake 3, which represents a modern interactive appli-
cation (role playing game). Quake uses the X server’s
Direct Rendering Infrastructure (DRI) [21] feature which
enables the OpenGL graphics library to access the
hardware directly, without proxying all the requests

3Bogomips are an estimate of the clock rate computed by
the Linux kernel upon booting. The correction prevents
division by zero in this calculation.

through the X server. This results in some of the
graphics processing being done by the Graphical Pro-
cessor Unit (GPU) on the accelerator.

Another interesting feature of Quake is that it is adap-
tive: it can change its frame rate based on how much
CPU time it gets. Thus when Quake competes with
other processes, its frame rate will drop. In our exper-
iments, when running alone it is always ready to run
and can use all available CPU time.

• CPU-bound processes that serve as a background load
that can absorb any number of available CPU cycles,
and compete with the interactive and real-time pro-
cesses.

In addition, the system ran a host of default processes,
mostly various daemons. Of these, the most important with
regard to interactive processes is obviously the X server.

3. CLOCK RESOLUTION AND
OVERHEADS

A major concern regarding increasing the clock interrupt
rate is the resulting increase in overheads: with more clock
interrupts more time will be wasted on processing them,
and there may also be more context switches (as will be
explained below in Section 6), which in turn lead to reduced
cache and TLB efficiency. This is the reason why today only
the Alpha version of Linux employs a rate of 1024 Hz by
default. This is compounded by the concern that operating
systems in general become less efficient on machines with
higher hardware clock rates [20]. We will show that these
concerns are unfounded, and a clock interrupt rate of 1000
Hz or more is perfectly possible.

The overhead caused by clock interrupts may be divided
into two parts: direct overhead for running the interrupt
handling routine, and indirect overhead due to reduced cache
and TLB efficiency. The direct overhead can easily be mea-
sured using klogger. We have performed such measurements
on a range of Pentium processors with clock rates from 90
MHz to 2.4 GHz, and on an Athlon XP1700+ at 1.467 GHz
with DDR-SDRAM memory.

The results are shown in Table 1. We find that the over-
head for interrupt processing is dropping at a much slower
rate than expected according to the CPU clock rate — in
fact, it is relatively stable in terms of absolute time. This is
due to an optimization in the Linux implementation of get-
timeofday(), whereby overhead is reduced by accessing the
8253 timer chip on each clock interrupt — rather than when
gettimeofday() itself is called — and extrapolating using the
cycle counter register. This takes a constant amount of time
and therefore adds overhead to the interrupt handling that
is not related to the CPU clock rate. Even so, the overhead
is still short enough to allow many more interrupts than
are used today, up to an order of 10,000 Hz. Alternatively,
by removing this optimization, the overhead of clock inter-
rupt processing can be reduced considerably, to allow much
higher rates. A good compromize might be to increase the
clock interrupt rate but leave the rate at which the 8253 is
accessed at 100 Hz. This will amortize the overhead of the
off-chip access, thus reducing the overhead per clock inter-
rupt.

A related issue is the overhead for running the scheduler.
More clock interrupts imply more calls to the scheduler.

175

Default Without 8253
Processor Cycles µs Cycles µs
P-90 814±180 9.02 498±466 5.53
PP-200 1654±553 8.31 462±762 2.32
PII-350 2342±303 6.71 306±311 0.88
PIII-664 3972±462 5.98 327±487 0.49
PIII-1.133 6377±602 5.64 426±914 0.38
PIV-2.4 14603±436 6.11 445±550 0.19
A1.467 10494±396 7.15 202±461 0.14

Table 1: Interrupt processing overheads on different pro-
cessor generations (average±standard deviation).

Context switch Cache BW Trap
Processor Cycles µs MB/s Cycles µs
P-90 1871±656 20.75 28±1 153±24 1.70
PP-200 1530±389 7.69 705±26 379±75 1.91
PII-350 1327±331 3.80 1314±29 343±68 0.98
PIII-664 1317±424 1.98 2512±32 348±163 0.52
PIII-1.133 1330±441 1.18 4286±82 364±278 0.32
PIV-2.4 3792±857 1.59 3016±47 1712±32 0.72
A1.467 1436±477 0.98 3962±63 274±20 0.19

Table 2: Other overheads on different processor generations
(average±standard deviation).

More serious is the fact that in Linux the scheduler over-
head is proportional to the number of processes in the ready
queue. However, this only becomes an important factor for
very large numbers of processes. It is also partly offset by
the fact that with more ready processes it takes longer to
complete a scheduling epoch, and therefore priority recalcu-
lations are done less frequently.

