
Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Contents

TCP/IP Network Stack Performance in Linux Kernel 2.4 and 2.5 8

Vaijayanthimala K. Anand

Mobile Cluster computing using IPv6 31

Abdul Basit

Incrementally Improving the Linux SCSI Subsystem 40

James Bottomley

Lustre: the intergalactic file system 50

Peter J. Braam

Cebolla: Pragmatic IP Anonymity 55

Zach A. Brown

SE Debian: how to make NSA SE Linux work in a distribution 65

Russell Coker

The long road to the AES 73

Jean-Luc R. Cooke

System Installation Suite 93

Sean Dague

Making Linux Safe for Virtual Machines 107

Jeff G. Dike

Online Resizing with ext2 and ext3 117

Andreas E. Dilger

Running Linux on a DSP? 130

Michael D. Durrant

An Approach to Injecting Faults into “Hardened” Software 146

David A. Edwards

Advanced Boot Scripts 176

Richard E. Gooch

Porting Drivers to HP ZX1 183

Grant Grundler

Reverse engineering an advanced filesystem 191

Christoph Hellwig

BitKeeper for Kernel Developers 197

Val Henson

Linux Advanced Routing & Traffic Control 213

Bert Hubert

Maintaining the Correctness of the Linux Security Modules Framework 223

Trent Jaeger

Buried Alive in Patches: 6 months of picking up the pieces of the 2.5 Linux kernel 242

Dave Jones

Documentation/CodingStyle and Beyond 250

Greg Kroah-Hartman

An AIO Implementation and its Behaviour 260

Benjamin C.R. LaHaise

Testing Linux with the Linux Test Project 265

Paul Larson

Security Policy Generation through Package Management 274

Charles Levert

Scalability of the Directory Entry Cache 289

Hanna Linder

BKL: One Lock to Bind Them All 301

Rick M. Lindsley

HPC Federated Cluster Administration with C3 v3.0 310

Brian M. Luethke

The Open Clustering Framework 317

Lars Marowsky-Brée

POSIX threads and the Linux kernel 330

Dave McCracken

Read-Copy Update 338

Paul E. McKenney

The Linux Kernel Device Model 368

Patrick Mochel

LART Lessons Learned 376

J.A.K. (Erik) Mouw

User Interfaces for Clustering Tools 383

John L. Mugler

Improving Linux Block I/O for Enterprise Workloads 390

Shailabh Nagar

A Comparative Study of Device Driver APIs Towards a Uniform Linux Approach 407

Iyad Ouaiss

GConf: Manageable User Preferences 414

Havoc Pennington

A Directory Index for Ext2 425

Daniel R. Phillips

A Distributed Security Infrastructure for Carrier Class Linux Clusters 439

Makan Pourzandi

EVMS: A Common Framework for Volume Management 451

Steven L. Pratt

Automatic Regression testing of network code: User-Mode Linux and FreeSWAN 459

Michael C. Richardson

PILS - A Generalized Plugin and Interface Loading System 468

Alan L. Robertson

Fuss, Futexes and Furwocks: Fast Userlevel Locking in Linux 479

Rusty Russell

Evaluation and Improvement of IPv6 Protocol Stack by USAGI Project 496

Yuji Y.S. Sekiya

GNU Bayonne: telephony application server of the GNU project 521

David Sugar

Prospect: A Sampling System Profiler for Linux 530

Alex Tsariounov

How to NOT write kernel drivers 545

Arjan van de Ven

MetaNet: Message-Passing Network Daemons 556

Erik J. Walthinsen

How to replicate the fire - HA for netfilter based firewalls 565

Harald Welte

Multiple Page Size Support in the Linux Kernel 573

Simon J. Winwood

Embedding Linux 594

David Woodhouse

Linux Security Module Framework 604

Chris M. Wright

Mandatory Access Control for Linux Clustered Servers 618

Miroslaw Zakrzewski

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

TCPIP Network Stack Performance
in Linux Kernel 2.4 and 2.5

Vaijayanthimala Anand, Bill Hartner
IBM Linux Technology Center

manand@us.ibm.com, bhartner@us.ibm.com

Abstract

We discuss our findings on how well the Linux
2.4 and 2.5 TCPIP stack scales with multi-
ple network interfaces and with the SMP net-
work workloads on 100/1000 Mb Ethernet net-
works. We identify three hotspots in the Linux
TCPIP stack: 1) inter-processor cache disrup-
tion on SMP environments, 2) inefficient copy
routines, and 3) poor TCPIP stack scaling as
network bandwidth increases.

Our analysis shows that the L2 cache_lines_out
rate (thereby memory cycles per instruction-
mCPI) is high in the TCPIP code path
leading to poor SMP Network Scalability.
We examine a solution that enhances data
cache effectiveness and therefore improves the
SMP scalability. Next the paper concen-
trates on is improving the “Copy_To_User”
and “Copy_From_User” routines used by the
TCPIP stack. We propose using the “hand un-
rolled loop” instead of the “movsd” instruction
on the IA32 architecture and also discuss the
effects of aligning the data buffers. The gigabit
network interface scalability workload clearly
shows that the Linux TCPIP stack is not effi-
cient in handling high bandwidth network traf-
fic. The Linux TCPIP stack needs to mimic the
“Interrupt Mitigation” that network interfaces
adopt. We explore the techniques that would
accomplish this effect in the TCPIP stack. This
paper also touches on the system hardware lim-
itation that affects the gigabit NIC’s scalability.

We show that three or more gigabit NICs do not
scale in the hardware environment used for the
workloads.

1 Introduction

Linux is widely deployed in the web server
arena and it has been claimed that Linux net-
working is optimized to a great extent to per-
form well in the server network loads such as
file serving and web serving, and in packet for-
warding services such as firewalls and routers.
Linux scales well horizontally in cluster envi-
ronments which are used for web servers, file
servers etc.; however, our studies on IA32 ar-
chitecture show that the TCPIP network stack
in the Linux Kernel 2.4 and 2.5 lack SMP net-
work scalability as more CPUs are added and
lack NIC scalability on high bandwidth net-
work interfaces when more NICs are added.

1.1 SMP Network Scalability

Cache memory behavior is a central is-
sue in contemporary computer system
performance[6]. Much work has been done
to examine the memory reference behavior
of application code, operating system and
network protocols. Most of this kind of
work on network protocols concentrates on
uniprocessor systems. This paper discusses the
data and instruction memory reference effects
of Linux TCPIP stack in a multi-processor sys-

Ottawa Linux Symposium 2002 9

tem. We examine the L2_cache_line_out rate
and instructions retired rate in the receive path
of TCPIP and Ethernet driver to understand
memory latency.

In IA32 Linux, interrupts from different net-
work interfaces (NICs) are routed to CPUs in a
dynamic fashion. The received data, its associ-
ated structures that deal with a particular con-
nection, and its activities get processed in dif-
ferent CPUs due to the dynamic routing, which
results in non-locality of TCPIP code and data
structures, which increases the memory access
latency leading to poor performance. This ef-
fect is eliminated when the application process,
and the interrupt for the particular network in-
terface are aligned to run on the same CPU. By
binding the process and interrupt to a CPU, a
given connection and its associated activities
including the data processing during the dura-
tion of that connection are guarenteed to pro-
cess on the same CPU. This binding results in
better locality of data and instructions, and im-
proving the cache effectiveness. Affinitizing
process and interrupt to a CPU may be feasi-
ble in a single service dedicated server envi-
ronment, but may not be desirable in all situa-
tions. Therefore, reducing the number of L2
lines that bounce between the caches in the
TCPIP stack code path is a critical factor in
improving the SMP scalability of the TCPIP
stack. We use affinity as a tool to understand
how TCPIP SMP scalability can be improved.

The Inter-processor cache line bouncing prob-
lem can be generally addressed by improv-
ing the data memory references and instruction
memory references. Instruction cache behav-
ior in a network protocol such as TCPIP has a
larger impact on performance in most scenar-
ios than the data cache behavior [6, 2]. Instruc-
tion memory refereces may be solely important
in scenarios where zero copy [1] is used or sce-
narios where less data is used. When zero copy
is not used, reducing the time spent on the data

memory reference considerably improves per-
formance.

In the TCPIP stack, under numerous condi-
tions, the received data is check summed in
the interrupt (softirq) handler and is copied
to user buffer in the process context. These
two contexts, interrupt and process, are fre-
quently executed on different processors due
to the dynamic interrupt routing and how pro-
cesses are scheduled. We proto-typed a patch
that forces the csum and copy to happen on the
same processor for all conditions resulting in
performance improvement. Linux TCPIP does
have routines that fold csum into copy; how-
ever, these routines are not used in all the code
paths. We also show profiling data that sup-
ports the need to improve both data and instruc-
tion memory references in TCPIP stack.

1.2 Efficient Copy Routines

Not only did we consider reducing the mem-
ory reference cycles for data in SMP environ-
ment but we also considered it for uniprocessor
by improving temporal and spatial locality for
data copy. Copying data between user and ker-
nel memory takes a big chunk of network pro-
tocol processing time. Zero copy again is the
mechanism to reduce this processing time, and
improving the packet latency. Even with zero
copy, the copy is eliminated only on the send
side; improving the copy routines in TCPIP
stack would help the receive side processing.
We found that the copy routines used in IA32
Linux TCPIP stack can be made more efficient
by using “unrolled integer copy” instead of the
string operation “movsd.” This paper presents
measurements to show that “movsd” is more
expensive than “unrolled integer mov.” We
also look at the effects of alignment on Pen-
tium III systems. Measurements presented in
section 3 show that “movsd” performs better if
both the source and the destination buffers are
aligned.

Ottawa Linux Symposium 2002 10

1.3 TCPIP Scalability on Gigabit Network

Finally this paper looks at the performance of
the TCPIP stack using gigabit bandwidth net-
work interfaces (NICs). We use NIC hereafter
in this paper to mean Network adapters. In
this paper we concentrate on receive side pro-
cessing to discuss how the TCPIP stack may
be improved for handling high bandwidth traf-
fic. The techniques discussed in this paper
for receive side processing are also applica-
ble to transmit side processing but we have not
evaluated transmit side performance. This pa-
per presents analysis data to show why TCPIP
should process packets in bunches at each layer
rather than one packet at a time. High band-
width network interface cards implement a
technique called “interrupt mitigation” to inter-
rupt the processor for a bunch of packets in-
stead of interrupting for each received packet.
This paper suggests that this “interrupt mitiga-
tion” should be mimicked in higher layer pro-
tocols as “packet mitigation.” We also look at
how the hardware that we used has limitation
that leads to poor gigabit NIC scaling.

The main contribution of this paper is to bring
to light the Linux TCPIP SMP scalability prob-
lem caused by cache line bouncing among mul-
tiple processors in the Linux 2.4.x and 2.5.x
kernels. Second this paper points out that the
Linux TCPIP stack needs to be tailored to more
efficient protocol processing for high band-
width network traffic.

The rest of the Introduction Section discusses
the benchmark, hardware and software envi-
ronments used. Each section includes the
benchmark results, analysis data, description
of the problem if one exists, and a technique or
a patch that could alleviate the bottleneck. Sec-
tion 2 deals with the SMP Scalability problem
that in Linux 2.4 kernel and also shows how
the 0(1) scheduler[8] has improved this scala-
bility to some extent in 2.5 kernel. In section

3 we discuss about efficient copy routines in
the TCPIP stack followed by section 4 that dis-
cusses TCPIP stack scalability on high band-
width networks and hardware limitation that
causes poor gigabit NIC scalability.

BENCHMARK ENVIRONMENT

Netperf [10] is a well-known network bench-
mark used in the open source community to
measure network throughput and packet la-
tency. Netperf is available at www.netperf.org.
Netperf3 is an experimental version of Net-
perf that has multi-thread and multi-process
support. We extended Netperf3 to include
multi-adapter and synchronized multi-client
features to drive 4-way and 8-way SMP servers
and clients. Netperf3 supports streaming, re-
quest response, and connection request re-
sponse functions on TCP and UDP. We used
TCP_STREAM for our work so far.

In this paper we evaluate SMP scalabil-
ity and network NIC scalability using the
TCP_STREAM feature of Netperf3. We used
multi-adpater workloads between a server and
a client for SMP scalability study and used
multiple clients and a server with multiple
NICs for NIC scalability. The TCP_STREAM
test establishes a control socket connection and
a data connection then sends streams of data
using the data connection. At the end of a fixed
time period, the test ends and the total through-
put is reported in Mbits per second. The prin-
cipal metric we used for TCP_STREAM is the
throughput and “throughput scaled to 100%
CPU Utlization.” Vmstat is used to measure
the CPU Utlization at the server. “Throughput
scaled to 100% CPU Utlization” is derived us-
ing the throughput and the cpu Utlization. The
“throughput scaled to CPU” is the throughput
which would result if all CPUs could be de-
voted to the throughput. We refer “throughput
scaled to 100% CPU Utlization” as “through-
put scaled to CPU” in the rest of the paper.

Ottawa Linux Symposium 2002 11

We used isolated Ethernet 100Mbit and
1000Mbit network for our workloads. Open
source profiling tools such as SGI kernprof[7],
and SGI lockmeter[3] were used for analy-
sis. Where necessary, additional tools were de-
veloped to gather profiling data. In addition
to time based profiling of SGI Kernprof, we
used Kernprof’s Pentium performance-counter
based profiling. In performance-counter based
profiling, a profile observation is set to oc-
cur after a certain number of Pentium per-
formance counter events[4]. We used a fre-
quency of 1000 for our profiling, i.e., for ev-
ery 1000 cache_lines_out or 1000 instructions
retired, the profile records the instruction loca-
tion. Thus the profile shows where the kernel
takes most of its cache_lines_out or where the
kernel executes most of its instructions.

HARDWARE AND SOFTWARE
ENVIRONMENT

The 100Mb Ethernet test was run on an 8-
way Profusion chipset, using 700 Mhz Pen-
tium III Xeon with 4 GB memory and 1 MB
L2 cache as our client and a 500 Mhz Pen-
tium III 4-way SMP system with 2.5 GB mem-
ory, and 2 MB L2 cache as our server. The
NIC cards used were Intel Ethernet PRO/100
Server PCI adapters. For 1000Mb Ethernet, we
used the same 8-way system as our server and
Pentium III 2-way clients with 1 GB memory
(4 of them). The NIC cards used were Intel
Ethernet PRO 1000 XF Server PCI adapters.
We used both 2.4.x and 2.5.x Linux kernels.
In both cases the server and client(s) are con-
nected point-to-point using cross over cables.

2 TCPIP SMP Scalability Using
Ethernet 100Mb

2.1 Netperf3 TCP_STREAM results

We measured the SMP scalability of the 2.4.17
and 2.5.3 TCPIP stack using the Netperf3
multi-adapter TCP_STREAM test. The server
used was a 4-way 500 Mhz PIII with four
100 Mb ethernet NICs operating in full duplex
mode with a MTU size of 1500 bytes. The
server NICs (receive side) were connected to
the client NIC (send side) point-to-point. We
used 8-way, 4-way and 2-way clients to drive
4-way, 2-way and 1-way servers respectively.

A single TCP connection was created between
the server and the client on each of the net-
works for a total of four connections. A pro-
cess was created for each of the NICs for a to-
tal of (4) server processes. The test was run
using the application message sizes of 1024,
2048, 4096, 8192, 16384, 32768 and 65536
bytes. The tcp socket buffer size was 65536
bytes and TCP NODELAY OPTION was set
on the socket. Both the network throughput
(Mb/sec) and CPU utilization were measured
on the server. The throughput scaled to CPU
utilization is derived from these two measure-
ments. Especially for the 100 Mb Ethernet
workload, the “throughput scaled to CPU” is
the important measure since the throughput of
each of the 4 adapters reaches maximum media
speed in all tests.

We ran the test with 1, 2, and 4 CPUs enabled
on the server. The 2P and 4P SMP scalablity
factor was calculated by dividing the respective
“throughput scaled to CPU utilization” by the
UP “throughput scaled to CPU utilization.”

In Figure 1 and Figure 2, we report the 2P and
4P SMP scalability factor of the 2.4.17 and the
2.5.3 kernel for the Netperf3 TCP_STREAM
test using the different Netperf3 message sizes.

Ottawa Linux Symposium 2002 12

Note that the 4P scalability factor for the 2.4.17
kernel using the 65536 message size barely
achieves 2/4 scaling. The 4P scalability factor
of the 2.5.3 kernel is much improved reaching
2/4 in most of the cases. The better 4P scala-
bility of the 2.5.3 kernel may be attributed to
the 0(1) scheduler which provides better pro-
cess affinity to a CPU than the 2.4.17 sched-
uler.

Figure 1: SMP Network Scalability on 2.4.17
Kernel

Figure 2: SMP Network Scalability on 2.5.3
Kernel

The SMP TCPIP scalability for 4P and 2P
as shown in Figures 1 and 2 is poor. To

understand this problem we ran some tests.
We choose 4P and 4 adapter cases for our
experiment. First we examined the effects
of IRQ and process affinity on the Netperf3
TCP_STREAM test for the 2.4.17 kernel using
the 4-way server. IRQ affinity involves binding
each of the four network adapter IRQs to one
of the (4) CPUs. For example, the interrupt as-
signed to NIC 1 to CPU 0, NIC 2 to CPU 1
etc. PROCESS affinity involves binding each
of the four Netperf server processes to one the
four CPUs. Both PROCESS and IRQ affin-
ity can be combined by affinitizing the IRQ
for NIC and netperf3 server process servicing
the tcp connection to the same CPU. In table
1, we report the percent improvement of the
Netperf3 TCP_STREAM throughput scaled to
CPU when IRQ affinity, PROCESS affinity and
BOTH affinities were applied to the server.
The percentage improvement is relative to the
throughput scaled to CPU utilization when no
affinity was applied. The higher the percent-
age, better the performance.

For the case of IRQ affinity, throughput scaled
to CPU utilization improved 4 to 21% for the
various message sizes. For the case of PRO-
CESS affinity, throughput scaled to CPU uti-
lization improved 6 to 28%. For the case
of both IRQ and PROCESS affinity applied,
throughput scaled to CPU utilization improved
42 to 74%. The gain in the third case, where
both IRQ and PROCESS affinity are applied,
is much greater than the sum of the results of
these two affinities applied separately.

Figure 3 shows the comparison of the
TCP_STREAM throughput scaled to CPU uti-
lization for the 2.4.17 kernel with 1) no affinity
2) IRQ affinity 3) PROCESS affinity 4) BOTH
affinities, and 5) the 2.5.3 kernel with no affin-
ity applied.

The TCP_STREAM results for the 2.5.3 base
kernel and the 2.4.17 kernel with PROCESS

Ottawa Linux Symposium 2002 13

Msgsize IRQ PROCESS BOTH
Affinity Affinity Affinities

(Bytes) (%) (%) (%)

1024 4.34 12.71 74.53
2048 21.45 21.43 66.56
4096 19.01 28.73 74.68
8192 19.18 25.25 68.03
16384 16.36 14.37 55.22
32768 11.38 11.38 47.45
65536 11.31 6.34 42.09

Table 1: Affinity Comparison using 2.4.17
Kernel ON 4P using 4 NICS

affinity are comparable. Again this is probably
attributable to the fact that the 2.5’s 0(1)sched-
uler achieves better process affinity to CPU
than the 2.4.17 kernel. The best performed test
run in figure 3 is the 2.4.17 kernel with both
Affinities applied.

The throughput for the results presented in the
Figure 3 is mostly constant for most of the
tests, and the difference reflected in CPU idle
time.

Figure 3: IRQ and PROCESS AFFINITY

2.2 Analysis of IRQ and PROCESS Affinity

L2_CACHE_LINES_OUT

Next, we analyzed the 4P TCP_STREAM test
to understand why IRQ and PROCESS affin-
ity together improves throughput and CPU uti-
lization to a great extent (up to 74%). We
used profiling based on Intel Performance
counters [4]. We profiled the server dur-
ing the TCP_STREAM test using the 32K
message size on 2.4.17 kernel using the
L2_cache_lines_out and total instructions re-
tired events.

By using IRQ and PROCESS affinity, each
TCPIPconnection and its activities are bound
to happen in the affinitized CPU. This binding
leads to lower L2 cache lines out as the data
and instructions do not float between CPUs.
The gain we achieved through affinity would
reflect in this event counter. So we decided
to measure L2_cache_lines_out. Because the
throughput and throughput scaled to CPU in-
creased in the IRQ and PROCESS affinity case,
we decided to measure the total instruction re-
tired count also.