As a side note, it is interesting to compare clock interrupt
processing overhead to other types of overhead. Ouster-
hout has claimed that in general operating systems do not
become faster as fast as hardware [20]. We have repeated
some of his measurements on the platforms listed above.
The results (Table 2) show that the overhead for context
switching (measured using two processes that exchange a
byte via a pipe) takes roughly the same number of cycles,
regardless of CPU clock speed (except on the P-IV, which is
using DDR-SDRAM memory at 266 MHz and not the newer
RDRAM). It therefore does become faster as fast as the
hardware. We also found that the trap overhead (measured
by the repeated invocation of getpid) and cache bandwidth
(measured using memcpy) behave similarly. This is more
optimistic than Ousterhout’s results. The difference may be
due to the fact that Ousterhout compared RISC vs. CISC
architectures, and there is also a difference in methodology:
we measure time and cycles directly, whereas Ousterhout
based his results on performance relative to a MicrovaxII
and on estimated MIPS ratings.

The indirect overhead of clock interrupt processing can
only be assessed by measuring the total overhead in the con-
text of a specific application (as was done, for example, in
[2]). The application we used is sorting of a large array that
occupies about half of the L2 cache (the L2 cache was 256
KB on all platforms except for the P-II 350 which had an
L2 cache of 512 KB). The sorting algorithm was introsort,
which is used by STL that ships with gcc. The sorting was
done repeatedly, where each iteration first initializes the ar-

1 process

clock interrupt rate [Hz]
1000 5000 10000 20000

ov
er

he
ad

 a
bo

ve
 1

00
H

z
[%

]

0

10

20

30 P−90

PP−200

PII−350

PIII−664
PIII−1.133

PIV−2.4

8 process

clock interrupt rate [Hz]
1000 5000 10000 20000

ov
er

he
ad

 a
bo

ve
 1

00
H

z
[%

]
0

10

20

30

P−90

PP−200

PII−350

PIII−664
PIII−1.133

PIV−2.4

Figure 2: Increase in overhead due to increasing the clock
interrupt rate from a base case of 100 Hz. The basic quan-
tum is 50 ms.

ray randomly and then sorts it (but the same random se-
quences were used to compare the different platforms). By
measuring the time per iteration under different conditions,
we can factor out the added total overhead due to addi-
tional clock interrupts (as is shown below). To also check
the overhead caused by additional context switching among
processes, we used different multiprogramming levels, run-
ning 1, 2, 4, or 8 copies of the test application at the same
time. All this was repeated for different CPU generations
with different (hardware) clock rates.

Assuming that the amount of work to sort the array once
is essentially fixed, measuring this time as a function of the
clock interrupt rate will show how much time was added
due to overhead. Figure 2 shows this added overhead as a
percentage of the total time required at 100 Hz. From this
we see that the added overhead at 1000 Hz is negligible, and
even at 5000 Hz it is quite low. Note, however, that this is
after removing the gettimeofday() optimization, i.e. without
accessing the 8253 chip on each interrupt. For higher clock
rates, the overhead increases linearly, with a slope that be-
comes flatter with each new processor generation (except for
the P-IV). Essentially the same results are obtained with a
multiporgramming level of 8. Thus we can expect higher
clock interrupt rates to be increasingly acceptable.

The overhead also depends on the length of the quanta,
i.e. on how much time is allocated to a process each time it
runs. In Linux, the default allocation is 50 ms, which trans-

176

1 process

clock interrupt rate [Hz]
1000 5000 10000 20000

ov
er

he
ad

 a
bo

ve
 1

00
H

z
[%

]

0

10

20

30

40

50

60

70

P−90

PP−200

PII−350
PIII−664
PIII−1.133
PIV−2.4

8 process

clock interrupt rate [Hz]
1000 5000 10000 20000

ov
er

he
ad

 a
bo

ve
 1

00
H

z
[%

]

0

10

20

30

40

50

60

70 P−90

PP−200

PII−350

PIII−664
PIII−1.133

PIV−2.4

Figure 3: Increase in overhead due to increasing the clock
interrupt rate from a base case of 100 Hz. Quanta are 6
clock ticks, so they become shorter for high clock rates.

lates to 5 ticks4. When raising the clock interrupt rate, the
question is whether to stick with the allocation of 50 ms, or
to reduce it by defining the allocation in terms of ticks, so
as to improve responsiveness. The results shown in Figure 2
were for 50 ms. Figure 3 shows the same experiments when
using 5 ticks, meaning that the quanta are 10 or 100 times
shorter when using 1000 Hz or 10,000 Hz interrupt rates,
respectively. As shown in the graphs this leads to much
higher overheads, especially under higher loads, probably
because there are many more context switches. This may
limit the realistic clock interrupt rate to 1000 Hz or a bit
more, but probably not as high as 5000 Hz (in this case the
P-IV is substantially better than the other platforms, but
this is due to using performance relative to 100 Hz, which
was worse than for other platforms for an unknown reason).
Note, however, that 1000 Hz is an order of magnitude above
what is common today, and already leads to significant ben-
efits, as shown in subsequent sections; the added overhead
in this case is just a few percentage points, much less than
the 10–30% which were the norm a mere decade ago [7].

Our measurements also allow for an assessment of the rel-
ative costs of direct and indirect overhead. For example,
when switching from 100 Hz to 10,000 Hz, the extra time

4The actual allocation is 5 ticks plus one, to ensure that the
allocation is strictly positive, as the 5 is derived from the
integral quotient of two constants.