In Table 2 we show the results of the perfor-
mance counter profiling taken for the event
“L2_cache_lines_out” on base Kernel 2.4.17
and Kernel 2.4.17+IRQ and PROCESS affin-
ity. The kernel routines with the highest
L2_cache_line_out are listed here. The results
in Table 2 show that using IRQ and PROCESS
affinity has reduced the number of L2 cache
lines out in all of the listed kernel routines.
The kernel routines tcp_v4_rcv, mod_timer,
and tcp_data_wait are the major benefectors of
affinity. Overall the whole of TCPIP receive
code path has less L2_cache_lines_out result-
ing in better performance.

This profile is taken using TCP_STREAM test
on 4P server and 8P client. The test ran on 4
adapters using 4 server processes with the con-
figuration of 64K socket buffer, TCP NODE-
LAY ON using 32k message size on 2.4.17 ker-
nel:

Ottawa Linux Symposium 2002 14

Kernel 2.4.17 Kernel IRQPROCESS
function Baseline AFFINITIES

Frequency Frequency

poll_idle 121743 72241
csum_partial_copy_generic 27951 13838
schedule 24853 9036
do_softirq 9130 3922
mod_timer 6997 1551
TCP_v4_rcv 6449 629
speedo_interrupt 6262 5066
__wake_up 6143 1779
TCP_recvmsg 5199 2154
USER 5081 2573
speedo_start_xmit 4349 1654
TCP_rcv_established 3724 1336
TCP_data_wait 3610 748

Table 2: L2 Cache Lines Out on 2.4.17

INSTRUCTIONS RETIRED

Next we measured the total instructions retired
for the same workload on both baseline 2.4.17
kernel and 2.4.17+IRQ+PROCESS affinity ap-
plied kernel. Figure 3 shows the total instruc-
tions retired for a short period of time running
the TCP_STREAM 4P/4adapter test.

Kernel Instruc. Retired
Function Frequency

2.4.17 Kernel base 32554892
poll_idle on base 19877569

2.4.17 +IRQ+PROCESS 51607249
poll_idle on IRQ+PROCESS 39326958

Table 3: Instructions Retired Count on 2.4.17

The number of instructions executed is high
in the affinity case which also supports the
fact that lining up process/irq with a CPU
brings memory locality and improves instruc-
tion memory references. We also presented the
number of instructions retired in idle loop. The
instructions retired in the idle-loop is doubled
in the affinity case. We gained CPU in Affinity

case as the memory latency for instructions is
decreased. The number of instructions retired
excluding the idle-loop case has not improved
in the affinity case.

The above analysis clearly indicates that the
TCPIP stack SMP scalability can be improved
by fixing the inter-processor cache line bounc-
ing by reducing L2_cache_lines_out.

2.3 Combine_csum_copy Patch to reduce the
cache_lines_out

Affinitizing both the IRQ and PROCESS to a
CPU results in better locality of data and in-
structions for the TCPIP send and receive path
and thus better performance. Because affinity
is not feasible in all situations, we analyzed
the code to determine if there are code opti-
mizations that could provide better cache ef-
fectiveness. It was observed that most of the
time, the incoming frames were checksummed
in the interrupt context and then copied to the
applicatoin buffer in the process context. Of-
ten, the interrupt and process context were
on two different CPUs. A proto-type patch,

Ottawa Linux Symposium 2002 15

csum_copy_patch, was developed to force the
checksum and copy operations to execute more
often in the process context.

Figure 4 shows the results of the
TCP_STREAM test for 1) 2.4.0 kernel
baseline, 2) 2.4.0 +IRQ and PROCESS
affinity and 3) 2.4.0+csum_copy_patch. The
csum_copy_patch improved throughput scaled
to CPU utilization by up to 14%. There is
additional work to be done in order to bridge
the gap between the baseline and the IRQ and
PROCESS affinity case. We will continue
our work to see how we could close the gap
between the non-affinity and affinity case
through code improvement.

Figure 4: Combine CSUM and COPY on 2.4.0

Kernel function Frequency
__generic_copy_to_user: 3127

e1000_intr: 540
alloc_skb : 313

TOTAL_SAMPLES 6001

Table 4: Gigabit PC Sampling of 2.4.17 UNI
Kernel

3 Copy Routines in TCPIP

3.1 One gigabit NIC’s TCP_STREAM Results

We measured the Netperf3 TCP_STREAM
throughput for a single connection over a gi-
gabit ethernet network using a 2.4.17 UNI ker-
nel. The Netperf3 message size was 4096
bytes, MTU size was 1500 bytes, and the
server (receive side) was an 8-way processor
700 Mhz PIII using a UNI kernel. We ob-
served that the resulting throughput did not
achieve maximum media throughput. The
CPU was 19% utilized. A time based profile
of the kernel revealed that 30–50% of the to-
tal ticks were spent in __generic_copy_to_user
routine in the receive path of the TCPIP code.
The __generic_copy_to_user routine is used to
copy data from the network buffers to the ap-
plication buffers. The profiling data for the
TCPIP receive path is given in Table 4

3.2 Copy Routine Analysis

We analyzed the __generic_copy_to_user rou-
tine looking for ways to improve the code.
The copy code was using the move string
(MOVSD) instruction and had no special case
code for handling mis-aligned data buffers. We
looked at some of the fast memory copy work
done previously and in particular the work
done by University of Berkeley during the P5
time frame. The Berkeley study [9] compares
three types of copies

• STRING: MOVSD string copy.

Ottawa Linux Symposium 2002 16

• INTEGER: unrolled/prefetched using in-
teger registers.

• FLOATING POINT: unrolled/prefetched
using floating point registers.

According to their results on P5 machines, the
floating point copy method yielded 100% more
throughput when compared to the string copy
method. The integer copy method yielded 50%
better throughput than the string copy method.
We adopted both integer copy and floating
point copy methods from this technical paper
for improving the copy routines in the TCPIP
stack.

We developed a user level tool to test these
copy methods and found that the integer copy
performs better than the other two methods
if the source and destination buffers are not
aligned on 8-byte boundaries. As shown in Ta-
ble 5, if the source and the destination buffers
are aligned on a 8-byte boundary, the string
copy performed better than the “unrolled in-
teger copy.” We used a Pentium III system
for this test and each test copied 1448 mil-
lion bytes. In Table 5, the MBytes copied is
the throughput and higher the number the copy
method is more efficient.

3.3 CopyPatch for Efficient Copy

We created a copy patch using “unrolled in-
teger copy” for the Linux Kernel and tested
further with and without alignment to further
understand the impact of this patch and buffer
alignment on our workload. We decided to test
the alignment in the receive path of the TCPIP
stack. The gigabit driver was modified to align
the receive buffer (which is the source buffer
for the copy routine). The destination buffer
allocated by netperf3 was already aligned. We
instrumented __generic_copy_to_user to mea-
sure the CPU cycles spent in this routine. We
read the Intel’s TSC counter before and after

execution of the copy routine with HW inter-
rupts disabled. A user level program was writ-
ten to retrieve the value of the cycle counter
during the test run several times and also after
the test is completed.

The results showed in Table 6 are the average
cycles (rounded) spent to copy a buffer size
of 1448 with and without the patch and with
alignment. Lower the cycles better the perfor-
mance of the copy routine.

Method Used Cycles
Spent

movsd copy routine without
alignment

7000

movsd copy routine with 8
byte alignment

3000

IntegerCopyPatch without
alignment

4000

Table 6: Measurement of cycles spent in copy
methods on 2.4.17 Kernel

The data in Table 6 suggests that the MOVSD
instruction has the best performance when the
source and the destination buffer addresses are
aligned on an 8-byte boundary. However, an 8-
byte source and destination alignment may not
be possible in the receive path of the TCPIP
stack for all general purposes and in all het-
rogenous networks. The TCPIP frame header
size is variable due to the TCP and IP op-
tions in the header. For our analysis purpose
we were able to align this as we had a con-
trolled and isolated homogenous network en-
vironment. So we decided to implement the
“unrolled integer copy” replacing the “movsd”
string copy in the copy routines used in this
workload as aligning the buffers is out of ques-
tion in the TCPIP receive path.

Figure 5 and Figure 6 show the baseline and
CopyPatch throughput and “throughput scaled
to CPU” results on 2.4.17 and 2.5.7 kernels
respectively. It is obvious that the unrolled

Ottawa Linux Symposium 2002 17

Method time MBytes dst src aligned
taken (sec) copied address address

MOVSD 0.609 2378 804c000 804f000 YES
Integer 0.898 1613 8051000 8053000 YES

MOVSD 1.172 1235 804c000 804f004 NO
Integer 0.851 1703 8051000 8053004 NO

Table 5: Comparison of movsd, integer copy, alignment

Figure 5: Copy Patch on 2.4.17 Kernel

integer copy routine has improved throughput
scaled to CPU for all the message sizes on
both kernels. On 2.4.17, the raw throughput
improved for all message sizes with the copy-
patch, however on 2.5.7 kernel, copypatch im-
proved raw throughput on messages greater
than 8k.

There is other copy routines combined with
checksum in the TCPIP stack, we have not
modified those routines yet. See appendix for
integer copy patch. Since there are other meth-
ods such as sendfile (only for sendside) and
mmx copies that are applicable to cover some
situations, the scope of this work may look lim-
ited but this kind of string copy is used in other
places of the kernel, glibc etc., So we think this
work is important to improve the Linux perfor-
mance in IA32 architecture and for the future
“string copy instruction - movsd” implementa-

Figure 6: Copy Patch on 2.5.7 Kernel

tion in IA32 architecture.

3.4 Future Work

As part of our future work we will look in to
improving the following:

• Extend this work to other memcopy rou-
tines in the kernel.

• Extend this work to glibc routines.

4 TCPIP GIGABIT NIC SCALA-
BILITY

4.1 Gigabit NIC Scalability Results

The gigabit Ethernet NIC scalability test mea-
sures how well multiple gigabit Ethernet NICs

Ottawa Linux Symposium 2002 18

perform on an 8-way server. We mea-
sured Gigabit Ethernet NIC scalability on the
2.4.7 kernel using the Netperf3 multi-adapter
TCP_STREAM test. The server used was an
8-way 700 Mhz Pentium III Xeon CPUs with
up to seven Gigabit Ethernet NICs operating
in full duplex mode with a MTU size of 1500
bytes. Four 2-way 900 Mhz clients (send side)
with two Gigabit Ethernet NICs on each con-
nected to the server (receive side) Ethernet
NICs.

The test was first run with only one gigabit
NIC, then two NICs, and so on, up to a total
of seven gigabit Ethernet NICs. A single TCP
connection was created between the server and
the client on each of the Ethernet NICs. The
test was run with application message sizes of
1024, 2048, 4096, 8196, 16384, 32768 and
65536. The TCP socket buffer size was set to
64K with TCP NODELAY ON. The Ethernet
NICs default options are used for the configu-
ration parameters; although, tuning these op-
tions did not yield any better results on our
hardware. We used SMP kernels enabling 8
processors on the server and 2 processors on
each of the client.

The throughput results of the NIC scalability
test are found in Figure 7. A single Ether-
net NIC achieved only 604 Mb per second.
Furthermore, adding a second Ethernet NIC
achieved only a total of 699Mb per second for
the pair of NICs (yielding a scaling factor of
only 58% = 699/604*2). Adding successive
Ethernet NIC added minimal throughput. The
results of the gigabit Ethernet NIC scalability
test inidcates that the gigabit Ethernet NICs
tests do not scale on this 8-way system.

4.2 Analysis of TCPIP Scalability on Gigabit
Network

We profiled the kernel to understand what
could be done in the software to improve the gi-

Figure 7: Gigabit NIC Scalability on 2.4.7 Ker-
nel

gabit NICs Scalability. From the TCPIP stack
and kernel perspective, our analysis points out
that the network stack does not efficiently han-
dle the high rate of incoming frames. One of
the main problems we noticed was that the high
rate of incoming frames was being processed at
the protocol level one at a time even though the
NIC mitigates interrupts and causes interrupt
once per configurable interrupt delay. There-
fore the NIC causes interrupts for a bunch of
frames instead of interrupting the processor for
each frame. This interrupt mitigation is not
mimicked in higher layer protocol processing.

Kernprof time based annotated call graph pro-
filing taken with MTU=1500 and MTU=9000

By setting the MTU=9000 (jumbo size), on
a gigabit adapter/TCP_STREAM, we could
reach the max media limit, whereas with MTU
set to 1500, we did not reach the maximum
media limit on our hardware. We used profil-
ing tools to see the difference. Tables 7 and
8 show the annotated call graph for a three
adapter case using 1500 and 9000 MTU sizes.
In MTU=1500 case we received less interrupts
around 275543 times. But the softirq handler
was invoked around 2 million times. There-

Ottawa Linux Symposium 2002 19

Kernel function Times Invoked

e1000_intr 840790
. ProcessReceiveInterrupts 951848
. . netif_rx 758774
. . . get_fast_time 758774
. . . . do_gettimeofday 758774
. . . get_sample_stats 758774
. . . cpu_raise_softirq 758774
. . eth_type_trans 758774
. . RxChecksum 758774
. . _tasklet_schedule 12339
. . . wake_up_process 3
. . . . reschedule_idle 3367
. ProcessTransmitInterrupts 951848
. . cpu_raise_softirq 368286

Table 8: 2.4.7 Kernel Kernprof’s Annotated callgraph for MTU 9000

Kernel Function Times invoked

e1000_intr 275543
. ProcessReceiveInterrupts 312522
. . netif_rx 2291591
. . . get_fast_time 2291591
. . . . do_gettimeofday 2291591
. . . get_sample_stats 2291591
. . . cpu_raise_softirq 2291591
. . eth_type_trans 2291591
. . RxChecksum 2291591
. . _tasklet_schedule 32369
. ProcessTransmitInterrupts 312522
. . cpu_raise_softirq 189394

Table 7: 2.4.7 Kernel Annotated Callgraph for
MTU 1500

fore, we received around 8 frames per inter-
rupt in an average. Whereas in the MTU=9000
case, we received 860970 time interrupts and
softirq handler was invoked for 758774 times.
We received one frame per interrupt on an av-
erage. Therefore, the upper layer protocols are
not invoked more than the interrupts and the
protocol processing latency was less so we re-
ceived 3X more interrupts/frames in case of

jumbo size frame. Therefore, we suspect that
the higher layer protocol processing latency is
causing the throughput to go down in the case
of MTU=1500 as each layer of the protocol is
processing one frame at a time. We propose
using a mechanism such as “gather-receive”
where the bunch of the frames received are
gathered and sent to upper layer protocol for
processing. We have not done any proto-type
yet to prove that this will help.

Kernel Function Times invoked

ReceiveBufferFill 32369
. alloc_skb 2291645
. . kmalloc 2481043
. . . kmem_cache_alloc_batch 63866
. . kmem_cache_alloc 1178633
. . . kmem_cache_alloc_batch 7110

Table 9: 2.4.7 Kernel’s Kernprof Annotated
Callgraph for MTU 1500

We also found a similar problem with the allo-
cation and deallocation of skbs (socket buffers)
and data frame buffers in the receive path. The
Linux gigabit network device driver has a re-
ceive pool of buffers called “receive ring.” Gi-

Ottawa Linux Symposium 2002 20

Kernel function Times Invoked

ReceiveBufferFill 12339
. alloc_skb 758748
. . kmalloc 1127037
. . . kmem_cache_alloc_batch 170
. . kmem_cache_alloc 178716
. . . kmem_cache_alloc_batch 792

Table 10: 2.4.7 Kernel Kernprof’s Annotated callgraph for MTU 9000

Table 11: Two NIC using separate PCI buses
Bus Throughput

NIC 1 Bus A (66 MHz) 385 Mb/sec
NIC 2 Bus B (66 MHz) 387 Mb/sec

Total 782 Mb/sec

gabit driver replenishes this pool by allocat-
ing skb one at a time. Tables 9 and 10 show
that alloc_skb is called 2 million times when
ReceiveBufferFill is called only 32 thousand
times in the case where MTU was set to 1500.
ReceiveBufferFill is the routine that replen-
ishes the receive buffer pool. TCPIP stack
should provide a way to allocate these skbs
bunch at a time. To take this one step fur-
ther, we think that the allocated buffers (receive
ring in the driver) should be recycled instead of
freeing and reallocating them again. We have
started looking into creating a proto-type patch
and this is our on-going effort.

4.3 Analysis of Hardware for Gigabit NIC
Scalability

We performed additional tests in order to un-
derstand why multiple NICs do not scale well
on this 8-way system. We first investigated the
PCI bus. The 8-way server has two 66 Mhz 64-
bit PCI buses (A and B) and two 33 Mhz 64-bit
PCI buses (C and D). We used gigabit Ethernet
NICs on different combinations of PCI busses
and reran the tests.

Tables 4.3 and 4.3 indicate that when two giga-

Table 12: Two NIC sharing the PCI bus
Bus Throughput

NIC 1 Bus A (66 MHz) 355 Mb/sec
NIC 2 Bus A (66 MHz) 342 Mb/sec

Total 697 Mb/sec

Table 13: Three Adapters, Separate vs. Shared
Three adapters using separate PCI bus
NIC Bus Throughput
1 Bus A (66 MHz) 266 Mb/sec
2 Bus B (66 MHz) 257 Mb/sec
3 Bus C (33 MHz) 259 Mb/sec

Total 782 Mb/sec

Three adapters sharing PCI bus
1 Bus A (66 MHz) 197 Mb/sec
2 Bus A (66 MHz) 197 Mb/sec
3 Bus B (66 MHz) 356 Mb/sec

Total 750 Mb/sec

bit Ethernet NICs are used, placing one on bus
A and the other on bus B improved throughput
by 10% compared to having both adapters on
bus A.

Running three adapters on three different buses
yields almost the same throughput as the case
where 3 NICs share the same 66 Mhz bus. The
PCI bus capacity is 532 MByte per second on
66 Mhz and 266 MByte/sec on 33 Mhz [5] But
we are not even getting 800 Mbits/sec total in
the above cases. We are far from hitting the
PCI bus capacity; therefore, we concluded that
the PCI bus is not the bottleneck.

Ottawa Linux Symposium 2002 21

Next we looked at the effects of IRQ and Pro-
cess affinity on the workload. We tested affin-
ity on 2 NICs. Since we have 8 CPUs on our
server system we chose different combinations
of CPUs to see if selecting one CPU from each
side of the Profusion chip set would make a
difference. (The 8-way is composed of two 4-
ways with independent 800 MBytes/sec front
side buses, connected by the Profusion chip to
2 memory cards providing 1600 MBytes/sec
and to the PCI buses via a 800 MByte/sec con-
nection.) We affinitize Netperf3 server pro-
cesses to a combination of CPU sets and the
Ethernet NIC’s IRQs to a combination of CPU
sets. The system is not rebooted between the
tests, so the numbers assigned to CPUs by
the operating system stayed intact between the
tests. The server process was restarted before
each test and the IRQs for the NICs were re-
set after each test. Both the NICs were placed
in Bus A (a 66 Mhz/64 bit bus) and interrupts
23 and 24 were assigned to these two NICs.
Interrupt 23 was bounded to CPU0 for all the
tests and interrupt 24 was affinitized to CPU1,
CPU2 etc. Netperf’s server process 1 is always
affinitized to CPU0 and process 2 is bound to
CPU 1, CPU 2 and so on. The results of the
IRQ and PROCESS affinity test are in Figure
8. The throughput has not improved that much
compared to the baseline. The max through-
put that we get with both affinity is around 730
Mbits/sec and our baseline is 699 Mbits/sec.

4.4 Future Work

Neither the IRQ and PROCESS affinity nor se-
lecting CPUs from different sides of the bus
improved the throughput much. These 2 and
3 adapter cases are neither CPU bound nor net-
work media limited. So we must contnue our
analysis to find the bottleneck. We also did
some preliminary investigation using Intel Per-
formance counter profiling; but, found no con-
clusive leads. We will continue this work fur-

Figure 8: Results of IRQ and Process Affinity
with 2 NICs

ther. However, we have shown that the PCI bus
is not the limiting factor, and IRQ and PRO-
CESS affinity do not help improve the through-
put and scalability. It is not acceptable that
even one adapter does not achieve close to me-
dia speed using MTU 1500 size and that adding
NICs do not scale well. Gigabit NIC scalability
will be a focus of our future investigation.

5 Concluding Remarks

In this paper we have highlighted a few poten-
tial areas for improvement in the Linux TCPIP
protocol.

• SMP Network Scalability: We presented
results showing the SMP network scala-
bility problem and provided analysis to
associate the poor scalability to inter-
processor cache line bouncing due to high
L2_cache_lines_out problem. We believe
that this SMP network scalability is one
of the areas where TCPIP stack needs
to be fixed to improve scalability. We
also showed a proto-type to improve the
data cache reference in the TCPIP stack.
Additionally we examined efficient copy

Ottawa Linux Symposium 2002 22

routines for the IA32 Linux TCPIP stack
and expressed the belief that this may
be a potential area to further investigate
to gain performance improvement in the
IA32 kernel itself and glibc routines.