Billing ratio Missed quanta
Application @100Hz @1000Hz @100Hz @1000Hz
Emacs 1.0746 0.9468 95.96% 73.42%
Xine 1.2750 1.0249 89.46% 74.81%
Quake 1.0310 1.0337 54.17% 23.23%
X Server◦ 0.0202 0.9319 99.43% 64.05%
CPU-bound 1.0071 1.0043 7.86% 7.83%
CPU+Quake 1.0333 1.0390 26.71% 2.36%
◦ When running Xine

Table 3: Scheduler billing success rate.

can be attributed to 9900 additional clock interrupts each
second. By subtracting the cost of 9900 calls to the interrupt
processing routine (from Table 1), we can find how much of
this extra time should be attributed to indirect overhead,
that is mainly to cache effects.

For example, consider the case of a P-III 664 MHz ma-
chine running a single sorting process with 50 ms quanta.
The average time to sort an array once is 12.675 ms on
the 100 Hz system, and 13.397 ms on the 10,000 Hz sys-
tem. During this time the 10,000 Hz system suffered an
additional 9900 × 0.013397 = 133 interrupts. According to
Table 1 the overhead for each one (without accessing the
8253 chip) is 0.49 µs, so the total additional overhead was
133× 0.49 = 65µs. But the difference in the time to sort an
array is 13397− 12675 = 722µs! Thus 722− 65 = 657µs are
unaccounted for, and should be attributed to cache effects
and scheduler overhead. In other words, 657/722 = 91% of
the overhead is indirect, and only 9% is direct. This number
is typical of many of the configurations checked. The indi-
rect overhead on the P-IV and Athlon machines, and when
using shorter quanta on all machines, are higher, and may
even reach 99%. This means that the figures given in Table
1 should be multiplied by at least 10 (and in some extreme
cases by as much as 100) to derive the real cost of increasing
the clock interrupt rate.

4. CLOCK RESOLUTION AND BILLING
Practically all commodity operating systems use priority-

based schedulers, and factor CPU usage into their priority
calculations. CPU usage is measured in ticks, and is based
on sampling: the process running when a clock interrupt
occurs is billed for this tick. But the coarse granularity
of ticks implies that billing may be inaccurate, leading to
inaccurate information used by the scheduler.

The relationship between actual CPU consumption and
billing on a 100 Hz system is shown at the top of Figure 4.
The X axis in these graphs is the effective quantum length:
the exact time from when the process is scheduled to run
until when it is preempted or blocked. While the effective
quantum tends to be widely distributed, billing is done in
an integral numbers of ticks. In particular, for Emacs and X
the typical quantum is very short, and they are practically
never billed!

Using klogger, we can tabulate all the times each applica-
tion is scheduled, for how much time, and whether or not this
was billed. The data is summarized in Table 3. The billing
ratio is the time for which an application was billed by the
scheduler, divided by the total time actually consumed by
it during the test. The miss percentage is the percentage

177

xine

53700 quanta

0 1 2

0

1

2

3

100Hz

quake

21810 quanta

0 1 2 3

0

1

2

3

emacs

2634 quanta

0 1 2

0

1

2

3

X (w/xine)

8205 quanta

0 1 2

0

1

2

3

xine

73200 quanta

effective quantum [ticks]

0 10 20

bi
lli

ng
 [t

ic
ks

]

0

10

20

30

1000Hz

quake

30390 quanta

0 10 20 30

0

10

20

30

emacs

4050 quanta

0 10 20

0

10

20

30

X (w/xine)

16005 quanta

0 10 20

0

10

20

30

Figure 4: The relationship between effective quanta durations and how much the process is billed, for different applications,
using a kernel running at 100 Hz and at 1000 Hz. Concentrations of data points are rendered as larger disks; otherwise the
graphs would have a clean steps shape, because the billing (Y axis) is in whole ticks. Note also that the optimal would be a
diagonal line with slope 1.

of the application’s quanta that were totally missed by the
scheduler and not billed for at all.

The table shows that even though very many quanta are
totally missed by the scheduler, especially for interactive ap-
plications, most applications are actually billed with reason-
able accuracy in the long run. This is a result of the proba-
bilistic nature of the sampling. Since most of the quanta are
shorter than one clock tick, and the scheduler can only count
in complete tick units, many of the quanta are not billed at
all. But when a short quantum does happen to include a
clock interrupt, it is over billed and charged a full tick. On
average, these two effects tend to cancel out, because the
probability that a quantum includes a tick is proportional
to its duration. The same averaging happens also for quanta
that are longer than a tick: some are rounded up to the next
whole tick, while others are rounded down.