• TCPIP Scalability on Gigabit: We ex-
amined the effects of using gigabit net-
work on the LINUX TCPIP stack. We
presented various test results and analy-
sis data to show that the hardware that we
used is not good enough to handle more
than 2 NICs. We also emphasized that
the implementation of the Linux TCPIP
stack itself needs modifications to handle
high bandwidth network traffic. As we
move to other types of high bandwidth
networks such as InfiniBand, we need to
keep in mind that the software network
stack should also need to scale to utilize
fully the high network bandwidth. We
conclude that both the system hardware
and the software need improvement to
take advantage of the high network band-
width.

We will be working on fixing the above men-
tioned problems. We look forward to working
with the members of the Linux community to
discuss, design, and implement solutions to im-
prove the LINUX TCPIP SMP scalability and
gigabit network scalability.

6 Acknowledgments

The authors would like to acknowledge the as-
sistance of Fadi Sibai of Intel in interpreting
the Pentium Performance counter data. We
would like to acknowledge Bill Brantley of
IBM and Patricia Goubil-Gambrell of IBM for
improving the quality of the paper. We would
also like to thank Nivedita Singhvi of IBM and
Bruce Alan of IBM for sharing their gigabit

NICs scalability test results. This helped us to
verify our results.

7 About the authors

Vaijayanthimala (Mala) K Anand works in the
IBM Linux Technology center as a member
of the Linux Performance team. Mala has
worked on the design and development of net-
work protocols, network device drivers and
thin clients. Mala is currently working on
Linux TCPIP stack performance analysis. She
can be reached at manand@us.ibm.com.

Bill Hartner is the technical lead for IBM’s
Linux Technology Center performance team.
Bill has worked in software development for
18 years. For the past 8 years, Bill has worked
in kernel development and performance. For
the past 3 years Bill has worked on Linux ker-
nel performance. Bill can be reached at bhart-
ner@us.ibm.com.

References

[1] Jeff Chase Andrew Gallatin and Ken
Yocum. Trapeze IP:TCPIP at Near
Gigabit speeds.
http://www.cs.duke.edu/ari/trapeze
/freenix/paper.html.

[2] Trevor Blackwell. Speeding up protocols
of small messages. ACM SIGCOMM
Symposium on Communications
Architectures and Protocols,Aug 1996.

[3] R. Bryant and J. Hawkes. Lockmeter:
Highly-Informative Instrumentation for
Spin Locks in the Linux Kernel. InProc.
Fourth Annual Linux Showcase and
Conference, Atlanta, Oct 2000.

[4] Intel Corp. Intel Architecture Software
Developer’s Manual Volume 3: Sysytem
Programming. http://www.intel.com.

Ottawa Linux Symposium 2002 23

[5] Adaptec corp’s White Paper. PCI, 64-Bit
and 66 MHz Benefits.
http://www.adaptec.com/worldwide
/product/markeditorial.html.

[6] Jim Jurose Erich Nahum, David Yates
and Don Towsleyr. Cache Behavior of
Network Protocols, June 1997.
http://cs-www.bu.edu/faculty/djy.

[7] John Hawkes et. al (Silicon
Graphics Inc.). Kernprof. Available at
http://oss.sgi.com/projects/kernprof
/index.html.

[8] Ingo Molnar. 0(1) scheduler patch.
http://www.kernel.org/pub/linux/kernel/
people/mingo.

[9] University of Berkeley. Fast Memory
Copy. http://now.cs.berkeley.edu/
Td/bcopy.html.

[10] Hewlett Packard Inc. Rick Jones.
Network Benchmarking Netperf.
http://www.netperf.org.

Ottawa Linux Symposium 2002 24

8 Appendix

8.1 COPY Patch

This patch changes the copy routines used in tcpip stack.

diff -Naur linux-417/arch/i386/lib/usercopy.c \
linux-417a/arch/i386/lib/usercopy.c

--- linux-417/arch/i386/lib/usercopy.c Tue Jan 22 21:29:05 2002
+++ linux-417a/arch/i386/lib/usercopy.c Fri Jan 18 12:50:38 2002
@@ -44,7 +44,6 @@

unsigned long
__generic_copy_to_user(void *to, const void *from, unsigned long n)
{

- prefetch(from);
if (access_ok(VERIFY_WRITE, to, n))

__copy_user(to,from,n);
return n;

diff -Naur linux-417/include/asm-i386/string.h \
linux-417a/include/asm-i386/string.h

--- linux-417/include/asm-i386/string.h Tue Jan 22 21:29:48 2002
+++ linux-417a/include/asm-i386/string.h Wed Jan 23 00:11:29 2002
@@ -196,21 +196,65 @@

return __res;
}

-static inline void * __memcpy(void * to, const void * from, size_t n)
+static inline void * __memcpy(void * to, const void * from, size_t size)

{
-int d0, d1, d2;
+ int __d0, __d1;

__asm__ __volatile__(
- "rep ; movsl\n\t"
- "testb $2,%b4\n\t"
- "je 1f\n\t"
- "movsw\n"
- "1:\ttestb $1,%b4\n\t"
- "je 2f\n\t"
- "movsb\n"
- "2:"
- : "=&c" (d0), "=&D" (d1), "=&S" (d2)
- :"0" (n/4), "q" (n),"1" ((long) to),"2" ((long) from)
- : "memory");
+ " cmpl $63, %0\n\t"
+ " jbe 2f\n\t"
+ " .align 2, 0x90\n\t"
+ "0: movl 32(%5), %%eax\n\t"
+ " cmpl $67, %0\n\t"
+ " jbe 1f\n\t"
+ " movl 64(%5), %%eax\n\t"
+ " .align 2, 0x90\n\t"
+ "1: movl 0(%5), %%eax\n\t"

Ottawa Linux Symposium 2002 25

+ " movl 4(%5), %%edx\n\t"
+ " movl %%eax, 0(%4)\n\t"
+ " movl %%edx, 4(%4)\n\t"
+ " movl 8(%5), %%eax\n\t"
+ " movl 12(%5),%%edx\n\t"
+ " movl %%eax, 8(%4)\n\t"
+ " movl %%edx, 12(%4)\n\t"
+ " movl 16(%5), %%eax\n\t"
+ " movl 20(%5), %%edx\n\t"
+ " movl %%eax, 16(%4)\n\t"
+ " movl %%edx, 20(%4)\n\t"
+ " movl 24(%5), %%eax\n\t"
+ " movl 28(%5), %%edx\n\t"
+ " movl %%eax, 24(%4)\n\t"
+ " movl %%edx, 28(%4)\n\t"
+ " movl 32(%5), %%eax\n\t"
+ " movl 36(%5), %%edx\n\t"
+ " movl %%eax, 32(%4)\n\t"
+ " movl %%edx, 36(%4)\n\t"
+ " movl 40(%5), %%eax\n\t"
+ " movl 44(%5), %%edx\n\t"
+ " movl %%eax, 40(%4)\n\t"
+ " movl %%edx, 44(%4)\n\t"
+ " movl 48(%5), %%eax\n\t"
+ " movl 52(%5), %%edx\n\t"
+ " movl %%eax, 48(%4)\n\t"
+ " movl %%edx, 52(%4)\n\t"
+ " movl 56(%5), %%eax\n\t"
+ " movl 60(%5), %%edx\n\t"
+ " movl %%eax, 56(%4)\n\t"
+ " movl %%edx, 60(%4)\n\t"
+ " addl $-64, %0\n\t"
+ " addl $64, %5\n\t"
+ " addl $64, %4\n\t"
+ " cmpl $63, %0\n\t"
+ " ja 0b\n\t"
+ "2: movl %0, %%eax\n\t"
+ " shrl $2, %0\n\t"
+ " andl $3, %%eax\n\t"
+ " cld\n\t"
+ " rep; movsl\n\t"
+ " movl %%eax, %0\n\t"
+ " rep; movsb\n\t"
+ : "=&c"(size), "=&D" (__d0), "=&S" (__d1)
+ : "0"(size), "1"(to), "2"(from)
+ : "eax", "edx","memory");

return (to);
}

diff -Naur linux-417/include/asm-i386/uaccess.h \
linux-417a/include/asm-i386/uaccess.h

--- linux-417/include/asm-i386/uaccess.h Tue Jan 22 21:29:43 2002
+++ linux-417a/include/asm-i386/uaccess.h Tue Jan 22 21:58:11 2002
@@ -256,50 +256,186 @@

Ottawa Linux Symposium 2002 26

do { \
int __d0, __d1; \
__asm__ __volatile__(\

- "0: rep; movsl\n" \
- " movl %3,%0\n" \
- "1: rep; movsb\n" \
- "2:\n" \
- ".section .fixup,\"ax\"\n" \
- "3: lea 0(%3,%0,4),%0\n" \
- " jmp 2b\n" \
- ".previous\n" \
- ".section __ex_table,\"a\"\n" \
- " .align 4\n" \
- " .long 0b,3b\n" \
- " .long 1b,2b\n" \
- ".previous" \
- : "=&c"(size), "=&D" (__d0), "=&S" (__d1) \
- : "r"(size & 3), "0"(size / 4), "1"(to), "2"(from) \
- : "memory"); \
+ " cmpl $63, %0\n" \
+ " jbe 5f\n" \
+ " .align 2,0x90\n" \
+ "0: movl 32(%4), %%eax\n" \
+ " cmpl $67, %0\n" \
+ " jbe 1f\n" \
+ " movl 64(%4), %%eax\n" \
+ " .align 2,0x90\n" \
+ "1: movl 0(%4), %%eax\n" \
+ " movl 4(%4), %%edx\n" \
+ "2: movl %%eax, 0(%3)\n" \
+ "21: movl %%edx, 4(%3)\n" \
+ " movl 8(%4), %%eax\n" \
+ " movl 12(%4),%%edx\n" \
+ "3: movl %%eax, 8(%3)\n" \
+ "31: movl %%edx, 12(%3)\n" \
+ " movl 16(%4), %%eax\n" \
+ " movl 20(%4), %%edx\n" \
+ "4: movl %%eax, 16(%3)\n" \
+ "41: movl %%edx, 20(%3)\n" \
+ " movl 24(%4), %%eax\n" \
+ " movl 28(%4), %%edx\n" \
+ "10: movl %%eax, 24(%3)\n" \
+ "51: movl %%edx, 28(%3)\n" \
+ " movl 32(%4), %%eax\n" \
+ " movl 36(%4), %%edx\n" \
+ "11: movl %%eax, 32(%3)\n" \
+ "61: movl %%edx, 36(%3)\n" \
+ " movl 40(%4), %%eax\n" \
+ " movl 44(%4), %%edx\n" \
+ "12: movl %%eax, 40(%3)\n" \
+ "71: movl %%edx, 44(%3)\n" \
+ " movl 48(%4), %%eax\n" \
+ " movl 52(%4), %%edx\n" \
+ "13: movl %%eax, 48(%3)\n" \

Ottawa Linux Symposium 2002 27

+ "81: movl %%edx, 52(%3)\n" \
+ " movl 56(%4), %%eax\n" \
+ " movl 60(%4), %%edx\n" \
+ "14: movl %%eax, 56(%3)\n" \
+ "91: movl %%edx, 60(%3)\n" \
+ " addl $-64, %0\n" \
+ " addl $64, %4\n" \
+ " addl $64, %3\n" \
+ " cmpl $63, %0\n" \
+ " ja 0b\n" \
+ "5: movl %0, %%eax\n" \
+ " shrl $2, %0\n" \
+ " andl $3, %%eax\n" \
+ " cld\n" \
+ "6: rep; movsl\n" \
+ " movl %%eax, %0\n" \
+ "7: rep; movsb\n" \
+ "8:\n" \
+ ".section .fixup,\"ax\"\n" \
+ "9: lea 0(%%eax,%0,4),%0\n" \
+ " jmp 8b\n" \
+ "15: movl %6, %0\n" \
+ " jmp 8b\n" \
+ ".previous\n" \
+ ".section __ex_table,\"a\"\n" \
+ " .align 4\n" \
+ " .long 2b,15b\n" \
+ " .long 21b,15b\n" \
+ " .long 3b,15b\n" \
+ " .long 31b,15b\n" \
+ " .long 4b,15b\n" \
+ " .long 41b,15b\n" \
+ " .long 10b,15b\n" \
+ " .long 51b,15b\n" \
+ " .long 11b,15b\n" \
+ " .long 61b,15b\n" \
+ " .long 12b,15b\n" \
+ " .long 71b,15b\n" \
+ " .long 13b,15b\n" \
+ " .long 81b,15b\n" \
+ " .long 14b,15b\n" \
+ " .long 91b,15b\n" \
+ " .long 6b,9b\n" \
+ " .long 7b,8b\n" \
+ ".previous" \
+ : "=&c"(size), "=&D" (__d0), "=&S" (__d1) \
+ : "1"(to), "2"(from), "0"(size),"i"(-EFAULT) \
+ : "eax", "edx", "memory"); \

} while (0)

#define __copy_user_zeroing(to,from,size) \
do { \

int __d0, __d1; \
__asm__ __volatile__(\

Ottawa Linux Symposium 2002 28

- "0: rep; movsl\n" \
- " movl %3,%0\n" \
- "1: rep; movsb\n" \
- "2:\n" \
- ".section .fixup,\"ax\"\n" \
- "3: lea 0(%3,%0,4),%0\n" \
- "4: pushl %0\n" \
- " pushl %%eax\n" \
- " xorl %%eax,%%eax\n" \
- " rep; stosb\n" \
- " popl %%eax\n" \
- " popl %0\n" \
- " jmp 2b\n" \
- ".previous\n" \
- ".section __ex_table,\"a\"\n" \
- " .align 4\n" \
- " .long 0b,3b\n" \
- " .long 1b,4b\n" \
- ".previous" \
- : "=&c"(size), "=&D" (__d0), "=&S" (__d1) \
- : "r"(size & 3), "0"(size / 4), "1"(to), "2"(from) \
- : "memory"); \
+ " cmpl $63, %0\n" \
+ " jbe 5f\n" \
+ " .align 2,0x90\n" \
+ "0: movl 32(%4), %%eax\n" \
+ " cmpl $67, %0\n" \
+ " jbe 2f\n" \
+ "1: movl 64(%4), %%eax\n" \
+ " .align 2,0x90\n" \
+ "2: movl 0(%4), %%eax\n" \
+ "21: movl 4(%4), %%edx\n" \
+ " movl %%eax, 0(%3)\n" \
+ " movl %%edx, 4(%3)\n" \
+ "3: movl 8(%4), %%eax\n" \
+ "31: movl 12(%4),%%edx\n" \
+ " movl %%eax, 8(%3)\n" \
+ " movl %%edx, 12(%3)\n" \
+ "4: movl 16(%4), %%eax\n" \
+ "41: movl 20(%4), %%edx\n" \
+ " movl %%eax, 16(%3)\n" \
+ " movl %%edx, 20(%3)\n" \
+ "10: movl 24(%4), %%eax\n" \
+ "51: movl 28(%4), %%edx\n" \
+ " movl %%eax, 24(%3)\n" \
+ " movl %%edx, 28(%3)\n" \
+ "11: movl 32(%4), %%eax\n" \
+ "61: movl 36(%4), %%edx\n" \
+ " movl %%eax, 32(%3)\n" \
+ " movl %%edx, 36(%3)\n" \
+ "12: movl 40(%4), %%eax\n" \
+ "71: movl 44(%4), %%edx\n" \
+ " movl %%eax, 40(%3)\n" \
+ " movl %%edx, 44(%3)\n" \

Ottawa Linux Symposium 2002 29

+ "13: movl 48(%4), %%eax\n" \
+ "81: movl 52(%4), %%edx\n" \
+ " movl %%eax, 48(%3)\n" \
+ " movl %%edx, 52(%3)\n" \
+ "14: movl 56(%4), %%eax\n" \
+ "91: movl 60(%4), %%edx\n" \
+ " movl %%eax, 56(%3)\n" \
+ " movl %%edx, 60(%3)\n" \
+ " addl $-64, %0\n" \
+ " addl $64, %4\n" \
+ " addl $64, %3\n" \
+ " cmpl $63, %0\n" \
+ " ja 0b\n" \
+ "5: movl %0, %%eax\n" \
+ " shrl $2, %0\n" \
+ " andl $3, %%eax\n" \
+ " cld\n" \
+ "6: rep; movsl\n" \
+ " movl %%eax,%0\n" \
+ "7: rep; movsb\n" \
+ "8:\n" \
+ ".section .fixup,\"ax\"\n" \
+ "9: lea 0(%%eax,%0,4),%0\n" \
+ "16: pushl %0\n" \
+ " pushl %%eax\n" \
+ " xorl %%eax,%%eax\n" \
+ " rep; stosb\n" \
+ " popl %%eax\n" \
+ " popl %0\n" \
+ " jmp 8b\n" \
+ "15: movl %6, %0\n" \
+ " jmp 8b\n" \
+ ".previous\n" \
+ ".section __ex_table,\"a\"\n" \
+ " .align 4\n" \
+ " .long 0b,16b\n" \
+ " .long 1b,16b\n" \
+ " .long 2b,16b\n" \
+ " .long 21b,16b\n" \
+ " .long 3b,16b\n" \
+ " .long 31b,16b\n" \
+ " .long 4b,16b\n" \
+ " .long 41b,16b\n" \
+ " .long 10b,16b\n" \
+ " .long 51b,16b\n" \
+ " .long 11b,16b\n" \
+ " .long 61b,16b\n" \
+ " .long 12b,16b\n" \
+ " .long 71b,16b\n" \
+ " .long 13b,16b\n" \
+ " .long 81b,16b\n" \
+ " .long 14b,16b\n" \
+ " .long 91b,16b\n" \
+ " .long 6b,9b\n" \

Ottawa Linux Symposium 2002 30

+ " .long 7b,16b\n" \
+ ".previous" \
+ : "=&c"(size), "=&D" (__d0), "=&S" (__d1) \
+ : "1"(to), "2"(from), "0"(size),"i"(-EFAULT) \
+ : "eax", "edx", "memory"); \

} while (0)

/* We let the __ versions of copy_from/to_user inline, because they’re often
@@ -577,24 +713,16 @@

}

#define copy_to_user(to,from,n) \
- (__builtin_constant_p(n) ? \
- __constant_copy_to_user((to),(from),(n)) : \
- __generic_copy_to_user((to),(from),(n)))
+ __generic_copy_to_user((to),(from),(n))

#define copy_from_user(to,from,n) \
- (__builtin_constant_p(n) ? \
- __constant_copy_from_user((to),(from),(n)) : \
- __generic_copy_from_user((to),(from),(n)))
+ __generic_copy_from_user((to),(from),(n))

#define __copy_to_user(to,from,n) \
- (__builtin_constant_p(n) ? \
- __constant_copy_to_user_nocheck((to),(from),(n)) : \
- __generic_copy_to_user_nocheck((to),(from),(n)))
+ __generic_copy_to_user_nocheck((to),(from),(n))

#define __copy_from_user(to,from,n) \
- (__builtin_constant_p(n) ? \
- __constant_copy_from_user_nocheck((to),(from),(n)) : \
- __generic_copy_from_user_nocheck((to),(from),(n)))
+ __generic_copy_from_user_nocheck((to),(from),(n))

long strncpy_from_user(char *dst, const char *src, long count);
long __strncpy_from_user(char *dst, const char *src, long count);

Mobile Cluster Computing Using IPv6

Abdul Basit
Chin-Chih Chang

Wichita State University
Dept. of Computer Science

Wichita, KS 67260-0083, USA

{axbasit, chang}@cs.twsu.edu http://wireless.cs.twsu.edu

Abstract

Clusters play a major role in scientific comput-
ing. They eliminate the need of supercomput-
ers. Communication protocols for cluster com-
puting define efficiency and performance mea-
sures for overall system design.

Using IPv6 as a protocol for cluster computing
gives benefits such as

• Network load balancing can make use of
IPv6 Congestion/Non-Congestion traffic
mechanisms (e.g. for handling real-time
data requests on clusters).

• Geographically distributed cluster system
can make use of embedded IPv6 route op-
timizations.

• IP Anycast service has the ability to
choose the topologically closest server
available for handling the request. So it
can be used to effectively load balance the
network traffic.

• IPv6 Authentication Headers (AH) can be
used to define what workstations are al-
lowed to join the cluster.

Moreover, Mobile IPv6 [5] allows transpar-
ent geographic mobility without affecting the

present connections. This behaviour may be
useful in building a clustered environment con-
sisting of mobile agents in which a mobile de-
vice (cellphones, PDA’s, etc.) submits a com-
putation request to be performed on some local
cluster accessible by the Internet. The uses for
mobile cluster computing (MCC) can be deter-
mining a person’s geographical location, mo-
bile business operations (shopping via a cell-
phone), handling a distributed robot by some
mobile device, observing weather information
by means of mobile nodes and sending the data
to the cluster for future weather prediction (like
predicting tornadoes), etc. Issues like timeli-
ness could be better solved by using Mobile
IPv6.

This paper covers IPv6, its extension header
mechanism, QoS, security, existing network
transition, use of IPv6 for cluster computing
and mobile cluster computing using IPv6 and
its possible *nix1 implementations.

1 Introduction

High performance distributed computing is al-
ways an interesting topic for researchers. Dur-
ing the past decade personal computers have
become increasingly powerful, and the com-
munication bandwidth between them is in-

1The next generation UNIX

Ottawa Linux Symposium 2002 32

creasing day by day so researchers made a col-
lection of interconnected computers working
together as a single system formerly known as
‘cluster.’ A cluster provides similar (or some-
times better) performance and fault tolerance
as the traditional mainframes or supercomput-
ers.

The Internet is growing rapidly since almost 7
years, its continuous growth introduced many
problems like IP address space shortage, IP
mobility etc. A new protocol named ‘IPng
– IP next generation’ was introduced in 1994
to solve problems in the existing Internet in-
frastructure. IPng is termed as ‘IPv6 – IP
version 6’ in 1998 [3], IPv6 is expected to
replace current IPv4 protocol in year 2005.
IPv6 offers many new features like exten-
sion header mechanism, IP mobility, IP Any-
cast, IP route optimization, etc. It pro-
vides a very large IP address space up to
340,282,366,920,938,463,374,607,431,770,000,000IP
addresses [4].

Many research-oriented IPv6 backbones like
6BONE, 6TAP, and 6REN are fully opera-
tional. IPv6 protocol is designed in such a
way that existing networks running IPv4 can
natively migrate to IPv6 or they can use IPv6
without fully migrating to it. IPv6 simplifies
the header format resulting in less bandwidth
usage. IPv6 has embedded support for mo-
bility, priority-based data handling (e.g. video
streaming), and security.

According to our definition, mobile cluster
computing (MCC) refers to a new paradigm,
in which mobile clusters or traditional clusters
work together with a set of mobile nodes to
carry out a specific task. Mobile cluster com-
puting refers to an environment that offers flex-
ibility in terms of mobility and extendibility,
cluster security and a robust mobile network
for handling geographically independent high
performance computing requests.

IPv6 enabled Internet

Wireless Network
consists of mobile
 devices.

 High speed ethernet or fibre link

Local cluster server farm

Figure 1: Mobile cluster network

IETF standardized mobile IP to handle Inter-
net mobility. However, there exist two stan-
dards for mobile IP, they are referred as ‘Mo-
bile IPv4’ and ‘Mobile IPv6.’ The Mobile
IPv6 protocol offers many benefits over Mobile
IPv4 protocol like providing ‘Dynamic home
agent discovery’ mechanism, IP Anycast ser-
vice, route optimization, etc [7, 6]. In this pa-
per, we use Mobile IPv6 as a working protocol
in our definition of ‘mobile cluster computing.’

A mobile network typically consists of desk-
top PC’s, wireless devices (such as cellphones,
etc.), PDA’s, server farms, cluster applications,
etc. as shown in Figure 1.

1.1 Mobile and local clusters

A mobile clusterrefers to a set of intercon-
nected mobile nodes by means of wireless net-
work while a local cluster refers to a set of
interconnected workstations by means of high
speed Ethernet or fibre link. Any cluster node
is allowed to migrate from a mobile cluster to a
local cluster or from a local cluster to a mobile
cluster if this migration is allowed by aS-node

Ottawa Linux Symposium 2002 33

or Switching node. A S-node is any node in
a cluster that handles the operation of cluster
transition.

Multiple S-nodes can exist either in local or
mobile clusters. S-nodes maintain a security
map. This security map defines how many
nodes are allowed to join a particular cluster
at some time. The security map can either be
static or dynamic. Static security map is de-
fined initially by the local cluster administrator
or by the default policy. The nodes in the secu-
rity map will grow dynamically if some node
can be authenticated by a S-node properly. A
S-node performs the network level authentica-
tion. A S-node can make use of the AH header
of IPv6 packet for authenticating cluster nodes.
S-nodes exchange their security map periodi-
cally. An IP Authentication Header is shown
in Figure 2.

1.2 S-Node cluster authentication mechanism

The IP Security(IPSec) is designed to provide
high quality cryptography-based security for
IPv4 and IPv6. The IPv6 protocol has IPSec
embedded in it and provides a separate fea-
ture different from IPv4. The objectives for
using IPSec are to provide integrity, repudia-
tion, confidentiality, encryption, etc. for IP and
upper-level layers. Use of IPSec will minimize
the need of security for different applications,
such as ssh. IPSec provides two traffic security
protocols: AH and Encryption Security Pay-
load (ESP). IPSec provides security services at
the IP layer. It can select required security pro-
tocols, determine the algorithms used for the
service, and choose cryptographic keys.

A S-node will act as a ‘security gateway’ for
some particular cluster. A security gateway
refers to an intermediate system that imple-
ments IPSec. S-node can use AH to provide
authentication of the sender of data.

 +−+
 | Next Header | Payload Len | RESERVED |
 +−+
 | Security Parameters Index (SPI) |
 +−+
 | Sequence Number Field |
 +−+
 | |
 + Authentication Data (variable) |

 +−+

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 0 1 2 3

Figure 2: IP Authentication Header

For example, a node,A, wants to join a clus-
ter, C1. Both the nodeA and the S-node for
C1 speak IPv6. Whenever the nodeA wants
to be authenticated byC1, it creates an IP
extension header along with IPv6 packet and
sends to the S-node. Upon receiving the packet
that contains an IP AH header, the S-node de-
termines the appropriate Security Association
(SA) based on the destination IP address, secu-
rity protocol in AH and the Security Parame-
ters Index (SPI). A Security Association is a se-
curity object shared between two nodes, which
contains the data mutually agreed upon for op-
eration on the designated cryptographic algo-
rithm (typically including a key).

The S-node will fetch the source IP address and
match it in the specified security map. If this IP
matches, the S-node will check authentication
data, perform security checking and appropri-
ately grant or deny a ticket to a cluster node
according to the designated algorithm. Once
the node gets a ticket, it can join that particu-
lar cluster. Each ticket has its own pre-defined
lifetime.

2 S-node selection algorithm

The question arises that how to select an appro-
priate S-node when a cluster fires up and stars
working. To solve this problem, we propose
the following election mechanism.

Ottawa Linux Symposium 2002 34

1. The local cluster administrator specify a
password/key in the security map if the
default security policy is not employed.

2. Whenever a cluster is made operational,
every node in this cluster computes a ran-
dom number using the password in the
security map and multicasts this random
number to all nodes in this cluster.

3. Every node will receive the multicast from
other nodes within2n time wheren is a
random time to wait.

4. Every node compares each random num-
ber it receive with the local random num-
ber. If no random number from other
nodes is larger than the local one, then this
node will multicast a packet telling other
nodes that it is selected as the S-node for
a designated cluster.

5. The elected S-node can further delegate
access control handling functions to other
nodes. The receiving nodes will be syn-
chronized with the security map of the pri-
mary S-node. IP AH headers should be
used to detect spoofed packets.

3 Dynamic clustering based on
type of network traffic

Dynamic clusteringrefers to the fact that a
cluster can distinguish between different types
of network traffic. This behaviour is useful in
performing network-based load balancing for
different types of network data, such as per-
forming network level load balancing based on
traffic class.

3.1 Types of traffic

Traffic class is specified in the IPv6 header
to identify and distinguish between different
classes or priorities of IPv6 packets. In the

original specification IPv6 splits traffic into
two categories [2]:

1. Congestion controlled trafficmay be ar-
bitrarily delayed under conditions of con-
gestion.

2. Non-congestion controlled trafficwould
be discarded under conditions of conges-
tion

In our design we keep the notation defined in
the original specification until the new speci-
fication has been finalized. In that document
congestion controlled traffic can be further cat-
egorized as shown in the following table where
larger priority value indicates higher priority:

Pri. Description Example
0 Uncharacterised traffic Custom use
1 Filler traffic netnews
2 Unattended data traffic email
3 Reserved
4 Attended data traffic FTP, NFS
5 Reserved
6 Interactive traffic telnet, X
7 Internet control traffic routing, ICMP

Table 1: Congestion-controlled Traffic

Non-congestion controlled traffic is the type of
traffic for which constant data rate and con-
stant delay is required such as real-time audio
and video transmission. The priority values 8
through 15 are used to specify this type of traf-
fic.

3.2 Using flow labels to perform priority level
traffic handling

Priority level traffic handling in IPv6 is based
on flow label mechanism where flow refers
to a sequence of packets transmitted by some

Ottawa Linux Symposium 2002 35

 L−node L−node L−node

 L−node L−node

 L−node

Figure 3: Hierarchal view of load balancing
nodes

transmission protocol from source to destina-
tion with some QoS requirements. It can en-
able a cluster to either handle different data on
different clusters or be optimized for a specific
type of data such as video streaming [8, 1]. Us-
ing flow labels, we can route different network
traffic through a different route. Previously in
IPv4, TOS (Type of service) field offers little
control over network traffic.

IPv6 specifications state that every IPv6 header
contains a 24-bit flow label field and a 4-bit
traffic class field. A flow label is basically a
unique identifier between 1 and FFFFFF when
it is combined with the source IP address. Flow
label 0 indicates that no flow label exists and
this packet doesn’t need any special treatment.
Real-time network flow always has some flow
label.

A router associates a flow with some state. If
the router doesn’t contain any state associated
with flow, it may either drop the packet or for-
ward it setting flow label to zero (0). All pack-
ets pertaining to the same flow must be origi-
nated from same source address, same destina-
tion address and same flow label.

A L-noderefers to aload balance nodeor load
balancerfor a particular cluster. L-node will

be responsible for flow control handling. There
can be one or more L-nodes for a particular
cluster. L-nodes can form a hierarchy to bal-
ance load from a set of cluster nodes as shown
in Figure 3.

3.3 Communication mechanism between L-
nodes

Every L-node upon receipt of some packet
will forward the packet (workload) to its cor-
responding L-node or balance the traffic load
if it is connected to some network (that is pres-
ence of a single L-node for balancing). L-node
will balance the traffic either among different
L-nodes or among different cluster-nodes ac-
cording to following schemes:

• FCFS (First-Come First-Served) – The re-
quest that comes first is allocated to L-
node first.

• RR (Round Robbin) – Each request gets a
quantum time to run.

• Priority based – Service is based on their
priority. The one with higher priority gets
served first.

• IP Anycast – The L-node uses IP Any-
cast IPv6 service to distribute network re-
quests to any nearby available node or
cluster.

Possible failures can be minimized by suggest-
ing that the network requests don’t need to
come through the top-level L-node, the net-
work request can hit any L-node in L-node hi-
erarchy and the request will be processed fur-
ther down in hierarchy. So in the case if top
level L-node fails, this will not cause the whole
network to be down. In other case, if a child of
a L-node fails, the request coming through par-
ent L-node will be timed out. This won’t af-
fect a computing too much. The request can be

Ottawa Linux Symposium 2002 36

queued when the parent detects a failure node.
When the parent detect a timeout, the parent ei-
ther carry that computation or forward to other
L-nodes.

4 Benefits of IPv6 for roaming clus-
ter nodes

A roaming cluster nodeusually refers to a mo-
bile device participating in a cluster. A local
node can become a mobile node at any time,
but that should not affect local network con-
nections. The transition of a local node to a
mobile node should be transparent for cluster
operations. They should keep processing with-
out any interruption. One of the facts is that in
IPv4 we don’t have much global IP addresses
left to assign to each mobile node. However,
this problem is solved in IPv6 because we can
uniquely identify the mobile device with at
least one global IP from a very great IP address
space provided by IPv6. Moreover, if we tran-
sit a local node to a mobile node in IPv4, that
will definitely cause a service interruption be-
cause possible IP address change occurs when
moving from one network subnet to another in
IPv4. On the contrary, in IPv6, Mobile IP of-
fers a way so that this node transition won’t in-
terrupt the cluster operation. Figure 4 shows
basic communication between a mobile node
and a cluster.

4.1 Mobile cluster

A mobile cluster is introduced as a set of mo-
bile nodes that participate in a cluster comput-
ing. A mobile node can migrate to a local clus-
ter and a local node can become mobile at any
time.

We have to consider if we purely use mo-
bile clusters. For example, one PDA sends
request to another PDA for performing some
task. How can IPv6 be useful in this scenario?

Our primitive observation is that due to sim-
plified header mechanism in IPv6 (simplified
headers mean that some fields in header are
made optional or eliminated) it gives perfor-
mance increase over IPv4. Since wireless me-
dia has a low bandwidth, this saves bandwidth.
So IPv6 is more feasible than IPv4 for mobile
only clustering.

4.2 Local to mobile cluster node migration
mechanism

• A local node detects that it has moved by
discovering a new default router.

• A local node becomes mobile node now,
it performs a stateless or stateful address
auto-configuration mechanism to obtain a
new COA (Care of Address) for the new
location. All packets destined to this COA
will redirect to the mobile node through
the current link. If the current link also
serves some other cluster, then this node
can decide to participate in both clusters
(old and newly joined cluster).

• The mobile node then performs a bind-
ing update with the home agent of the old
cluster.

• The home agent of the old cluster regis-
ters this binding and then sends back the
binding acknowledgement.

• The home agent of the old cluster will
now intercept the packets for migration
by using ‘proxy neighborhood discovery’
protocol. Proxy neighborhood discov-
ery means that the home agent multi-
casts a neighborhood advertisement onto
the home link (cluster link) on behalf of
the mobile node. The home agent itself
also replies to neighbor solicitation on be-
half of the mobile node. Each intercepted
packet is then tunneled to the new COA
address of the migrated node using IPv6
encapsulation.

Ottawa Linux Symposium 2002 37

• This triangular routing can be avoided by
means of ‘route optimization’ in which a
mobile/migrated node can send binding
update to any correspondent node. So the
correspondent node can later send packet
directly to the new COA of migrated node
instead to the cluster home agent. But in
this way the cluster/newly migrated node
can not participate in two clusters at one
time. If the mobile node sends packet to
any other node, it sends packet directly
to its destination (not to home agent), it
sets the source address of this packet to
the COA, it also includes ‘home address’
destination option.

4.3 Stateless vs. stateful address auto-
configuration for mobile nodes

In stateless address auto-configuration, no cen-
tral server is configured for a host to obtain its
interface address (COA in our case) and or con-
figuration information such as DNS servers,
gateways, etc. The stateless mechanism al-
lows a host to generate its own address using
a combination of locally available information
advertised by routers. Routers advertise pre-
fixes (like /64) that identify the subnet(s) as-
sociated with this link, whereas the host gen-
erates an identifier that uniquely identifies the
host on some subnet (usually it uses MAC 48-
bit address for first 48-bits). The final address
is computed by combining the two. In the ab-
sence of router advertisements, the host will
only generate link local address. With only
link-local address2, the host can only commu-
nicates with other hosts on the same link.

In stateful address auto-configuration, a host

2A link-local address refers to a non-routable address
that is unique and valid only on the local network. The
link-local address has a prefix of fe80::/64 and it is used
for contacting hosts and routers on the same network
only. The addresses are not visible or reachable from
different subnets.

INTERNET

HIGH PERFORMANCE CLUSTER

submits data to get result

gives back computed
result to mobile device.

Figure 4: Basic communication between a mo-
bile node and a cluster

obtains interface address and or configura-
tion parameters by contacting a central server
(e.g. DHCPv6 server). The server maintains a
database that keeps track of assigned COA (IP
address).

4.4 Availability of a computing node

Wireless communication is thought to be an
unreliable one because of occasional omission
and arbitrary failures caused by the intrinsic
property of non-uniform wireless signal. IPv6
could alleviate this situation. For example, if
a computing node is beyond the range of the
cluster, this node is thought to leave the clus-
ter in IPv4. But in IPv6 the node outside of
the range of the cluster can be detected if it is
adopted by the remote network via Mobile IP.
This could guarantee the computing capability.

We can use the following scheme to seamlessly
achieve a cluster computing task in respect to
leaving and joining nodes:

Ottawa Linux Symposium 2002 38

1. If a node leaves the current cluster, the
task assigned to it will be queued in the
requesting agent.

2. The requesting agent continue to carry out
its computation in the cluster and wait
for some pre-defined time for the leaving
node to join the cluster through the For-
eign Agent (FA).

3. If the leaving node is detected within the
pre-defined time, the queued task will be
carried out by the rejoining node. Oth-
erwise, the task will be carried by other
available nodes.

This scheme won’t be so feasible in IPv4.

4.5 Timeliness Issues

In the previous section we discuss availabil-
ity of mobile nodes. The situation will be-
come complex when time constraint is im-
posed. Timeliness issues happen when mobile
nodes within a computing cluster migrate from
one subnet to another subnet in a wireless net-
work and when time constraint is imposed [9].
To meet the QoS requirement timeliness issue
needs to be considered.

In [9] it is proposed that the route optimiza-
tion is delayed to a certain period and the mes-
sage from the home network to a new foreign
network is tunneled. Several approaches also
presented in that paper. In IPv4, this problem
is difficult to solve. In IPv6, we can combine
their approaches and the scheme we propose
for availability of a node to alleviate timeliness
issue.

4.6 Mobile process migration

A mobile processrefers to a process running in
either a local or mobile node in some cluster.
A mobile process differs from a local process

in a way that it can either fully or partially mi-
grate from a node to another or from a node to
multiple nodes.

• Full process migrationrefers to the fact
that a process running on some node de-
taches itself from that node and injects it-
self in some other node.

• Partial process migrationrefers to the fact
that a part of process migrates itself to
some other node.

• Partial and full process migration can be
bi-directional. That is from a mobile node
to a local node or vice versa.

• In the case of full process migration, some
level of transparency should be addressed
so that the local process should not pos-
sess dangling references to the mobile
process. The full migration of a mobile
process may cause possible memory leaks
because the process is not running inside
the same machine. Hence, possible mem-
ory references should be updated. One of
the proposed solution is to employ aMM-
node(Memory-manager node). The pur-
pose of this MM-node is to provide aV-
map(virtual map) to map physical mem-
ory to distributed memory. Each mobile
process takes references to some memory
location provided by means of V-map.

• In the case of partial process migration,
only a part of process or a thread of a pro-
cess migrates. The parent process main-
tains the state for each migrated thread.
If a migrated thread further spawns some
thread, then this thread can not be mi-
grated.

• Several threads of a mobile process can
migrate to different nodes.

• One mobile process can only fully migrate
to a node at a time.

Ottawa Linux Symposium 2002 39

• P-node(Processing node) refers to a node
whose sole purpose is to handle incom-
ing and outgoing processes for a particular
cluster. A mobile process submits itself to
P-node, and P-node will migrate this pro-
cess to some other local or mobile cluster.
Depending on system usage, P-node can
either queue, suspend, or stop migration.
P-node will migrate the mobile process to
P-node of another cluster that will further
migrate that process to any node or multi-
ple nodes of its cluster.

• Using IPv6 protocol can protect some
node in cluster to pretend as P-node.

• P-node or MM-node in simple words is
like a router, that will multicast its ad-
dress by means of IPv6 packets along with
AH extension security headers to prevent
spoofed packets.

5 Conclusion

We have discussed some basic issues of mo-
bile cluster computing. We specify some basic
concepts which are required in solving these
problems. We further propose several solutions
based on IPv6. S-nodes are designed to use AH
and search the security map to authenticate a
node to join a cluster. The flow label mecha-
nism is used to handle priority level traffic. L-
node is intended to balance the workload. Then
we present how we could benefit from using
IPv6. We build a top-down view from the clus-
ter, to the node, and eventually to the process
level. Timeliness issues are also discussed.

In this paper we identify problems and outline
some design idea. Our future work is to refine
our design and put it into implementation.

References

[1] Rahul Banerjee and Sumeshwar Paul
Malhotra. A Modified Specification for
Use of IPv6 Flow Label for Providing
Efficient Quality of Service using Hybrid
Approach.IETF Internet Draft, February
2002.

[2] S. E. Deering and R. Hinden. Internet
Protocol, Version 6 (IPv6) Specification.
RFC 1883, December 1995.

[3] S. E. Deering and R. Hinden. Internet
Protocol, Version 6 (IPv6) Specification.
RFC 2460, December 1998.

[4] R. Hinden and S. E. Deering. IP Version 6
Addressing Architecture.RFC 2373, July
1998.

[5] David B. Johnson and Charles Perkins.
Mobility Support in IPv6.IETF Internet
Draft, March 2002.