A notable exception is the X server when running with
Xine (we used Xine because it intensively uses the X server,
as opposed to Quake which uses DRI). As shown below
in Section 6, when running at 100 Hz this application has
quanta that are either extremely short (around 68% of the
quanta), or 0.8–0.9 of a tick (the remaining 32%). Given the
distribution of quanta, we should expect over 30% of them
to include a tick and be counted. But the scheduler misses
over 99% of them, and only bills about 2% of the consumed
time! This turns out to be the result of synchronization with
the operating system ticks. Specifically, the long quanta al-
ways occur after a very short quantum of a Xine process
that was activated by a timer alarm. This is the displayer,

which checks whether to display the next frame. When it
decides that the time is right, it passes the frame to X. The
X server then awakes and takes a relatively long time to ac-
tually display the frame, but just less than a full tick. As
the timer alarm is carried out on a tick, these long quanta
always start very soon after one tick, and complete just be-
fore the next tick. Thus, despite being nearly a tick long,
they are hardly ever counted.

When running the kernel at 1000 Hz we can see that the
situation improves dramatically — the effective quantum
length, even for interactive applications, is typically several
ticks long, so the scheduler bills the process an amount that
reflects the actual consumed time much more accurately. In
particular, on a 1000 Hz system X is billed for over 93% of
the time it consumed, with the missed quanta percentage
dropping to 64% — the fraction of quanta that are indeed
very short.

An alternative to this whole discussion is of course the
option to measure runtime accurately, rather than sampling
on clock interrupts. This can be done easily by accessing
the CPU cycle counter [6]. However, this involves modifying
the operating system, whereas we are only interested in the
effects obtainable by simple tuning of the clock interrupt
rate.

5. CLOCK RESOLUTION AND TIMING
Increasing the kernel’s clock resolution also yields a major

benefit in terms of the system’s ability to provide accurate
timing services. Specifically, with a high-resolution clock it

178

desired frame display times

clock interrupts

10ms

ok ok okskip skip skip

tick1 tick2 tick3 tick4

frame2 frame3frame1

T0+8 1
3 T0+

2
316 T0+25 T0+

1
333 T0+

2
341 T0+50

T0+S+10 T0+S+20 T0+S+30 T0+S+40T0+S

2
3 ms16

T0

5 5
6=S ms

shift

Figure 5: Relationship of clock interrupts to frame display
times that causes frames to be skipped. In this example the
relative shift is 5 5

6
ms, and frame 2 is skipped.

is possible to deliver high-resolution timer interrupts. This
is especially significant for soft real-time applications such
as multimedia players, which rely on timer events to keep
correct time.

A striking example was given in the introduction, where
it was shown that the Xine MPEG player was sometimes
unable to display a movie at a rate of 60 frames per second
(which is mandated by the MPEG standard). This is some-
what surprising, because the underlying system clock rate
is 100 Hz — higher than the desired rate.

The problem stems from the relative timing of the clock
interrupts and the times at which frames are to be displayed.
Xine operates according to two rules: it does not display a
frame ahead of its time, and it skips frames that are late by
more than half a frame duration. A frame will therefore be
displayed only if the clock interrupt that causes Xine’s timer
signal to be delivered occurs in the first half of a frame’s
scheduled display time. In the case of 60 frames per second
on a 100 Hz system, the smallest common multiple of the
frame duration (1000

60
= 16 2

3
ms) and clock interval (10 ms)

is 50 ms. Such an interval is shown in Figure 5. In this
example frame 2 will be skipped, because interrupt 2 is a bit
too early, whereas interrupt 3 is already too late. In general,
the question of whether this will indeed happen depends on
the relative shift between the scheduled frame times and the
clock interrupts. A simple inspection of the figure indicates
that frame 1 will be skipped if the shift (between the first
clock interrupt and the first frame) is in the range of 8 1

3
–10

ms, frame 2 will be skipped for shifts in the range 5–6 2
3

ms,

and frame 3 will be skipped for shifts in the range 1 2
3
–3 1

3
ms,

for a total of 5 ms out of the 10 ms between ticks. Assuming
the initial shift is random, there is therefore a 50% chance of
entering a pattern in which a third of the frames are skipped,
leading to the observed frame rate of about 40 frames per
second (in reality, though, this happens much less than 50%
of the time, because the initial program startup tends to be
synchronized with a clock tick).

To check this analysis we also tried a much more extreme
case: running a movie at 50 frames per second on a 50 Hz
system. In this case, either all clock interrupts fall in the first
half of their respective frames, and all frames are shown, or
else all interrupts fall in the second half of their frames, and
all are skipped. And indeed, we observed runs in which all

Quanta/sec
Application @100Hz @1000Hz
Emacs 22.36 34.60
Xine (all processes) 470.67 695.94
Quake 187.88 273.85
X Server (w/Xine) 71.35 148.21
CPU-bound 28.81 38.97

Table 4: Average quanta per second achieved by each ap-
plication when running in isolation.

CPU usage
Application @100Hz @1000Hz
Xine 39.42% 40.42%
X Server 20.10% 20.79%
idle loop 31.46% 31.58%
other 9.02% 7.21%

Table 5: CPU usage distribution when running Xine.

frames were skipped and the screen remained black through-
out the entire movie.