[6] Charles Perkins and David B. Johnson.
Route Optimization in Mobile IP.Cluster
Computing, 1(2):161–176, 1998.

[7] Charles Perkins and David B. Johnson.
Route Optimization in Mobile IP.IETF
Internet Draft, September 2001.

[8] J. Rajahalme, A. Conta, B. Carpenter, and
S. Deering. IPv6 Flow Label
Specification.IETF Internet Draft, March
2002.

[9] Haihong Zheng, Rajkumar Buyya, and
Sourav Bhattacharya. Mobile Cluster
Computing and Timeliness Issues.
Informatica, 23(1):5–17, 1999.

Incrementally Improving the Linux SCSI Subsystem

James E.J. Bottomley
SteelEye Technology, Inc.

http://www.steeleye.com

James.Bottomley@steeleye.com

Abstract

This paper tackles two issues in the current
SCSI subsystem: init time probing using the
new hotplug infrastructure and improvements
to the current error handler. We also include an
appendix sketching the operation of the SCSI
subsystem and another one listing other out-
standing problems not covered in this paper.

1 Introduction

Obviously, the scope of potential incremental
improvements to the SCSI subsystem is enor-
mous. In order to narrow the field quite a bit,
we will concentrate on just two particular ex-
amples.

1.1 Device Scanning and Inquiry

The first addresses the current weaknesses in
the device probing and inquiry code. As things
stand today, the SCSI subsystem will scan all
targets (up to 15) and, depending on compile
and run time variables, try to scan all LUNs on
those targets. There is also a compiled in ex-
ception table stored inscsi_scan.c which
can cope with the idiosyncrasies of certain de-
vices. The principle disadvantages of this sys-
tem are

1. It is extremely inflexible and rigid. New
devices that need exceptions have to be

patched into the kernel table and the ker-
nel recompiled before it does the correct
thing, and

2. The exception table is cumbersome and
does not cover all cases. For example,
how certain devices are probed can de-
pend on the SCSI host adaptor they are
attached to (mercifully, this is becoming
extremely rare).

It is the thesis of this paper that such complex
rules based logic should be abstracted entirely
from the kernel and placed in user land, where
it can easily be altered and extended without
even rebooting; and furthermore, that such a
system can be grafted on to the existing code
fairly easily.

1.2 Fixing the Error Handler

This topic is also broad, particularly as there
are several bio related errors in the 2.5 se-
ries kernel that make error handling especially
problematic (see appendix B). However, the
object here is to concentrate on the SCSI spe-
cific region of code inscsi_error.c and
assume that the kinks in the bio system will be
worked out as the kernel evolves.

The essential problem in
scsi_unjam_host() is that it tends
to execute on one command at once, and
have limited facilities for understanding that

Ottawa Linux Symposium 2002 41

error recovery on one command may affect a
large numbers of others. This is particularly
acute when drives start misbehaving because
they usually have the maximum number
of commands queued when error recovery
begins. Our presentation will be essentially
to clean up the error handler actions and to
restart command execution slowly and gently
(throttling) instead of slamming an entire set
of outstanding commands down again.

1.3 A Historical Context

Years ago, when the first monolithic UNIX
kernels were emerging into the light of day it
was recognised that you could draw a neat line
around most of the code used to boot the sys-
tem and configure its devices. Further, that this
code was never used again in the entirety of the
operation of the kernel.

Back in the mists of time, Linux began to sepa-
rate this initialisation code into a different com-
piler section and release it after the system had
completed booting. This worked well for a
while but as modular drivers came along, less
of the core kernel code which was used by
the boot process could be discarded because it
might be used by a module to initialise its de-
vices.

Much later, the concept of hotplugging devices
came along, and the Linux hotplug [1] project
was started.

2 Hotplug

The essence of the hotplug system and its util-
ity has been described elsewhere [2]. Hotplug
is primarily intended for computers whose con-
figurations change on the fly, obvious exam-
ples of which are the laptop PCMCIA system,
a USB daisy chain, firewire and so on. It was
recognised fairly early on in this project that

the problem of adding a device to a running
system is substantially similar to that of config-
uring a device at boot up, except that the oper-
ating system may not be completely initialised
(and thus the hotplug system may not be avail-
able) when boot probing is done. For this rea-
son, the boot probe issue is called “coldplug-
ging”.

2.1 Avoiding Coldplug

In general, the coldplug problem is similar to
most bootstrap problems. However, there is
a fairly neat way to avoid the difficulty for
several subsystems (SCSI being among them,
fortunately): by using an initial ramdisk. As
long as the hotplug system is built into the
initial ramdisk, the coldplug bootstrap prob-
lem is completely eliminated for any subsys-
tem which can be inserted entirely as modules,
since it would be handled as a genuine hotplug
event by the initial ramdisk hotplug system.

2.2 Hotplug and Device Scanning

A number of the devices that can be hot
plugged are also effectively “bridges”, that is
units which make onward connections to other
busses which may contain other devices. SCSI
Host Bus Adaptor (HBA) cards are a classic
example of this, since all they really do is
bridge the computer bus (often PCI) to an ex-
ternal or internal SCSI bus.

Whenever any type of bus bridge is added to
the system, logic must be invoked to scan the
devices beyond the bridge and add them into
the system. Usually, all this scanning is per-
formed inside the kernel; however, for this pa-
per we investigate transferring they scanning
logic to the user level hotplug system.

Ottawa Linux Symposium 2002 42

2.3 Bridge Insertion Events

In general, hotplug events are designed to al-
low the system to configure the particular de-
vice which has just been inserted and the inter-
action between the programs executed during
the hotplug event processing are designed to
perform this configuration. Scanning and con-
figuration of devices beyond the bridge device
should obviously not be begun until the bridge
device is properly configured and fully func-
tional. It therefore makes sense to fire a sepa-
rate “bridge scan” hotplug event after bridge
configuration and bus sanitisation to trigger
probing on the actual bus beyond the bridge.

Following the initiation of scanning beyond the
bridge, the job of the scanning routine should
be to notify the kernel of the existence of the
new devices, but allow the kernel to config-
ure them, or better yet trigger another hotplug
event to configure them.

One of the issues in bridge/device configura-
tion that require the bridge to be configured
before the scan are the setting or collecting of
intrinsic bus properties: things like bus speed,
width and configuration, all of which must be
known before the devices on the bus may be
probed. For instance, the SCSI bus can be con-
figured for various widths (wide or narrow).
The width is usually governed by the HBA,
but nothing prevents a wide device being con-
nected to a narrow only HBA. Thus, the de-
vice configuration is dependent on the parame-
ter rage of the bus, which are controlled by the
bridge (the HBA).

2.4 Bridge Configuration

We need a mechanism for making available to
both the user and kernel the parameters de-
tected and set during the prior bridge hotplug
event. There is an evolving infrastructure in the
new driver model[3] that may ultimately be ca-

pable of storing this information in a usefully
abstracted form. However, for the time be-
ing, we opted for a completely opaque bridge
programming model so that the bridge hotplug
event handler needs exact bridge programming
knowledge. Basically, we elected to place the
SCSI bus parameters in a SCSI specific field
which can be queried byioctl s.

3 Replacing SCSI Scan/Inquiry

This project essentially builds on top of the
ideas and code provided by the scsimon [4]
project. Although scsimon was designed to
provide notifications for device insertions, the
code it supplies and the design basics are es-
sentially reusable in the scan/inquiry replace-
ment.

3.1 What scsi_scan.c does now

This entire file of code is dedicated to scan-
ning busses and detecting and configuring de-
vices. It is driven entirely from a static ta-
ble (called device_list) which contains
inquiry strings matching devices for which spe-
cial actions are taken. Most of the actions are
geared to LUN scanning. Here is an example
of some of the flags:

• BLIST_FORCELUN: scan for LUNS
even if kernel is compiled not to.

• BLIST_NOLUN: Never scan LUNS on
this device.

• BLIST_SINGLELUN: only allow I/O to
one LUN at a time.

• BLIST_NOTQ: Device claims to support
Tag Command Queueing but in reality
cannot.

• . . .

Ottawa Linux Symposium 2002 43

Other flags deal with device type mis-
identification and so forth. All of which can
easily be accommodated in user land, with the
addition of two extra ioctls: one to set or clear
the tag bit (tagged_supported) and one to
alter the device type.

3.2 Adding the Bridge Insertion Hook

In the SCSI subsystem, the easiest way to add
the bus insertion hook is right at the end of
scsi_register_host() . We eliminate
the code inscan_scsis except for the hard
coded entry used byadd-single-device .

The Bus insertion hook is now used to begin
scanning the targets (at LUN zero) using the
add-single-device command (the scsi
and channel numbers being passed up from the
hotplug event).

It is certainly open to debate whether it is
worthwhile moving this functionality into user
land. However, in principle we could also set
up bus transfer parameters or actually opt to
use the SCSI-3 report LUNs command instead
for the scanning, so it still provides an arguably
much more flexible system. This will become
particularly important as newer standards are
adopted and the process of scanning for de-
vices changes.

3.3 Adding Device Insertion Hooks

Just as the majority of the work is done in
scsis_scan_single() , so most of the
work will be done in the code running after
the device insertion hotplug event. The correct
place for this is after the initial inquiry com-
mand, so that when the hotplug event is called
we know the inquiry parameters and can pass
them as event parameters.

The internaldevice_list table may now
be laced into a flat configuration file (which

is thus easily customised) which matches in-
quiry strings and triggers the appropriate ac-
tions. Since we now have more powerful tools
at our disposal, the matching can be much
more finely controlled using regular expres-
sions. The actions may also be much more
dynamic than simply sending parameters down
to the kernel: indeed, the system may now be
designed to be completely extensible so that
we could execute a vendor supplied script, in-
stalled in the system, whenever that vendor’s
device is detected.

There has been recent concern [5] about cer-
tain devices not respecting the SCSI standards
with regard to inquiry parameter lengths. This
could probably be handled either by allowing
the maximum inquiry length to be a bus pa-
rameter set by the bridge insertion event, or by
having the initial inquiry only be the minimum
length and allowing the device hotplug event to
use thesg device to formulate a second inquiry
to get all the parameters it needs. The counter
argument: that the low level drivers need to
snoop the inquiry data to set up their param-
eters could be avoided by allowing the device
insertion hotplug to communicate the relevant
parameters to the bridge.

3.4 Device and Bridge Interaction

If we managed to create the correct abstraction
of the SCSI bus, there would be no need for
special ioctls to be sent to inform the bridge
of device bus characteristics, nor would the
bridge need to snoop data (like inquiry returns)
being passed over the bus to obtain this infor-
mation.

However, until such an ideal state of affairs is
reached, it is possible that the bridge will need
to be made aware of extra parameters in the de-
vice. For this reason, we permit a “bridge call-
out” to be done at the end of the device hot-
plug event script (essentially the hotplug en-

Ottawa Linux Symposium 2002 44

gine checks to see if the bridge wishes to be
informed of device insertion events and exe-
cutes the script provided by the bridge if it
does). This should allow for arbitrary setting
of bridge/device parameters to suit the bus en-
vironment.

In the current implementation, it is the re-
sponsibility of the device/bridge script to
scan for additional LUNs (if necessary).
This leads to the unwanted side effect that
add-single-device for LUN 0 will now
trigger a complete LUN scan, which may not
be what was intended. This can be solved by
making “have scanned for LUNs” a property
of the device and passing it up on the device
insertion event.

3.5 Event Flow

The flow of events described above is shown in
figure 1 with time moving from left to right in
the diagram.

4 Error Handling

The current error handler thread begins when
a fatal error is detected (see Appendix A for
an operational sketch) it then quiesces the de-
vice and proceeds, one command at a time,
through its abort and reset sequence. It checks
the progress of error recovery at most points
by sending down a test unit ready (TUR) com-
mand. However, there are common SCSI
driver problems that the mid-layer ignores and
others that cause it to malfunction.

4.1 Who Owns the Tag Starvation Problem?

When Tag Command Queueing (TCQ) is en-
abled on a device, we pretty much (although
not always) use “unordered” tags. This leaves
it entirely within the province of the device

firmware to determine command execution or-
der. In theory, the device firmware has a mode
page which lays out guarantees about the maxi-
mum times it will take for the device to process
any given tag. However in practise, most (par-
ticularly older) devices govern tag execution by
closest head stepping times and thus some I/Os
to different parts of the disc surface can find
themselves ignored—a phenomenon called tag
starvation.

Since the problem can occur on almost every
parallel SCSI card, every driver that does TCQ
has to be aware of it and evolve a strategy to
cope. Therefore, the tag starvation problem is
pretty much owned by the low level drivers,
which is a pity, since it means code duplication
and lots of extra testing.

The two most general ways tag starvation is
handled are: sending an ordered tag with the
next command, or not sending down any more
commands until the starved tag is processed.
These are both extremely easy to implement
inside the mid-layer and would relieve the low
level drivers of a sizable amount of duplicated
code.

4.2 What Kinds of Errors Occur?

The SCSI operation model is essentially a
giant state machine. There are a wide
variety of error conditions which can oc-
cur but which are recognised as particular
states in the model. The SCSI mid-layer
translates these model states into actions in
scsi_decide_disposition() . How-
ever, anything that gets into this code is pretty
much part of the state model, since it is invoked
using a SCSI return code. Pretty much every-
thing other than an unrecognised return code
for a command still in progress will be handled
without troubling the error recovery thread.

The point is that the error handler thread is

Ottawa Linux Symposium 2002 45

User

Kernel

SCSI Card
detection

Bridge

Configuration
Inquiry Device Exists

Hotplug

Device Hotplug

Hotplug

Bridge/Device

Set device
parameters

set extra bridge
device params

time line

Bridge Hotplug

Bus scan using
add−single−device

Bridge Scan
Hotplug

Hotplug
LUN scan using

add−single−device

........

Figure 1: Time line for Hotplug Insertion Events

usually only invoked when the state model has
failed1 or a command has timed out (which is
pretty much the same thing, since it means we
sent a command to the device and it got lost),
so the remedies it applies have usually got to
be a drastic kick to get the device back into a
state the model recognises and can resume pro-
cessing from.

4.3 Why Abort?

The first action the error handler thread tries
is to issue an abort to the problem command.
Abort is a SCSI message that informs the de-
vice to discard a particular tag at whatever
point it has reached in processing it. It is
a command designed to fit inside the SCSI
state model and has several uses, particularly
for stopping linked commands which have en-
countered errors. However, its use as the first
port of call for the error handler thread try-
ing to recover a device is worse than useless,
since it is applying a course of action within
the state model to something already outside

1Here remember that the SCSI state model defined
by the standards is much larger than the oneimple-
mentedin the mid-layer.

of it. Following this logic, the abort sequence
and its associated driver hook may simply be
removed (or at least deprecated) in the SCSI
driver model.

4.4 Flavours of Reset

The next courses of actions, if abort failed, will
be to begin a series of resets culminating in the
complete reset of the HBA. The SCSI protocols
actually support three levels of reset: LUN, de-
vice and bus. The former is a message addition
from SCSI-3 and is only relevant for devices
with multiple LUNs. It does everything that
a device reset does, but operates only on a sin-
gle LUN—a device reset operates on all LUNs.
A device reset only operates on a single target
(but all of its LUNs) and a bus reset operates
on every device on a physical bus.

Resets are designedly very intrusive to device
operation. A reset basically causes the device
to drop everything on the floor and re-initialise
itself; it is allowed to spend quite a bit of time
(measured in seconds) on this re-initialisation
and is entitled to respond “not ready” to any
command received during this period.

Ottawa Linux Symposium 2002 46

The error handler, meanwhile, should be aware
of the extent of the potential disruption re-
sets cause to the device in question, particu-
larly with regard to losing all outstanding com-
mands. It should pull all commands affected
by the reset from both the pending and error
queues, cancelling the timers on the pending
commands and place them all in abeyance un-
til the error handling completes (it might make
sense at this point to push them back into the
bio queues so that they can be merged if nec-
essary, but hang on to the command we were
initially trying to recover).

After a reset has been sent, it should keep the
device quiesced and back off for a while (prob-
ably a second) before probing with a TUR—we
should also loop in this mode, probing every
second or so, until the TUR comes back as not
“not ready”.

Once we know the device is ready to accept
commands again, we should feed the first com-
mand from the error thread, wait for it to com-
plete and remove the device quiesce if it re-
turns successfully. We should probably also
lower the tag queue depth (if it had one) on the
assumption that the error may have been trig-
gered by over feeding.

4.5 Choosing a Reset

Often, the simplest reset for any device driver
writer to use is the bus reset. This is be-
cause all the other resets are actually phrased
as SCSI messages and thus need special pro-
cessing. The bus reset is activated simply by
pulling the reset line on the SCSI bus low for
25ms and is usually triggerable using a simple
chip register flip.

In choosing bus reset, one thing to beware of
is the SCSI standard soft reset alternative (see
section 6.2.2 of the SCSI-2 standard [6]). What
this does is allow the device to essentially ig-

nore some of the most useful aspects of the
bus reset (i.e. dropping everything and starting
over from a clean state). The mid layer picks
the flag indicating soft reset alternative out of
the inquiry data and sets thesoft_reset de-
vice flag in this case. We have never come
across one of these devices, but if we did it
would certainly cause huge problems for low
level drivers that rely solely on bus resets.

4.6 Device Offlining

The last response of the error handler, if it fails
to get the device to accept commands once
more is to place it offline. All outstanding com-
mands should be immediately failed with I/O
errors. However, the mid layer should continue
to accept commands for this device, but should
just immediately fail them with I/O errors. This
should break out of the unfortunate condition
where offlining a device with a huge outstand-
ing bio queue can leave lots of processes stuck
in D wait (see appendix B.2).

4.7 Multi-Initiator Scenarios

Previously, multi-initiator (where more than
one initiator, or HBA, is connected to the same
bus, so multiple machines may be talking to
the same devices) was a fairly esoteric config-
uration primarily limited to clustering environ-
ments. With the advent of Fibre Channel, this
all changed and shared busses are becoming
much more prevalent.

In the classic multi-initator scenario, a re-
set from another initiator, that you don’t see,
causes all of your outstanding commands to
be lost without trace. This can be particularly
nasty in the case where LUN reset is not im-
plemented, because you could be quietly pro-
cessing exclusively on LUN15 of an array only
to be reset because another initator was having
issues with LUN3.

Ottawa Linux Symposium 2002 47

About the best way to handle this is to take
special action whenever the signature for a re-
set occurs (which is a check condition followed
by unit attention sense on the next command to
be sent down to the device). On detecting this
condition, we should immediately proceed as
though we were the ones resetting the device as
part of error recovery: collect all the outstand-
ing commands, cancel the timers probe with a
TUR and start feeding them back down again
when the device is ready to accept them.

4.8 Testing Error Handler Changes

Once changes are made to error handling, one
of the main problems is actually testing them.
Most modern SCSI devices really don’t ac-
tually ever cause the error handler to be in-
voked. Even transmission line conditions or
other problems which cause the SCSI bus to go
marginal aren’t exactly very useful since there
is little chance of correct recovery from them.
What is needed is a method for simulating er-
rors in the SCSI subsystem and gauging what
happens next.

One particularly useful tool is the debug driver
of the Linux SCSI subsystem [7]. Although it
currently only comes with the ability to sim-
ulate a medium error, persuading it to drop
a SCSI command silently (and thus trigger a
timeout and error handling) isn’t that much of
a difficult problem. Once this enhancement is
made, it is comparatively easy to trigger a re-
coverable error an watch how the system be-
haves.

For those people with access to genuinely mal-
functioning devices (my favourite being an
old HP C3255 device which seems just to
stop working occasionally with high tag queue
depths), it is extremely nice to be able to plug
them in an watch the system cope (or not, as
the case may be).

A A Sketch of How the Current
SCSI Subsystem Works

Low Layer

Mid Layer

Mid Layer Interface

sg sd st
sr
scd

Request OperationsDevice Operations

SCSI Device Layer

Kernel Buffer/Page Cache and device input

(functional)

New EHObsolete

Low layer interface (same for
both mid−layers)

(aic7xxx etc)
Possible translator
e.g. scsi to fibre

low level driver

Not in 2.5

Figure 2: Block Diagram of the SCSI subsys-
tem

A complete block diagram of the SCSI sub-
system is shown in figure 2. The error han-
dler comprises a very small portion of the mid-
layer (shown as new EH—although for 2.5,
this is the only error handler). It’s code is
entirely inscsi_error.c and it is invoked
from the bottom half handler routine activated
by scsi_done() .

A.1 I/O in

All requests come in from the upper layer de-
vice drivers throughscsi_request_fn()
which loops over all pending requests. If the
device is in_recovery or plugged, it re-
turns.

Otherwise, it proceeds as follows:

1. Dequeue the request.

Ottawa Linux Symposium 2002 48

2. Copy the request into a scsi request struc-
ture and release the bio request.

3. Call scsi_init_io() to set up the
scatter/gather list on the request structure.

4. Call the device specific init command to
set up the appropriate SCSI command.

5. Initialise the error handler components
(mainly zero out sense and set up the time-
out).

6. Callscsi_dispatch_command() to
begin. This sets up the serial number
and pid, adds the timer and calls the host
queuecommand() if it can_queue
otherwise callscommand() .

A.2 I/O out

All finished commands come in from the low
layer throughscsi_done() with the queue
lock held. They are then added to the bottom
half (BH) queue and the BH is notified.

The BH handler (scsi_bottom_half
_handler()) runs later picking work off the
SCSI BH queue until none remains. It calls
scsi_device_disposition() which
returns four possibilities:

• SUCCESS: immediately com-
plete the command by calling
scsi_finish_command() .

• NEEDS_RETRY: send the command to
scsi_retry_command() which will
send it immediately down to the lower
layer unless the retry count has been ex-
ceeded.

• ADD_TO_MLQUEUE: call scsi
_mlqueue_insert() to send the
command back to its elevator queue.

• FAILED : set in_recovery , plug the
elevator queue and wake the error handler.

A.3 I/O Error

Once the error handler thread is awo-
ken, it calls the templateeh_strategy
_handler() if it exists, otherwise goes into
scsi_unjam_host .

scsi_unjam_host() loops over all pend-
ing commands and looks at theirstate field.
Really, it is only interested in theFAILED or
TIMEOUTstates.

Essentially, it loops over every failed or timed
out command and runs through first abort, then
device reset, then bus reset and finally host re-
set, sending a TUR to test the device if one of
these succeeded. If it gets all the way to the
end and still has failed commands, it offlines
the device.

B Unresolved Issues in the Mid-
Layer

This section is really a collection of issues on
my todo list, but obviously as I haven’t got
around to doing them yet, if anyone else wants
to step into the crease, they’re more than wel-
come.

B.1 queuecommand busy failure

The template hookqueuecommand() is al-
lowed to return 1 if the command has not been
queued. This can be for a variety of reasons,
but most commonly because of either tag star-
vation or static resource exhaustion. What is
supposed to happen is that the unqueued com-
mand goes back into the bio elevator and is re-
submitted at a later time.

It looks like the scsi_mlqueue
_insert() function or the bio is fail-
ing somehow, because on most 2.5.x, as soon
as queuecommand() returns 1, the buffer

Ottawa Linux Symposium 2002 49

hangs forever in D wait.

B.2 Device Offline Failure

After an initial complete failure of the error
handler, leading to a device being taken offline,
processes trying to use buffers on the device
often end hung in D wait. This is indicating
that the code which returns I/O errors on all
the outstanding I/O requests is missing some. I
suspect there may be a problem prizing the rest
of the I/O out of the bio, since it seems that the
code in the error handler to fail the I/O that has
reached the mid-layer is fairly bullet proof.

References

[1] http://sourceforge.net
/projects/linux-hotplug

[2] Greg Kroah-HartmanHotpluggable
Devices and the Linux KernelOttawa
Linux Symposium 2001

[3] Patrick MochelThe (New) Linux Kernel
Driver Model
Documentation/driver-model.txt

[4] Doug GilbertScsimon Driver for Linux
http://www.torque.net/scsi
/scsimon.html

[5] Martin Wilck Hack to make Datafab
KECF-USB work
http://marc.theaimsgroup.com
/?l=linux-usb-devel
&m=101304393027774

[6] X3T9.2 Project 375DInformation
Technology—Small Computer System
Interface 2
ftp://ftp.t10.org/t10
/drafts/s2/s2-r10l.pdf

[7] Originally by Eric Youngdale, but now
Maintained and enhanced by Doug

Gilbert
http://www.torque.net/sg
/sdebug.html

Lustre: The intergalactic file system

Peter J. Braam
Philip Schwan

Cluster File Systems, Inc.
braam@clusterfs.com, http://www.clusterfs.com

1 Introduction

This is a short overview of Lustre, a new open
source cluster file system. The name Lus-
tre embodies “Linux” and “Cluster.” Lustre
focusses scalability for use on large compute
clusters, but can equally well serve smaller
commercial environments. Lustre runs over
different networks, including at present Ether-
net and Quadrics.

Lustre originated from research done in the
Coda project at Carnegie Mellon. It has seen
interest from several companies in the stor-
age industry that contributed to the design
and funded some implementation. Soon af-
ter the original ideas came out, the USA Na-
tionaL Laboratories and the DOD started to
explore Lustre as a potential next generation
file system. During this stage of the project
we received a lot of help and insight from
Los Alamos and Sandia National Laboratories,
most significantly from Lee Ward.

Lustre provides many new features and embod-
ies significant complexity. In order to reach
a usable intermediate target soon, Mark Sea-
ger from Lawrence Livermore pushed forward
with Lustre Lite. We are hopeful that Lustre
Lite will be the shared file system on the new
800 node MCR Linux cluster during 2002.

This paper provides a high level overview of
Lustre.

3rd Party File
& Object I/O

HSM backends for
Lustre/DMAPI solution

LDAP Kerberos/GSSAPI
Failover Cluster Resource

(RDB)Database

SCSIMetadata Servers (MDS)
(10’s of nodes)

Lustre Clients
(10,000’s)

TCP/IP exports:
NFS, CIFS, InterMezzo

Low Latency Systems &

Lustre Object Storage
Targets (OST−1000’s)

(include attached storage)

Metadata Transactions

Storage Networking

Figure 1: A Lustre Cluster

2 Lustre Components

In Lustre clusters there are three major types
of systems, the Clients, the object storage tar-
gets (OST’s) and metadata server MDS sys-
tems. Each of the systems internally has a very
modular layout. Many modules, such as lock-
ing, the request processing and message pass-
ing layers are shared between all systems. Oth-
ers are unique, such as the Lustre Lite client
module on the client systems. Figure 1 gives
a first impression of the interactions that are to
be expected.

Lustre (see http://www.lustre.org) provides a

Ottawa Linux Symposium 2002 51

RECOVERY,
FILE STATUS,

FILE CREATION

SYSTEM &
PARALLEL FILE

I/O, FILE
LOCKING

DIRECTORY
METADATA &

CONCURRENCY

OST

CLIENT

MDS

Figure 2: outline of interactions between sys-
tems

clustered file system which combines features
from scalable distributed file systems such
as AFS [1], Coda [2] and InterMezzo (see
www.inter-mezzo.org), and Locus CFS [3],
with ideas derived from traditional shared stor-
age cluster file systems like Zebra [4], Berke-
ley XFS, which evolved to Frangipani Petal
[5], GPFS [6], Calypso [7], InfiniFile [8] and
GFS [9]. Lustre clients run the Lustre file
system and interact with object storage tar-
gets (OST’s) for file data I/O and with meta-
data servers (MDS) for namespace operations.
When client, OST and MDS systems are sepa-
rate, Lustre appears similar to a cluster file sys-
tem with a file manager, but these subsystems
can also all run on the same system, leading
to a symmetric layout. The main protocols are
described in figure 2.

3 Object Storage Targets

At the root of Lustre is the concept of object
storage see [10]. Objects can be thought of as
inodes and are used to store file data. Access to
these objects is furnished by OST’s which pro-
vide the file I/O service in a Lustre cluster. The
name space is managed by metadata services
which manages the Lustre inodes. Such in-
odes can be directories, symbolic links or spe-

Object−Based Disk
Server (OBD Server)

Lock
Server

Object−Based Disk (OBD)

Fiber Channel

OBD FilterExt2 OBD

File System
XFS, JFS, Ext3, ...

Networking

NIO API

R
ec

o
ve

ry

Device (Elan, TCP, ...)

Portal NAL’s

Portal Library

Request Processing

Alternatives

Figure 3: Object Storage Targets (OST)

cial devices in which case the associated data
and metadata is stored on the metadata servers.
When a Lustre inode represents a file, the meta-
data merely holds references to the file data ob-
jects stored on the OST’s.

Fundamental in Lustre’s design is that the
OST’s perform the block allocation for data ob-
jects, leading to distributed and scalable alloca-
tion metadata. The OST’s also enforce security
regarding client access to objects. The client -
OST protocol bears some similarity to systems
like DAFS in that it combines request process-
ing with remote DMA. The software modules
in the OST’s are indicated in figure 3.

Object storage targets provide a networked in-
terface to other object storage. This second
layer of object storage, so-called direct object
storage drivers, consists of drivers that man-
age objects, which can be thought of as files,
on persistent storage devices. There are many

Ottawa Linux Symposium 2002 52

choices for direct drivers which are often in-
terchangeable. Objects can be stored as raw
ext2 inodes by theobdext2driver, or as files
in many journal file systems by the filtering
driver, which is now the standard driver for
Lustre Lite. More exotic compositions of sub-
systems are possible. For example, in some sit-
uations an OBD Filter direct driver can run on
an NFS file system (a single NFS client is all
that is supported).

In the OST figure we have expanded the net-
working into its subcomponents. Lustre re-
quest processing is built on a thin API, called
the Portals API which developed at Sandia.
Portals interoperates with a variety of network
transports through Network Abstraction Lay-
ers (NAL). This API provides for the delivery
and event generation in connection with net-
work messages and provides advanced capa-
bilities such as using remote DMA (RDMA)
if the underlying network transport layer sup-
ports this.

4 Metadata Service

The metadata servers are perhaps the most
complex subsystem. The provide backend stor-
age for the metadata service and update this
transactionally over a network interface. This
storage presently uses a journal file system, but
other options such as shared object storage will
be considered as well.

The MDS contains locking modules and heav-
ily exercise the existing features of journal
filesystems, such as ext3 or XFS. In Lustre
Lite the complexity is limited as just one sin-
gle metadata server is present. The system
still avoids single points of failure by offering
failover metadata services, based on existing
solutions such as Kimberlite.

In the full Lustre system metadata processing
will be load balanced, which leads to signif-

File System
XFS, JFS,
Ext3, ...

MDS
Adaptor Clustered

MD
Database

MDS Backend

Lock
Server

Lock
Client

Load Balancing

Networking

R
ec

o
ve

ry

MDS
Server

Single Failover
MDS

OST

Clustered
MD FS

Clustered load balanced
MDS

Fiber Channel

alternatives

Figure 4: Meta Data Servers (MDS)

icant complexity related to the concurrent ac-
cess to persistent metadata.

5 The client file system

The client metadata protocols are transaction-
based and derive from the AFS, Coda and In-
terMezzo file systems. The protocol features
authenticated access, and write-behind caching
for all metadata updates. The client again has
multiple software modules as shown in figure
5.

Lustre can provide UNIX semantics for file up-
dates. Lock management in Lustre supports
coarse granularity locks for entire files and sub-
trees, when contention is low, as well as finer
granularity locks. Finer granularity locks ap-
pear for extents in files and as pathname locks
to enable scalable access to the root directory
of the file system. All subsystems running
on Lustre clients can transparently fail over to
other services.

The Lustre and Lustre Lite file system provide
explicit mechanisms for advanced capabilities

Ottawa Linux Symposium 2002 53

OS Bypass
File I/O

Lustre Client
File System

OBD
Client

Networking

Lock
Client

MDS
Client

Metadata
WB cache

R
ec

o
ve

ry
Figure 5: client software modules

prealloc
reintegrate
fsetstatus

lock
lookup

readdir getcapability
statfs
getattr

(into cache)
prepare_page
commit_page
write_page

user

kernel

System Interface ADIO

setattr

system interface os bypass

create
mkdir
mknod
link
symlink
unlink
rmdir
rename

lookup readdir

dirbody
API

permission
statfs
readlink

open read
writeclose

operation based lookup

open
close
create
read
write
lockRPC LAYER

to MDS

lock revokelock revoke

to Client

TO OST

to Client

Figure 6: client file system internals

/dev/hda1 /dev/hda1 /dev/hdb2 /dev/hdb2

/dev/obd0 /dev/obd0 /dev/obd0

obdext3

obdext3obdext2

Logical Migrator

Before... During... After...

Key Principle: dynamically switch object device types

obdext2

Figure 7: Hot Data Migration using Logical
Object Volumes

such as scalable allocation algorithms, security
and metadata control. In traditional cluster file
systems, such as IBM’s GPFS many similar
mechanisms are found, but are not independent
abstractions, but instead part of a large mono-
lithic file system.

6 Storage Management

Lustre provides numerous ways of handling
storage management functions, such as data
migration, snapshots, enhanced security and
quite advanced functions such as active disk
components for data mining. Such storage
management is achieved through stacks of ob-
ject modules, interacting with each other. A
general framework is provided for managing
and dynamically changing the driver stacks.

An example of stacking object modules is
shown in figure 7 for the case of hot data mi-
gration from one storage target to another.

7 Conclusions

Lustre provides a novel approach to storage. I
heavily leverages existing techniques and soft-
ware, yet breaks many patterns with new pro-

Ottawa Linux Symposium 2002 54

tocols, heavy modularization. The next few
years will show if Lustre will establish itself
as a mainstream element of the storage indus-
try or will remain an exciting exploration in file
system design.

References

[1] J. H. Howard, “An overview of the
andrew file system,” inIn Proceedings of
the USENIX Winter Technical
Conference, 1988.

[2] J. J. Kistler and M. Satyanarayanan,
“Disconnected operation in the coda file
system,” inThirteenth ACM Symposium
on Operating Systems Principles,
Asilomar Conference Center, Pacific
Grove, U.S., 1991, vol. 25 5, pp.
213–225, ACM Press.

[3] Bruce J. Walker Gerald Popek,The
LOCUS Distributed System Architecture,
MIT Press, 1986.

[4] John H. Hartman and John K.
Ousterhout, “The Zebra striped network
file system,”ACM Transactions on
Computer Systems, vol. 13, no. 3, pp.
274–310, 1995.

[5] Chandramohan A. Thekkath, Timothy
Mann, and Edward K. Lee, “Frangipani:
A scalable distributed file system,” in
Symposium on Operating Systems
Principles, 1997, pp. 224–237.

[6] IBM, “Gpfs,” FAST proceedings, 2002.

[7] Murthy Devarakonda, Bill Kish, and
Ajay Mohindra, “Recovery in the
Calypso file system,”ACM Transactions
on Computer Systems, vol. 14, no. 3, pp.
287–310, 1996.

[8] Yoshitake Shinkai, Yoshihiro Tsuchiya,
Takeo Murakami, and Jim Williams,
“Alternatives of implementing a cluster
file system,” pp. 163–178, 2000.

[9] Steven R. Soltis, Thomas M. Ruwart,
and Matthew T. O’Keefe, “The Global
File System,” inProceedings of the Fifth
NASA Goddard Conference on Mass
Storage Systems, College Park, MD,
1996, p. ??, IEEE Computer Society
Press.

[10] Garth A. Gibson, David Nagle, Khalil
Amiri, Fay W. Chang, Eugene M.
Feinberg, Howard Gobioff, Chen Lee,
Berend Ozceri, Erik Riedel, David
Rochberg, and Jim Zelenka, “File server
scaling with network-attached secure
disks,” inMeasurement and Modeling of
Computer Systems, 1997, pp. 272–284.

Cebolla: Pragmatic IP Anonymity

Zach Brown
zab@zabbo.net

Abstract

Cebolla is an intersection of cryptographic mix
networks and the environment of the public In-
ternet. Most of the history of cryptographic
mix networks lies in academic attempts to pro-
vide anonymity of various sorts to the users of
the network. While based on strong crypto-
graphic principles, most attempts have failed
to address properties of the public network
and the reasonable expectations of most of its
users. Cebolla attempts to address this gulf
between the interesting research aspects of IP
level anonymity and the operational expecta-
tions of most uses of the IP network.

1 Introduction

The core concept of providing anonymity of
commendations through intermediary relays
dates back to the early days of the public net-
work. As initially described by Chaum for
email [1], anonymity of the sender can be
achieved by sending the message to an agent
who encapsulates the email and relays it to a
second agent, who relays it to a third, who
finally delivers the message. Imagining the
communication as a conventional paper letter
would conjure an image of each agent open-
ing their letter to discover another letter des-
tined for the next agent. The final agent sees
the proper letter destined to the recipient. The
response travels in the reverse direction, with
each agent putting the incoming letter into a
new envelope and addressing it to the previous
agent. The sender, upon receiving this large

envelope, opens as many layers of envelopes
as there were intermediate agents to find the
original response.

This anonymizing theory can easily be applied
to networks when forwarding instructions are
included with each datagram. The included in-
structions increase the size of the datagrams
and verifying the instructions can be very ex-
pensive. The common solution to these prob-
lems is to negotiate and verify the instructions
and require that datagrams reference this exist-
ing negotiated state. In Cebolla, this negotiated
state is asymmetrical. The initiating sender of
all the messages negotiates individual instruc-
tions with all the forwarding agents. Each for-
warding agent only negotiates state with its im-
mediate neighbours in the path.

Cebolla builds on many previous implementa-
tions of anonymizing mix networks:

Wei Dai describes an asymmetric anonymizing
network, dubbed PipeNet [2]. While very re-
silient to attack, it is infeasible to run over the
public network. Constant cover traffic makes
link usage inefficient and prohibitively expen-
sive. Random path selection punishes users
with moderate threat expectations that could
tolerate narrowing their traffic to topologically
close networks. Finally, rampant frame re-
ordering would confuse popular networking
protocols. It has never been publicly imple-
mented.

D. Goldschlag and company at the Navy Re-
search Lab have done much work on Onion
Routing [3]. While providing much of the

Ottawa Linux Symposium 2002 56

ground work in the field, the implementation
is not publicly available, and is covered by US
patents.

Zero Knowledge productized a mix network
with their Freedom product line. The pro-
ductized nature of the network motivated Zero
Knowledge to remain some amount of cen-
tralized control of the network, which turned
off some potential users. It was never pub-
licly documented fully, nor were comprehen-
sive sources made available, which prevented
any third-party implementations of the proto-
cols to conceivably increase the user-base. It
has since been discontinued.

Mike Freedman and company push the enve-
lope by introducing a very scalable peer-to-
peer anonymizing network with Tarzan [4]. As
it happened, Cebolla and Tarzan were devel-
oped at about the same time, with different ob-
jectives.

Xor-Trees [5] take the concept to an extreme
by describing a network with a fully utilized
mesh of dedicated links and synchronized key
material generators that can be used to mask
both the source and destination of messages
between command and control centers. The re-
quirements for fully utilized links and synchro-
nized key material make it infeasible for use on
the public network.

Cebolla is an attempt to gel these efforts into
an implementation that can be readily used by
a group of people on the Internet to efficiently
protect their communications. The remainder
of the paper will focus on defining the envi-
ronment that Cebolla considers reasonable, and
the methodology behind the implementation.

2 Overview

Cebolla is a unix daemon that maintains UDP
connections to a set of peers. Many of these

peers connecting together builds an overlay
network. Through these UDP connections,
called links, peers are able to exchange mes-
sages which maintain crypto state, discover
the topology of the network, negotiate tunnels
on behalf of nodes, and transit encapsulated
frames through these tunnels.

Tunnels are the construct that allow messages
to be forwarded in a way that masks the iden-
tity of the sender. A tunnel is a set of forward-
ing rules that a client gives to nodes that make
up the path of the tunnel. The client also shares
keys with each node in the path of the tunnel.
Clients and servers run the same software; it is
initiating the tunnel that makes us call a node a
client.

Like other IP tunnels, Cebolla tunnels have net-
working devices on the nodes at either end of
the tunnel. When a frame is routed into a de-
vice, the frame is encapsulated and sent down
the tunnel. At the other end, frames exit the
tunnel and are received by the device at the end
of the tunnel.

The steps performed by a client in a typical Ce-
bolla session might look something like:

• A node in the network is discovered.
From this node, the client receives a list
of all the nodes in the network.

• The client decides on nodes in the network
that a tunnel should include.

• The client establishes a UDP link with the
first node in the tunnel.

• With this first node, the client negotiates
the first part of a tunnel.

• Through the first part of the tunnel, the
client negotiates the second part of the
tunnel with the second hop. And so on,
until the client only has one hop left.

Ottawa Linux Symposium 2002 57

• Through the tunnel, the client finalizes the
tunnel.

• By routing through a local device, the
client sends frames down the tunnel.

• Headers on the encapsulated frame tell
each hop which tunnel to go down, and
the headers are re-written at each hop.
Crypto may be performed at each hop, if
the client so desired.

• As the frame reaches the final hop, it exits
the tunnel and is forwarded out the Inter-
net as a normal IP frame.

3 Threat Model

When describing the threats that Cebolla tries
to address, we’ll adopt some names for roles
that are played out on the network:

• Alice – the initiator of the communica-
tion, who wishes to remand anonymous.