The implication of the above is that the timing service has
to have much finer resolution than that of the requests. For
Xine to display a movie at 60 Hz, the timing service needs
a resolution of 4 ms. This is required for the application to
function correctly, not for the actual viewing, and therefore
applies despite the fact that this clock resolution is much
higher than the screen refresh rate.

6. CLOCK RESOLUTION AND THE
INTERLEAVING OF APPLICATIONS

Recall that we define the effective quantum length to be
the interval from when a process is scheduled until it is de-
scheduled for some reason. On our Linux system, the allo-
cation for a quantum is 50 ms plus one tick. However, as
we can see from Figures 4 and 6 (introduced below), our in-
teractive applications never even approach this limit. They
are always preempted or blocked much sooner, often quite
soon in their first tick. In other words, the effective quan-
tum length is very short. This enables the system to support
more than 100 quanta per second, even if the clock interrupt
rate is only 100 Hz, as shown in Table 4. It also explains
the success of soft timers [2].

The distributions of the effective quantum length for the
different applications are shown in Figure 6, for 100 Hz and
1000 Hz systems. An interesting observation is that when
running the kernel at 1000 Hz the effective quanta become
even shorter. This happens because the system has more
opportunities to intervene and preempt a process, either be-
cause it woke up another process that has higher priority, or
due to a timer alarm that has expired. However, the total
CPU usage does not change significantly (Table 5). Thus
increasing the clock rate did not change the amount of com-
putation performed, but the way in which it is partitioned
into quanta, and the granularity at which the processes are
interleaved with each other.

A specific example is provided by Xine. One of the Xine
processes sets a 4 ms alarm, that is used to synchronize
the video stream. In a 100 Hz system, the alarm signal is
only delivered every 10 ms, because this is the size of a tick.
But when using a 1000 Hz clock the system can actually

179

Xine

0 10 20 30

0

0.2

0.4

0.6

0.8

1
Emacs

0 10 20 30

0

0.2

0.4

0.6

0.8

1
CPU bound (alone)

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

X (with Xine)

Milliseconds

0 10 20 30

P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

100HZ

1000HZ

Quake

0 10 20 30

0

0.2

0.4

0.6

0.8

1
CPU bound (with quake)

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

Figure 6: Cumulative distribution plots of the effective quantum durations of the different applications.

deliver the signals on time. As a result the maximal effective
quanta of X and the other Xine processes are reduced to 4
ms, because they get interrupted by the Xine process with
the 4 ms timer.

Likewise, the service received by CPU-bound applications
is not independent of the interactive processes that accom-
pany them. To investigate this effect, these processes were
measured alone and running with Quake. When running
alone, their quanta are typically indeed an integral number
of ticks long. Most of the time the number of ticks is less
than the full allocation, due to interruptions from system
daemons or klogger, but a sizeable fraction do achieve the
allocated 50 ms plus one tick (which is an additional 10 ms
at 100 Hz, but only 1 ms at 1000 Hz). But when Quake is
added, the quanta of the CPU-bound processes are short-
ened to the same range as those of Quake, and moreover,
they become less predictable. This also leads to an increase
in the number of quanta that are missed for billing (Table
3), unless the higher clock rate of 1000 Hz is used.

7. TOWARDS BEST-EFFORT SUPPORT
FOR REAL-TIME

In this section we set out to explore how close a general
purpose system can come to supporting real-time processes
in terms of timing delays, only by tuning the clock interrupt
rate and reducing the allocated quanta. The metric that we
use in order to perform such an evaluation is latency: the
difference between the time in which an alarm requested by
a process should expire, and the time in which this process
was actually assigned a CPU.

Without worrying about overhead (for the moment), our
aim is to show that under loads of up to 8 processes, we can
bound the latency to be less than 1 millisecond. As there
are very many types of soft real-time applications, we sample
the possible space by considering three types of processes:

1. BLK: A process repeatedly sets alarms without per-
forming any type of computation. Our experiments
involved processes that requested an alarm signal 500
times, with delays that are uniformly distributed be-
tween 1 and 1000 milliseconds.

2. N%: Same as BLK, with the difference that a process
computed for a certain fraction (N%) of the time till
the next alarm. Specifically, we checked computation
of N = 1, 2, 4, and 8% out of this interval. Note for
example that a combination of 8 processes computing
for 8% of the time leads to an average of 64% CPU
utilization. To check what happens when the CPU is
not left idle, we also added CPU-bound processes that
do not set timers.

3. CONT: Same as N% where N=100% i.e. the process
computes continuously.

For each of the above 3 types, we checked combinations
of 1, 2, 4, and 8 processes. All the processes that set timers
were assigned to the (POSIX) Round-Robin class. Note that
a combination of more than one CONT-process constitutes
the worst-case scenario, because — contrary to the other
workloads — the CPU is always busy and there are always
alternative processes with similar priorities (in the Round-
Robin queue) that are waiting to run.

180

100Hz, default time quanta (60 ms)

Microseconds

0

60
00

0

12
00

00

18
00

00

24
00

00

30
00

00

36
00

00

42
00

00

48
00

00

P
ro

ba
bi

lit
y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 process

2 processes

4 processes

8 processes

20000Hz, 100 µs time quanta

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Figure 7: Distributions of latencies till a timer signal is delivered, for processes that compute continuously and also set
timers for random intervals of up to one second.

The base system we used is the default configuration of
Linux, with 100 Hz clock interrupt rate and a 60 ms (6 ticks)
maximal quantum duration. In order to achieve our sub-
millisecond latency goal, we compared this with a rather
aggressive alternative: 20,000 Hz clock interrupt rate and
100 µs (2 ticks) quantum (note that we are changing two
parameters at once: both the clock resolution and the num-
ber of ticks in a quantum). Theoretically, for this configura-
tion the maximal latency would be 100µs × 7 = 700µs < 1
ms, because even if a process is positioned at the end of the
run-queue it only needs to wait for seven other processes to
run for 100µs each.

The results shown in Figure 7 confirm our expectations.
This figure is associated with the worst-case scenario of a
workload composed solely of CONT processes. Examining
the results for the original 100 Hz system (left of Figure 7),
we see that a single process receives the signal within one
tick, as may be expected. When more processes are present,
there is also a positive probability that a process will nev-
ertheless receive the signal within a tick: 1

2
, 1

4
and 1

8
for

2, 4 and 8 processes, respectively. The Y-axis of the figure
shows that the actual fractions were 0.53, 0.30, and 0.16 (re-
spectively), slightly more than the associated probabilities.
But, a process may also be forced to wait for other processes
that precede it to exhaust their quanta. This leads to the
step-like shape of the graphs, because the wait is typically
an integral number of ticks. The maximal wait is a full
quantum for each of the other processes. In the case of 8
competing processes, for example, the maximum is 60 ms
for each of the other 7, for a total of 420 ms (=420,000 µs).

The situation on the 20,000 Hz system is essentially the
same, except that the time scale is much much shorter —
the latency is almost always less than a millisecond, as ex-
pected. In other words, the high clock interrupt rate and
rapid context switching allow the system to deliver timer
signals in a timely manner, despite having to cycle through
all competing processes.

Table 6 shows that this is the case for all our experiments
(for brevity only selected experiments are shown). Note that
using the higher clock rate also provides significantly im-
proved latencies to the experiments where processes only

platform

P−90
PP−200

PII−350

PIII−664

PIII−1.133

PIV−2.4

A1.467

so
rt

ed
 n

um
be

rs
 p

er
 s

ec
. [

m
ill

io
ns

]

0

1

2

3

4

5

base config

extreme config

Figure 8: Throughput of the sort application, measured as
how many millions of numbers were sorted per second, with
8 competing processes.

compute for a fraction of the time till the timer event. With
100 Hz even this scenario sometimes causes conflicts, despite
the relatively low overall CPU utilization. The relatively few
long-latency events that remain in the high clock-rate case
are attributed to conflicts with system daemons that per-
form disk I/O, such as the pager. Similar effects have been
noted in other systems [14]. These problems are expected
to go away in the next Linux kernel, which is preemptive;
they should not be an issue in other kernels that are already
preemptive (such as Solaris).

But what about overheads? As shown in Figure 3, when
running continuously computing processes (in that case, a
sorting application) with a 20,000 Hz clock interrupt rate
and quanta of 6 ticks, the additional overhead can reach
35% on contemporary architectures. The overhead for the
shorter 2-tick quanta used here may be even higher. This

181

Processes @100Hz @20,000Hz
Type Number 0.9 0.95 0.99 max 0.9 0.95 0.99 max
BLK 2 5 8 11 40 13 14 21 23
BLK 8 5 12 22 420 7 9 13 25
CONT 2 50,003 60,003 60,004 160,006 102 103 18,468 60,448
CONT 8 370,014 400,014 420,015 740,025 656 706 15,096 68,139
2% 2 6 9 9,193 19,153 13 15 23 837
2% 8 2,910 8,419 17,940 32,944 12 52 53 1,809
8% 2 9 12,431 39,512 60,003 14 19 53 3,797
8% 8 40,003 60,005 130,006 294,291 53 53 54 37,328
4% 1+2CPU 50,003 50,003 50,004 50,005 55 56 200 256
4% 1+8CPU 50,003 50,003 170,014 280,010 56 57 59 856

Table 6: Tails of distributions of latencies to deliver timer signals in different experimental settings. Table values are latencies
in microseconds, for various percentiles of the distribution.

seems like an expensive and unacceptable price to pay. How-
ever, if we examine the application throughput on different
platforms the picture is not so bleak. Figure 8 compares the
achieved throughput, as measured by numbers sorted per
second, for two configurations. The base configuration uses
100 Hz interrupts and 60 ms quanta. The extreme configu-
ration uses 20,000 Hz interrupts and 100 µs quanta. While
performance dramatically drops when comparing the two
configurations on the same platform, the extreme configu-
ration of each platform still typically outperforms the base
configuration on the previous platform. For example, PIII-
664 running the base configuration manages to sort about
2,559,000 numbers per second, while the PIII-1.133 with the
extreme configuration sorts about 3,136,000 numbers per
second (the P-IV consistently performs worse than previous
generations). This is an optimistic result which means that
in order to get the same or even improve the performance
of an existing platform, while achieving sub-millisecond la-
tency, all one has to do is upgrade to the next generation.
This is usually much cheaper than purchasing the industrial
hard real-time alternative.