• Bob – the intended recipient of the Alice’s
communication.

• Neville – A corrupt node in the Cebolla
path who has honestly participated in the
protocol with Alice, but who is trying to
leverage that to monitor communications.

• Patrick – An attacker who controls the
flow of encapsulated frames between Al-
ice and Bob, who can conceivably alter
them as they pass.

• Kiddie – An attacker with connectivity to
the same network as the mesh, but with
no control of the path that messages take
between Alice and Bob.

• Smith – An attacker who is able to mon-
itor communications in the mesh at mul-
tiple points and perform deep analysis in
real-time.

With these participants in mind, Cebolla at-
tempts to make the following guarantees:

• Alice should be able to determine that she
is actually communicating with Bob.

• A Neville working alone should not be
able to determine the identities of both Al-
ice and Bob.

• Only Alice and Bob should have access to
the actual contents of messages.

• Kiddie should not be allowed to degrade
Alice and Bob’s communication through
trivial a expenditure of resources.

Cebolla also makes the following explicit ad-
missions about its lack of privacy guarantees,
as well:

• Two or more Nevilles at the right points in
the path may collude, with the help of traf-
fic analysis, to discover many things – the
identity of both Alice and Bob, the path
that their communication takes, and in
unbelievably specific circumstances, even
the contents of their communication.

• Patrick may sever communication be-
tween Alice and Bob at any time.

• Neville can associate frames that probe
the edge with streams he transits, possibly
giving rise to the ability to find the node at
the edge that terminates a particular com-
munication.

• Smith must to be assumed to be the super-
set of all possible Nevilles – always know-
ing which Bobs all Alices are currently in
communication with.

Ottawa Linux Symposium 2002 58

4 Secret Negotiation

The Cebolla protocols make heavy use of a
four-step secret negotiation that builds shared
secrets and negotiates optional features. The
message exchange is inspired by Photuris [6].
Following the asymmetric nature of Cebolla’s
anonymity guarantee, more emphasis is given
to protecting the information sent by the client
initiating a negotiation than by the server re-
sponding to it.

4.1 negotiation phases

The negotiation is split up into four phases:

• initiation . The initiator sends an initial
negotiation request to the server. The re-
quest contains a large random initiator ID
and lists of the authentication and shared-
secret negotiation schemes that the initia-
tor is willing to use during the negotia-
tion. The entirety of the request is sent
in the clear and is readable to those who
can monitor the channel it is sent over.

• response. The responder parses the re-
quest and prepares a response packet. The
initiator’s random ID is echoed back in
the response, and the server provides a
responder ID as well. The pairing of
these, between the responder and initiator,
uniquely defines this negotiation instance.
The server parses the lists of offered au-
thentication and shared-secret schemes,
and chooses one of each to use for the
negotiation. Should it not find any suit-
able, it can return errors. The response in-
cludes authentication data and the respon-
der’s half of the secret negotiation, as de-
fined by their respective chosen schemes.
The entire response is sent in the clear,
but the server appends a signature work-
a-like, which the initiator may validate us-
ing the chosen authentication scheme.

• configuration request. The initiator val-
idates the responder’s authentication and
prepares a packet containing the IDs that
identify the exchange. The initiator ap-
pends its half of the shared-secret negoti-
ation to the packet, then combines its half
with the responder’s half in the incom-
ing packet to calculate the shared-secret.
From this secret it derives keys that are
used to encrypt the initiator’s authentica-
tion data and a list of negotiable options
that are appended to the packet. The ini-
tiator then signs its half of the shared-
secret and the encrypted data, appending
the clear-text signature material to outgo-
ing packet.

• configuration acknowledgment. The re-
sponder prepares the final packet in the
exchange by parsing the incoming con-
figuration request. After the responder
verifies the initiator’s signature, it com-
bines the halves of the shared secret and
decrypts the initiator’s authentication data
and option list. The responder choses op-
tions from the incoming list and puts them
in a list in the outgoing packet. The ac-
knowledgment packet is encrypted with
the shared secret.

4.2 negotiation state

An important aspect of the negotiation is that
the responder does not maintain state for a
negotiation until the configuration request has
been successfully parsed. The initiator is re-
sponsible for issuing retransmissions until it
gives up or the negotiation ends in success or
error.

The responder must assume that the initiator
will receive the sent configuration acknowledg-
ment because it is the last packet in the ex-
change. The responder must be careful to deal
with the possibility of receiving a retransmitted

Ottawa Linux Symposium 2002 59

configuration request from the initiator when
the acknowledgment is lost in transit.

4.3 negotiation verification

While the initiator ID is simply a large stream
of random bytes, the responder ID is built to
provide similar functionality for the responder
as syn-cookies [7] do for the TCP handshake.

The responder maintains two private secrets
that are alternately replaced at regular inter-
vals. The responder ID is calculated by tak-
ing a hash of the most recent private secret and
the address of the initiator in the medium of
the negotiation. An incoming configuration re-
quest must have a responder ID that matches
the hash of one of the private secrets and the
initiator’s address for the responder to be sure
that it sent a response to this initiator within the
interval that the secrets are updated in.

4.4 negotiation resource consumption

Denial of Service are said to occur when an
attack drains resources to the point of exclud-
ing others from using those resources. Cebolla
doesn’t address attacks that exhaust incoming
bandwidth because they are best addressed up-
stream, out of Cebolla’s reach.

An attacker wishing to exhaust the CPU re-
sources of the responder is more troubling. The
attack comes when an attacker overloads the
responder with negotiation packets that look
valid based on the responder ID. The respon-
der ID’s validity is tied to the source IP of the
packets. If the attacker generates the stream of
packets through legitimate participation in the
protocol the responder can limit the attacker’s
CPU use based on the IP. Limiting can also be
used if the attacker resends an infinite stream of
identical packets, all of which must still have
a valid IP address to pass the responder ID
test. An attacker in the path of regular negotia-

tion traffic can resend packets that it observes,
throwing disrupting all negotiation on the path.

It would be generous to describe this protec-
tion as incomplete. An attacker is still able
to use significant resources on the responder
through little effort. Mechanisms like hashcash
[8] should be employed to require significant
expenditure on the part of the attacker to pro-
ceed with the negotiation and convince the re-
sponder to spend CPU cycles.

5 Links

Links are the backbone of the Cebolla mesh.
All communications between nodes, which in-
clude clients, occur over these links. Links
use symmetric ciphers to guarantee confiden-
tiality of communications and employ message
digests to ensure that communications haven’t
been tampered with.

Link negotiation occurs between nodes over
UDP. Link state is associated with a neigh-
bour’s source IP address and UDP port. This
association builds the concept of a unique link.

The IP address and UDP port of the respon-
der are assumed to be reachable by all clients.
The address of the initiator is never used in
the protocol. Initiators may build links from
behind routers performing NAT without harm.
As is expected, the NAT changing its IP and
port mapping will confuse the association of
that IP-port pair with its link state.

The primary result of the negotiation is a set of
dual transmit and receive keys that the partners
of the link use to encrypt and verify frames sent
to each other. Separate sets of transmit and re-
ceive keys are used to prevent attackers from
reflecting frames sent from a node back to the
node itself.

Ottawa Linux Symposium 2002 60

5.1 link encapsulation

All messages between link partners are de-
scribed by a link header. It contains a sequence
number, a message type, some flags, and a
generic ID field that is used by certain message
types. The sequence number, described later,
protects attackers from replaying valid frames.
No flags are currently defined, and the type is
obviously used to decide what to do with the
frame.

5.2 dueling link headers

This link header is kept at the size of the block
cipher used in the link to enable nodes in the
middle of the path to save packet space and
CPU time under the right threat assumptions.
A client may decide that its traffic is adequately
protected by a single-layer full-frame encryp-
tion and a MAC check only at the end of the
path. The routing process in all transit nodes
then simply involves decrypting the header,
rewriting the ID, encrypting the header, and
forwarding the packet.

A single decryption of the block the header re-
sides in wouldn’t be enough to give confidence
in the resulting header – it could have been
modified in transit. Instead of spending bytes
and CPU time on a MAC covering the header,
we instead maintain a second key that encrypts
and decrypts a second copy of the link header.
The recipient decrypts the two copies with the
two keys, and if they match it has high confi-
dence that either header has not been modified.

6 Tunnel Negotiation

Cebolla builds up tunnels in an iterative pro-
cess. The first stage is done between the client
and its immediate neighbour who it already has
negotiated a link with. A tunnel negotiation
builds up similar cryptographic state as is built

up in a link negotiation. It also assigns tunnel
IDs to each participant. The negotiation can in-
clude assigning an IP address to the initiator’s
endpoint on the final hop negotiation. The ne-
gotiation of intermediate hops includes a nego-
tiation parameter that specifies the IP address
of the next hop to be negotiated.

Tunnel IDs are used by pairs of nodes to as-
sociate frames with a tunnel. Each node has
a local ID for a hop that connects to another
node. This local ID is uniquely generated by
each node and transmitted to the other node
during the negotiation. When sending frames
down a tunnel the sender uses the remote ID to
specify the tunnel to the receiver.

If a multi-hop tunnel is being negotiated, the
initiator will include an option in the negotia-
tion that will specify the next hop in the path.
The negotiated tunnel is not yet ready to be
used with real encapsulated frames. The re-
sponder in the negotiation will establish tunnel
state and mark it as embryonic and store the
next hop. The initiator negotiates an additional
hop through the embryonic tunnel by building
messages intended for the additional hop. The
initiator sends these message down the embry-
onic tunnel as encapsulated negotiation pack-
ets. The embryonic tunnel will unencapsulate
the messages and forward them over a link that
is established to the additional hop.

This process can be repeated for as many hops
as the initiator wishes to build.

As of this writing there are no provisions to
stop an initiator to a long time building a tun-
nel that passes through nodes in the network
many, many, times. Such a tunnel allows an
initiator to send a single packet down the tun-
nel, resulting in excessive bandwidth and CPU
expenditure by the network.

Preventing this behaviour with a simple time-
to-live packet header, as used in IP, would

Ottawa Linux Symposium 2002 61

give intermediate nodes information about the
length of tunnels. This knowledge can be com-
bined with knowledge of the network graph
and measurements of streams to gain a very ed-
ucated guess as to the actual nodes that make
up the tunnel.

6.1 tunnel encapsulation

Tunnel headers communicate details of the en-
capsulated frame between the initiator and the
final hop of the tunnel. The current implemen-
tation only contains a type field, which is lim-
ited to specifying encapsulated IPv4 frames, an
unused flags field, and a sequence number.

The level of protection offered by the tunnel is
under full control of the negotiator. Each hop
negotiation specifies whether block ciphers or
MAC digests are applied to payloads passing
through that hop.

7 Keying

Cebolla relies heavily on symmetric ciphers to
speed up encryption and decryption. Link and
tunnel negotiation both build up a shared secret
associated with that link or tunnel. Symmetric
keys are derived by hashing the shared secret
with a known value for each line of keys that
will be used. Further keys in a line are derived
by hashing the existing keys with the shared se-
cret. For example, the link payload encryption
and decryption keys would differ from the dual
link header keys by the known value they were
hashed with.

Peers must be sure to derive their encryption
and decryption keys so that they match their
peers’. The initiator’s encryption key must
match the responder’s decryption key. The cur-
rent implementation achieves this by requiring
the responder to swap its key sets after both
peers derive their keys with the same code.

7.1 re-keying

Trust in symmetric keys diminishes the longer
they are used in the wild. Key rotation, or
re-keying, must be done at regular intervals to
lessen the success attackers can have at crypt-
analyzing the keys. The rotation must be syn-
chronized between either ends of a resource,
allowing for dropped messages, to prevent the
keys from becoming out of phase.

Cebolla does this by adopting a protocol for
rotating the keys that depends on minimal re-
keying messages , knowledge of the role of ei-
ther end in negotiating the initial resource, and
feedback based on which keys succeeded in de-
crypting incoming frames.

The party who decides to start the re-keying
protocol first is dubbed the initiator, the late-
comer the responder. Both parties maintain
two sets of keys for a given resource, primary
and secondary. In the quiescent state the pri-
mary keys are in use and the secondary keys
are undefined. When re-keying is active, the
primary keys are used to send messages and
to decrypt messages. Decryption is attempted
with the secondary keys only when the primary
fail.

• The initiator decides to start re-keying. It
derives its secondary keys from the first,
and sends a re-keying request to the re-
sponder.

• The responder sees the re-keying request
and derives its secondary keys from the
first, and swaps its primary and secondary
keys. Its now primarily encrypting and
decrypting with the next generation keys.
It sends a dummy message, usually im-
plemented as some form of echo request,
over the medium.

• The initiator fails to decrypt the message
with its primary keys, but succeeds with

Ottawa Linux Symposium 2002 62

the secondary keys. It takes this to mean
that the responder has derived the next
generation keys. The initiator swaps its
primary and secondary keys, and destroys
its secondary keys. It is now only using
the next generation keys. It sends another
dummy message over the medium.

• The responder succeeds in decrypting the
message with its primary keys, and takes
this to mean that the initiator has com-
pleted the re-keying and destroys its sec-
ondary keys.

This mechanism is simple to implement and
lets traffic flow during the time it takes the re-
keying messages to make the round trips be-
tween nodes, which may be particularly impor-
tant over long, fat pipes. There is always a win-
dow during which messages will be doubly de-
crypted by a mismatch in the primary keys of
the sender and receiver.

Initiators can cross the streams. If both par-
ties decide to re-key at the same time, their re-
key requests can cross in flight. Both will no-
tice this when they go to process a re-keying
request and find that they have initiated a re-
keying request themselves. Both initiators
know the role they played in negotiating the
higher level resource (link or tunnel) and fall
back to that role when they discover concurrent
re-keying negotiation.

As with negotiation, it is the responsibility of
the initiator to re-send re-key requests if it
thinks that re-keying is not progressing at a rea-
sonable pace.

8 Sequence Numbers

Cebolla uses sequence numbers in a few places
to empower the receiver to discard duplicate
frames. A typical advancing window approach

is used, implemented almost verbatim from the
one specified in RFC 2402. We’ll briefly sum-
marize.

The sender always increments the sequence
number of frames it transmits. There is only
one instance of a sequence number in the life-
time of the sequence, which starts at 1. The
receiver maintains a window of sequence num-
bers that will be accepted. As sequence num-
bers arrive in that window they are marked off.
If that sequence number arrives again its frame
will be discarded. If a sequence number arrives
that is past the window, the window is shifted
so that the largest acceptable sequence number
is that of the new arrival. This scheme is simple
to implement with bitfields and can withstand
reordering and large periods of packet loss on
the network.

Care must be taken so that the sequence num-
bers do not wrap. In the case of tunnel and
link payload sequence numbers, the sequence
is bound to a key context. When the key con-
texts are cycled, the sequence is reset to 1. This
can be forced when the sequence gets close to
wrapping before policy would otherwise dic-
tate that key contexts would be cycled.

9 Network Discovery and Topology
Flooding

Cebolla uses a topology flooding scheme
which is based on OSPF. Clients must be able
to discover nodes in the mesh to communicate
through. The clients may wish to make compli-
cated decisions about which nodes to trust, and
should be able to trust the information they use
in making this decision.

At regular intervals, each node broadcasts a
Link State Announcement to each neighbour it
has an established link with. These announce-
ments describe the node’s static attributes, as

Ottawa Linux Symposium 2002 63

well as its current connectivity information.
These announcements are signed and contain
a sequence number.

As a neighbour receives an announcement, it
stores the announcement if it is newer than the
previous announcement from that neighbour,
and sends back an acknowledgment. If the an-
nouncement was new, the neighbour then sends
the announcement to all its neighbours. The
announcement is not forwarded to the neigh-
bour it was just received from. Announcements
are re-sent until their receipt is acknowledged.

The announcement collections of each node
are sorted and served via the rsync protocol[9],
which allows clients to receive deltas of the
largely static information efficiently.

The mechanism can be boot strapped by nearly
any out-of-band medium that can communicate
IP addresses: email, web pages, DNS, etc.

9.1 topology attacks and accountability

Topology discovery raises many risks. A cor-
rupt node could induce bad announcements
into the network. A corrupt node could al-
ter the flow of announcements it transits to
the rest of the network. A corrupt node could
participate honestly with the rest of the nodes
in topology flooding and feed bad information
only to clients.

Public key signatures bring a simple first layer
of confidence to the system. Announcements
can be confirmed to come from the same agent
as last time, and trust can be established be-
tween that agent and any existing public key
trust metric system.

The distributed publication of the connectivity
announcements gives multiple views into the
announcement circulation at multiple points.
This lets clients audit the veracity of the an-
nouncements, possibly anonymously. Dis-

tributed trust metrics can be adopted by using
the sequence numbers to check that all views
of the mesh are consistent with others. The rate
that sequence numbers advance can be checked
to make sure that a node isn’t delaying an-
nouncements. This lets a mesh permit a node’s
entry into the mesh without centralized admis-
sion. Low initial trust increases over time as
behavioral audits confirm that the new node is
honest.

The announcements can be extended so nodes
can describe themselves. Clients can use pa-
rameters like software types, administrative
domains, underlying network connectivity, and
such, to decide which nodes to build a tunnel
with.

10 Acknowledgments

Jerome Etienne should rightfully be consid-
ered an author of any document describing
these protocols—when he didn’t outright de-
sign them they’re only minimally deviating
from his work.

Phil Schwan and Mike Shaver’s contributions
are treasured, as always.

Special thanks are due to Dr. Adam Back, who
never fails to make taking on an interesting
challenge entertaining.

Ulf Moeller, Mike Freedman, Anton Siglic,
Ian Goldberg, and Adam Shostack were kind
enough to humour me by explaining crypto-
graphic principles using small words.

11 Availability

Cebolla should be available under the GPL
from

http://www.zabbo.net/cebolla/

Ottawa Linux Symposium 2002 64

References

[1] David Chaum. Untraceable electronic
mail, return addresses, and digital
pseudonyms.Communications of the
ACM (USA), 24(2), 1981.

[2] Wei Dai. Pipenet. http://www.eskimo.com
/˜weidai/pipenet.txt.

[3] D. Goldschlag, M. Reed, and P. Syverson.
Onion routing for anonymous and private
internet connections.Communications of
the ACM (USA), 42(2):39–41, 1999.

[4] Michael J. Freedman, Emil Sit, Josh
Cates, and Robert Morris. Introducing
tarzan, a peer-to-peer anonymizing
network layer. InProceedings of the 1st
International Workshop on Peer-to-Peer
Systems (IPTPS02), Cambridge, MA,
March 2002.

[5] Shlomi Dolev and Rafail Ostrovsky.
Xor-trees for efficient anonymous
multicast and reception. Technical Report
98-54, 23 1998.

[6] P. Karn and W. Simpson. [rfc 2522]
photuris: Session-key management
protocol, March 1999.

[7] Dan Bernstein. Syn cookies.
http://cr.yp.to/syncookies.html.

[8] Adam Back. Hashcash.
http://www.cypherspace.org/hashcash/,
May 1997.

[9] Andrew Tridgell. Efficient algorithms for
sorting and synchronization.
http://citeseer.nj.nec.com
/tridgell99efficient.html.

SE Debian: how to make NSA SE Linux work in a
distribution

Russell Coker<russell@coker.com.au> ,
http://www.coker.com.au/

Abstract

I conservatively expect that tens of thou-
sands of Debian users will be using NSA SE
Linux [1] next year. I will explain how to make
SE Linux work as part of a distribution, and be
managable for the administrator.

Although I am writing about my work in devel-
oping SE Linux support for Debian, I am using
generic terms as much as possible, as the same
things need to be done for RPM based distribu-
tions.

1 Introduction

SE Linux offers significant benefits for secu-
rity. It accomplishes this by adding another
layer of security in addition to the default Unix
permissions model. This is accomplished by
firstly assigning atype to every file, device,
network socket, etc. Then every process has
a domain, and the level of access permitted
to a type is determined by the domain of the
process that is attempting the access (in addi-
tion to the usual Unix permission checks). Do-
mains may only be changed at process execu-
tion time. The domain may automatically be
changed when a process is executed based on
the type of the executable program file and the
domain of the process that is executing it, or a
privileged process may specify the new domain
for the child process.

In addition to the use of domains and types
for access control SE Linux tracks theidentity
of the user (which will besystem_ufor pro-
cesses that are part of the operating system or
the Unix user-name) and the role. Eachidentity
will have a list of roles that it is permitted to as-
sume, and eachrole will have a list of domains
that it may use. This gives a high level of con-
trol over the actions of a user which is tracked
through the system. When the user runs SUID
or SGID programs the original identity will
still be tracked and their privileges in the SE se-
curity scheme will not change. This is very dif-
ferent to the standard Unix permissions where
after a SUID program runs another SUID pro-
gram it’s impossible to determine who ran the
original process. Also of note is the fact that
operations that are denied by the security pol-
icy [2] have theidentityof the process in ques-
tion logged.