8. CONCLUSIONS AND FUTURE WORK
General purpose systems, such as Linux and Windows,

are already often used for soft real-time applications such
a viewing video, playing music, or burning CDs. Other
less common applications include various control functions,
ranging from laboratory experiment control to traffic-light
control. Such applications are not critical to the degree that
they require a full-fledged real-time system. However, they
may face problems on a typical commodity system due to
the lack of adequate support for high-resolution timing ser-
vices. A special case is “timeline gaps”, where the processor
is totally unavailable for a relatively long time [14].

Various solutions have been proposed for this problem,
typically based on explicit support for timing functions. In
particular, very good results are obtained by using soft timers
or one-shot timers. The idea there is to change the kernel’s
timing mechanism from the current periodic time sampling
to event-based time sampling. However, since this event-
based approach calls for a massive redesign of a major ker-
nel subsystem, it has remained more of an academic exercise
and has yet to make it into the world of mainstream oper-
ating systems.

The goal of this paper is to check the degree to which
existing systems can provide reasonable soft real-time ser-

vices, specifically for interactive applications, just by lever-
aging the very fast hardware that is now routinely available,
without any sophisticated modifications to the system. The
mechanism is simply to increase the frequency of the pe-
riodic timer sampling. We show that this solution — al-
though suffering from non-negligible overhead — is a viable
solution on today’s ultra-fast CPUs. We also show that im-
plementing this solution in mainstream operating systems is
as trivial as turning a tuning knob, possibly even at system
runtime.

We started with the observation that there is a large and
growing gap between the CPU clock rates, which grow ex-
ponentially, and the system clock interrupt rates, which are
rather stable at 100 Hz. We showed that by increasing the
clock interrupt rate by a mere order of magnitude, to 1000
Hz, one achieves significant advantages in terms of timing
and billing services, while keeping the overheads acceptably
low. The modifications required to the system are rather
trivial: to increase the clock interrupt rate, and reduce the
default quantum length. As multimedia applications typi-
cally operate in this range (i.e. with timers of several mil-
liseconds), such an increase may be enough to satisfy this
important class of applications. A similar observation has
been made by Nieh and Lam with regard to the scheduling
of multimedia applications in the SMART scheduler [19]. A
rate of 1000 Hz is used in the experimental Linux 2.5 kernel,
and also on personal systems of some kernel hackers [12].

For more demanding applications, we experimented with
raising the clock interrupt rate up to 20,000 Hz, and found
that by doing so applications are guaranteed to receive timer
signals within one millisecond of the correct times with high
probability, even under loaded conditions.

In addition to suggesting that 1000 Hz be used as the
minimal default clock rate, we also propose that the HZ
value and the quantum length be settable parameters, rather
than compiled constants. This will enable users of systems
that are dedicated to a time-sensitive task to configure them
so as to bound the latency, by shortening the quantum so
that when multiplied by the expected number of processes
in the system the product is less than the desired bound.
Of course, this functionality has to be traded off with the
overhead it entails. Such detailed considerations can only
be made by knowledgeable users on a case-by-case basis.
Even so, this is expected to be cost effective relative to the
alternative of procuring a hard real-time system.

The last missing piece is the correct prioritization of ap-

182

plications under heavy load conditions. The problem is that
modern interactive applications may use quite a lot of CPU
power to generate realistic graphics and video in real-time,
and may therefore be hard to distinguish from low prior-
ity CPU-bound applications. This is especially hard when
faced with multi-threaded applications (like Xine), or if ap-
plications are adaptive (as Quake is) and can always use
additional compute power to improve their output. Our fu-
ture work therefore deals with alternative mechanisms for
the identification of interactive processes. The mechanisms
we are considering involve tracking the interactions of appli-
cations with the X server, and thus with input and output
devices that represent the local user [9].

Acknowledgements
Many thanks are due to Danny Braniss and Tomer Klainer
for providing access to various platforms and helping make
them work.

9. REFERENCES
[1] B. Adelberg, H. Garcia-Molina, and B. Kao,

“Emulating soft real-time scheduling using traditional
operating system schedulers”. In Real-Time System
Symp., Oct 1994.

[2] M. Aron and P. Druschel, “Soft timers: efficient
microsecond software timer support for network
processing”. ACM Trans. Comput. Syst. 18(3),
pp. 197–228, Aug 2000.

[3] M. Barabanov and V. Yodaiken, “Introducing
real-time Linux”. Linux Journal 34, Feb 1997.
http://www.linuxjournal.com/article.php?sid=0232.

[4] M. Beck, H. Bohme, M. Dziadzka, U. Kunitz,
R. Magnus, and D. Verworner, Linux Kernel
Internals. Addison-Wesley, 2nd ed., 1998.

[5] D. P. Bovet and M. Cesati, Understanding the Linux
Kernel. O’Reilly, 2001.

[6] J. B. Chen, Y. Endo, K. Chan, D. Mazières, A. Dias,
M. Seltzer, and M. D. Smith, “The measured
performance of personal computer operating systems”.
ACM Trans. Comput. Syst. 14(1), pp. 3–40, Feb 1996.

[7] R. T. Dimpsey and R. K. Iyer, “Modeling and
measuring multiprogramming and system overheads
on a shared memory multiprocessor: case study”. J.
Parallel & Distributed Comput. 12(4), pp. 402–414,
Aug 1991.

[8] K. J. Duda and D. R. Cheriton,
“Borrowed-virtual-time (BVT) scheduling: supporting
latency-sensitive threads in a general-purpose
scheduler”. In 17th Symp. Operating Systems
Principles, pp. 261–276, Dec 1999.

[9] Y. Etsion, D. Tsafrir, and D. G. Feitelson,
Human-Centered Scheduling of Interactive and
Multimedia Applications
on a Loaded Desktop. Technical Report 2003-3,
Hebrew University, Mar 2003.

[10] K. Flautner and T. Mudge, “Vertigo: automatic
performance-setting for Linux”. In 5th Symp.
Operating Systems Design & Implementation,
pp. 105–116, Dec 2002.

[11] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge,
“Thread-level parallelism and interactive performance
of desktop applications”. In 9th Intl. Conf. Architect.

Support for Prog. Lang. & Operating Syst.,
pp. 129–138, Nov 2000.

[12] FreeBSD Documentation Server, Thread on “clock
granularity (kernel option HZ)”. URL
http://docs.freebsd.org/mail/archive/2002/freebsd-
hackers/20020203.freebsd-hackers.html, Feb
2002.

[13] A. Goel, L. Abeni, C. Krasic, J. Snow, and
J. Walpole, “Supporting time-sensitive applications on
a commodity OS”. In 5th Symp. Operating Systems
Design & Implementation, pp. 165–180, Dec 2002.

[14] J. Gwinn, “Some measurements of timeline gaps in
VAX/VMS”. Operating Syst. Rev. 28(2), pp. 92–96,
Apr 1994.

[15] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden, “The design
and implementation of an operating system to support
distributed multimedia applications”. IEEE J. Select
Areas in Commun. 14(7), pp. 1280–1297, Sep 1996.

[16] J. Lions, Lions’ Commentary on UNIX 6th Edition,
with Source Code. Annabooks, 1996.

[17] J. Mauro and R. McDougall, Solaris Internals.
Prentice Hall, 2001.

[18] J. Nieh, J. G. Hanko, J. D. Northcutt, and
G. A. Wall, “SVR4 UNIX scheduler unacceptable for
multimedia applications”. In 4th Int’l Workshop
Network & Operating System Support for Digital
Audio and Video, Nov 1993.

[19] J. Nieh and M. S. Lam, “The design, implementation
and evaluation of SMART: a scheduler for multimedia
applications”. In 16th Symp. Operating Systems
Principles, pp. 184–197, Oct 1997.

[20] J. K. Ousterhout, “Why aren’t operating systems
getting faster as fast as hardware?”. In USENIX
Summer Conf., pp. 247–256, Jun 1990.

[21] B. Paul, “Introduction to the Direct Rendering
Infrastructure”.
http://dri.sourceforge.net/doc/DRIintro.html, August
2000.

[22] M. A. Rau and E. Smirni, “Adaptive CPU scheduling
policies for mixed multimedia and best-effort
workloads”. In Modeling, Anal. & Simulation of
Comput. & Telecomm. Syst., pp. 252–261, Oct 1999.

[23] R. Ronen, A. Mendelson, K. Lai, S-L. Lu, F. Pollack,
and J. P. Shen, “Coming challenges in
microarchitecture and architecture”. Proc. IEEE
89(3), pp. 325–340, Mar 2001.

[24] D. A. Solomon and M. E. Russinovich, Inside
Microsoft Windows 2000. Microsoft Press, 3rd ed.,
2000.

[25] B. Srinivasan, S. Pather, R. Hill, F. Ansari, and
D. Niehaus, “A firm real-time system implementation
using commercial off-the-shelf hardware and free
software”. In 4th IEEE Real-Time Technology & App.
Symp., pp. 112–119, Jun 1998.

[26] D. Tyrell, K. Severson, A. B. Perlman, B. Brickle, and
C. Vaningen-Dunn, “Rail passenger equipment
crashworthiness testing requirements and
implementation”. In Intl. Mechanical Engineering
Congress & Exposition, Nov 2000.

183