For a detailed description of how SE Linux
works I recommend reading the paper Peter
Loscocco presented at OLS in 2001 [1].

The difficulty is that this increase in functional-
ity also involves an increase in complexity, and
requires re-authenticating more often than on
a regular Unix system (the SE Linux security
policy requires that the user re-authenticate for
change ofrole). Due to this most people who
could benefit from SE Linux will find them-
selves unable to use it because of the difficul-
ties of managing it. I plan to address this prob-
lem through packaging SE Linux for Debian.

Ottawa Linux Symposium 2002 66

The first issue is getting packages of software
that is patched for support of the SE Linux sys-
tem calls and logic. This includes modified
programs for every method of login (/bin/login,
sshd, and X login programs), modifiedcron to
run cron jobs in the correct security context,
modified ps to display the security context,
modified logrotate to keep the correct context
on log files, as well as many other modified
utilities.

The next issue is to configure the system such
that when a package of software is installed the
correct security contexts will be automatically
applied to all files.

The most difficult problem is ensuring that
configuration scripts get run in the correct se-
curity context when installing and upgrading
packages.

The final problem is managing the configura-
tion files for the security policy.

Once these problems are solved there is still
the issue of the SE Linux sample policy being
far from the complete policy that is needed in
a real network. I estimate that at least 500 new
security policy files will need to be written be-
fore the sample policy is complete enough that
most people can just select the parts that they
need for a working system.

2 Patching the Packages

The task of the login program is to authenticate
the user,chown the tty device to the correct
UID, and change to the appropriate UID/GID
before executing the user’s shell. The SE
patched version of the login program performs
the same tasks, but in addition changes the se-
curity identifier (SID) on the terminal device
with thechsidsystem call and then uses theex-
ecve_securesystem call instead of theexecve
system call to change the SID of the child pro-

cess. The login program also gives the user a
choice of which of their authorised roles they
will assume at login time.

This is not very different from the regular func-
tionality of the login program and does not re-
quire a significant patch.

Typically this adds less than 9K to the object
size of the login program, so hopefully soon
many of the login programs will have the SE
code always compiled in. For the rest we just
need a set of packages containing the SE ver-
sions of the same programs. So this issue is not
a difficult one to solve and most of the work
needed to solve it has been done.

A similar patch needs to be applied to many
other programs which perform similar opera-
tions. One example iscron which needs to be
modified so cron jobs will be run in the cor-
rect security context. Another example is the
suexecprogram fromApache. An example of a
similar program for which no-one has yet writ-
ten a patch isprocmail.

Programs which copy files also need to have
suitable options for preserving SIDs,logrotate
and thefileutils package (which includescp)
have such patches,cpio lacks such a patch, and
there is a patch fortar but it doesn’t apply to
recent versions and probably needs to be re-
written.

3 Setting the Correct SID When
Installing Files

When a package of software is installed the fi-
nal part of the installation is running apostinst
script which in the case of a daemon will usu-
ally start the daemon in question. However if
the files in the package do not have the correct
SIDs then the daemon may not be able to run,
or will be unable to run correctly!

Ottawa Linux Symposium 2002 67

The Debian packaging system does not cur-
rently have any support for running a script af-
ter the files of a package are installed but be-
fore thepostinstscript. There have been dis-
cussions for a few years on how best to do this,
as I didn’t have time to properly re-writedpkg
I instead did a quick hack to make it run scripts
that it finds in/etc/dpkg/postinst.d/before run-
ning thepostinstof the package.

When installing an SE Linux system the pro-
gramsetfilesis used to apply the correct SIDs
to all files in the system. I have written a patch
to make it instead take a list of canonical fully-
qualified file names on standard input if run
with the -s switch, which is now included in
the NSA source release.

The combination of thedpkgpatch and theset-
files patch allow me to solve the basic prob-
lem of getting the correct SIDs applied to files,
my script just queries the package management
system for a list of files contained in the pack-
age and pipes it through tosetfilesto set the
SID on each file.

The next complication is setting the correct
SID for thesetfilesprogram, by default it gets
installed with the security typesbin_tbecause
that is the type of the directory it is installed
in. However in my default policy setup I have
not given thedpkg_t domain (which is used
by thedpkgprogram when it is run adminis-
tratively) the privilege of changing the SID of
files. So thesetfilesprogram needs to have the
typesetfiles_exec_tto trigger an automatic do-
main transition to thesetfiles_tdomain.

To solve this issue I have thepreinst script
(the script that is run before the package is
installed) of theselinux package rename the
/usr/sbin/setfilesto /usr/sbin/setfiles.oldon an
upgrade. Then the/etc/dpkg/postinst.d/selinux
script will run the old version if it exists.

Here’s the relevant section of the

selinux.preinstfile:

if [! -f /usr/sbin/setfiles.old -a \
-f /usr/sbin/setfiles]; then

mv /usr/sbin/setfiles \
/usr/sbin/setfiles.old

fi

Table 1 shows the contents of
/etc/dpkg/postinst.d/selinux. The first pa-
rameter to the script is the name of the package
that is being installed. Also I have"grep ..."
included because setfiles currently has some
problems with blank lines and/. which dpkg
produces.

4 Running Configuration Scripts
in the Correct Context

When a SE Linux system boots the process
init is started in the domaininit_t. When
it runs the daemon start scripts it uses the
scripts/etc/init.d/rcand/etc/init.d/rcSon a De-
bian system (on Red Hat it is/etc/rc.d/rcand
/etc/rc.d/rc.sysinit). So these scripts are given
the typeinitrc_exec_tand there is a ruledo-
main_auto_trans(init_t, initrc_exec_t, initrc_t)
which causes a transition to theinitrc_t do-
main. The security policy for each daemon will
have a rule causing a domain transition from
theinitrc_t domain to the daemon domain upon
execution of the daemon. This all happens as
thesystem_uidentity and thesystem_rrole.

When the system administrator wants to start a
script manually they use the programrun_init
which can only be run from thesysadm_tdo-
main, it re-authenticates the administrator (to
avoid the possibility of it being called by some
malicious code that the administrator acciden-
tally runs) before running the specified script
assystem_u:system_r:initrc_t.

This works fine when the daemon start script
is quite simple (most such start scripts just

Ottawa Linux Symposium 2002 68

#!/bin/sh

make -s -C /etc/selinux file_contexts/file_contexts

SETFILES=/usr/sbin/setfiles
if [-x /usr/sbin/setfiles.old]; then

SETFILES=/usr/sbin/setfiles.old
fi
dpkg -L $1 | grep ^/.. | $SETFILES -s \

/etc/selinux/file_contexts/file_contexts
if [-x /usr/sbin/setfiles.old -a "$1" = "selinux"]; then

rm /usr/sbin/setfiles.old
fi

Table 1: Contents of/etc/dpkg/postinst.d/selinux.

check whether the daemon is already running
and then run it with appropriate parameters).
However this doesn’t work for complex scripts,
which may copy files, change sysctl entries via
/proc, and do many other things. An example
of this is thedevfsdpackage where the start
script creates device nodes for device drivers
that lack kernel support fordevfs. Getting this
to work correctly required that the code for
device node creation be split into a separate
file with the same SID as the main daemon
(devfsd_exec_t) which causes it to run in the
same domain as the daemon (devfsd_t). Such
changes will probably have to be made to about
5% of daemon start scripts.

But that is part of the standard proceedure of
correctly setting up SE Linux. The package
specific part comes when the scripts have to be
started from the package installation. To get
the correct domain (initrc_t) for the scripts I
use the ruledomain_auto_trans(dpkg_t, etc_t,
initrc_t) which causes thedpkg_t domain to
transition to theinitrc_t domain when a script
of typeetc_t is executed. Now the hard part is
getting the identity and the role correct when
runningdpkg. For this purpose I have written
a customised version ofrun_init to change to
the context to system_u:system_r:dpkg_t,

system_u:system_r:apt_t, or sys-
tem_u:system_r:dselect_t, for the programs
dpkg, dselect, andapt-getrespectively.

Theapt_tanddselect_tdomains are only used
for selecting and downloading packages, and
then executingdpkg, which triggers an auto-
matic transition to thedpkg_tdomain.

5 Managing the Configuration
Files

For normal configuration files in Debian (al-
most every file under /etc and some files in
other locations) the file is registered as aconf-
file in the packaging system, and the package
status file contains the MD5 checksum of the
file. If a file is changed from its original con-
tents (according to an MD5 check) at the time
the package is upgraded and if the new ver-
sion has a different set of data for the file than
that which was provided by the old version of
the package (according to MD5) then the user
will be asked if they want to replace the old
file (with a default of no). However if the new
version of the package contains different con-
tent and the old content was not changed, then
the user will get the new content without even

Ottawa Linux Symposium 2002 69

being informed of the fact!

This is OK for many files, but the idea of a file
from your audited security configuration being
replaced with one you’ve never seen is not a
pleasant one! This is only the first problem
with managing policy files, the next problem is
the size of the database for the sample policy.
If you are using an initial RAM disk (initrd)
then you must have the policy database on the
initrd. The default initrd size of 4 megabytes is
not large enough to accomodate the usual mod-
ules and the complete sample policy.

So what we need to solve this is a way of
having a set of sample policy files (one per
domain), of which not all will be used, and
when new policy files are added or existing
files are changed the user must be prompted
as to whether they want to add the new files
or apply the changes. Also when adding new
policy the matching entries have to be added to
the database used bysetfilesfor setting the file
context.

In the latest versions of the sample pol-
icy the Makefile creates a configuration file
for setfilesto match the program configura-
tion files used. For every application policy
file domains/program/%.tethe matching file
file_contexts/program/%.fcwill be used as part
of the configuration. This change will solve the
issue of determining the configuration forset-
files, but it doesn’t entirely solve the problem.
One issue with this is that when a file is added
to or removed from the configuration the ap-
propriate changes need to be made to the file
system. If you make an addition to the pol-
icy before installing a new package (the cor-
rect proceedure) then you can usually get away
without this as long as none of the files or di-
rectories previously existed, however this is not
always the case, especially when files are di-
verted or when dealing with standard direc-
tories such as/var/spool/mailwhich will ex-

ist even if you have not installed any software
to use them! It should not be that difficult to
write a program to relabel the files matching
the specifications of the added policy, the ques-
tion is whether policy additions are common
enough to make it worth saving the effort of a
relabel. Also there’s the risk that a bug in such
a program (or its use) could potentially cause a
security hole.

The security policy is comprised of one con-
figuration file per application (or class of ap-
plication, some domains such as the DHCP
client domaindhcpd_t are used by multiple
programs which perform similar functions).
Also sometimes an application requires mul-
tiple domains which will therefore be defined
in the one file, for example my current pol-
icy for Postfix has eleven domains (which is
excessive, I plan to reduce it to three or four
once I’ve determined exactly what is required).
One problem I faced with this is the issue
of what to do when one domain needs to in-
teract with another domain, for example the
pppd process often needs to runsendmail -q
to flush the mail queue when it establishes a
connection. This requires the policy statement
domain_auto_trans(pppd_t, sendmail_exec_t,
sysadm_mail_t), previously such a statement
would be put in either thesendmail.tefile or
the pppd.tefile, thus making one of them de-
pend on the other. This is a bad idea because
there’s no reason for either of these programs
to depend on the other. The solution I devised
is based on the M4 macro language (which was
already used for simpler macro functionality in
producing the policy file). I created a script to
define a macro with the name of each appli-
cation policy file that is used. So the solution
to the PPP and Sendmail problem is to put the
following in thepppd.tefile:

ifdef(‘sendmail.te’,
‘domain_auto_trans(pppd_t,

sendmail_exec_t, sysadm_mail_t)’)

Ottawa Linux Symposium 2002 70

The next problem, is how to effectively manage
things so that when I ship a new and improved
sample policy the administrator can update it
without excessive pain.

The current method involves runningdiff -ru
and then copying files if you like the changes.
This is excessively painful even when manag-
ing one or two SE Linux machines! So it ob-
viously won’t scale to serious production. I
plan to write a Perl script to manage this, the
first thing it has to do is track when the ad-
ministrator doesn’t want a policy file. When
a file is removed then the fact that the user has
chosen not to have that file installed should be
recorded, and they should not be prompted to
re-install it on the next upgrade. However if
the sample policy is upgraded and a new file
has been added then they should be asked if
they want to install it. Then when a file in the
sample policy changes and it is a file that is in-
stalled the user should be asked if they want the
new file copied over their existing file (and they
should be provided with adiff to show what the
changes would be). Finally if such changes in-
volve the file configuration forsetfilesthen the
user should be asked whether they want to re-
label the system.

The people who are working on Red Hat pack-
aging are considering other ways of manag-
ing the versions of configuration files, one of
which involves having symbolic links pointing
to the files to be used, if you decide to use your
own version instead of one of the supplied pol-
icy files then you can change the sym-link.

6 Managing Device Nodes

In Linux there are two methods of managing
device nodes. One is the traditional method of
having /devbe a regular directory on the root
file system and have device nodes created on it
with mknod, the other is thedevfsfile system

which allows the kernel to automatically cre-
ate device nodes while thedevfsdprocess au-
tomatically assigns the correct UID, GID, and
permissions to them.

On a traditional (non-devfs) system running SE
Linux the device nodes will be labelled in the
same way as any other file. On a devfs system
things are different, the devfs policy database
contains rules for labelling device nodes. How-
ever this has some limitations, one being that
when the policy database does not have an en-
try for the device node at the time it is cre-
ated, then it will never be labelled. Another
is that everytype listed in the devfs configu-
ration rules must be defined, which can cause
needless dependencies.

To address these issues I wrote a module for
devfsd which adds support for SE Linux. This
allows you to change the mapping of SIDs to
device nodes and re-apply it at any time, and if
a security context listed in the configuration file
does not exist in the policy then an error will be
logged and the system will continue working.

This is especially useful for the case of anini-
trd as the types for all the possible device nodes
won’t need to be in the ram disk.

7 Work To Be Done

Initial RAM Disk

When using an initrd to boot a modular ker-
nel the security policy database must be stored
on the initrd. The problem is that the default
initrd size is 4M, which does not leave much
space when libc6 is included, often not enough
for the policy you want. Also even if the pol-
icy does fit you won’t really want to have such
a large initrd image. If you are installing SE
Linux on a single PC, or even on a network of
similar PCs then you are best advised to build
a kernel with all modules needed for booting

Ottawa Linux Symposium 2002 71

statically linked and not use an initrd. How-
ever this is not possible for a distribution ven-
dor who has to support a huge variety of hard-
ware.

Another problem with using an initrd for stor-
ing the policy is that when you generate a new
policy you then have to regenerate the initrd
to avoid having your changes disappear on the
next boot, of course a boot script could easily
load the updated policy from the root file sys-
tem before going to multi-user mode. But it is
wasteful to have a large policy on the initrd that
you then discard before ever using much of it.

The solution is to have a small policy that con-
tains all the settings needed for either the first
stage of boot, or alternately for running recov-
ery tools in case a failure prevents the machine
from entering multi-user mode. Then after the
machine has passed the first stages of the boot
process a complete policy can be loaded from
the root file system, as long as the two poli-
cies don’t conflict in any major way this should
work well. NB A Major policy conflict is a
situation where the initrd defines domains that
aren’t defined in the new policy and processes
are executed in such a domain.

The latest release of SE Linux supports auto-
matically re-loading the policy when the real
root file system is mounted. Now all that needs
to be done is for someone to write a mini-
policy to install on the initrd.

Polishing run_init

Stephen Smalley has suggested that we de-
velop arun_init program that incorporates the
functionality of my modified program as well
as of the originalrun_init program in a more
generic fashion. It is apparent that other peo-
ple will have similar needs for programs to ex-
ecute programs under a different domain, role,
and maybe identity. It is better that one pro-

gram do this than to have many people writing
programs for such things.

Also currently my program is hard-coded for
the names of the Debian administration pro-
grams. An improved program should handle
the needs of Debian, RPM, and the regular
run_init functionality.

Writing Sample Policy Files

Currently any serious system will require pol-
icy files that are not in the sample policy. This
forces everyone who uses SE Linux to start
by writing policy files (which is the most dif-
ficult and time consuming task involved with
the project). Currently we are writing new
sample policy files for the variety of daemons
and applications, and developing new macros
for writing policy files quickly. With the new
macros policy files are on average half the size
that they used to be (and I aim to reduce the
size again by new macros). The macros al-
low short policy files which are easy to under-
stand, and therefore the user can easily deter-
mine how to make any required changes, or
how to write a policy file for a new program
based on existing programs.

8 Obtaining the Source

Currently most of my packages and source are
available at http://www.coker.com.
au/selinux/ however I plan to eventually
get them all into Debian at which time I may
remove that site.

I have several packages in the unstable dis-
tribution of Debian, the first is thekernel-
patch-2.4-lsmand kernel-patch-2.5-lsmpack-
ages which supply the Linux Security Mod-
ules http://lsm.immunix.org/ kernel
patch. That patch includes SE Linux as well
as LIDS and some of the OpenWall function-

Ottawa Linux Symposium 2002 72

ality. When I have time I back-port patches
to older kernels and include new patches that
the NSA has not officially released, so often
my patches will provide more features than
the official patches distributed by the NSA
from http://www.nsa.gov/selinux/
index.html or the patches distributed by
Immunix. However if you want theofficial
patches then these packages may not be what
you desire.

From the selinux-smallarchive I create the
packagesselinuxand libselinux-devwhich are
also in the unstable distribution of Debian.

9 Acknowledgments

I would like to thank Stephen Smalley for be-
ing so helpful when I was learning about SE
Linux, and Dr. Brian May for checking my
early packages and giving me some good ad-
vice when I first started.

Also thanks to Dr. May, Stephen Smalley, and
Peter Loscocco for reviewing this paper.

References

[1] Meeting Critical Security Objectives
with Security-Enhanced Linux. Peter A.
Loscocco, NSA,
loscocco@tycho.nsa.gov; Stephen D.
Smalley, NAI Labs, ssmalley@nai.com
http://www.nsa.gov/selinux/

ottawa01-abs.html/

[2] Configuring the SELinux Policy. Stephen
D. Smalley, NAI Labs,
ssmalley@nai.com
http://www.nsa.gov/selinux/

policy2-abs.html/

The Long Road to the Advanced Encryption
Standard

Jean-Luc Cooke
CertainKey Inc.

jlcooke@certainkey.com, http://www.certainkey.com/˜jlcooke

Abstract

This paper will start with a brief background
of the Advanced Encryption Standard (AES)
process, lessons learned from the Data Encryp-
tion Standard (DES), other U.S. government
cryptographic publications and the fifteen first
round candidate algorithms. The focus of the
presentation will lie in presenting the general
design of the five final candidate algorithms,
and the specifics of the AES and how it dif-
fers from the Rijndael design. A presentation
on the AES modes of operation and Secure
Hash Algorithm (SHA) family of algorithms
will follow and will include discussion about
how it is directly implicated by AES develop-
ments.

Intended Audience

This paper was written as a supplement to a
presentation at the Ottawa International Linux
Symposium. The reader should have at least
first year university level knowledge of alge-
bra and physics. Someone with no knowledge
of mathematics can still benefit from this paper
and its associated presentation. This topic of
cryptography is covered lightly. Care is taken
to present enough useful technical information
to be interesting to a technical audience and
beneficial to others.

1 Introduction

Two decades ago the state-of-the-art in
the private sector cryptography was—we
know now—far behind the public sector.
Don Coppersmith’s knowledge of the Data
Encryption Standard’s (DES) resilience to
the then unknown Differential Cryptanaly-
sis (DC), the design principles used in the
Secure Hash Algorithm (SHA) in Digital
Signature Standard (DSS) being case and
point[NISTDSS][NISTDES][DC][NISTSHA1].

The selection and design of the DES was
shrouded in controversy and suspicion. This
very controversy has lead to a fantastic acceler-
ation in private sector cryptographic advance-
ment. So intrigued by the NSA’s modifica-
tions to the Lucifer algorithm, researchers—
academic and industry alike—powerful tools
in assessing block cipher strength were devel-
oped. Some of these tools proved useful in un-
derstanding more about the changes made by
the NSA.

Taking an objective look at the standardization
practices of the USA NSA and NIST organi-
zations, one can make broad assumptions on
where the American state is focusing its crypt-
analytic resources.

Ottawa Linux Symposium 2002 74

1.1 What the NSA/NIST has Taught Us

By the mid-1970’s the private sector began
having an interest in digital cryptography.
Even if the clearly false IBM statement “global
market for computers estimated at 10” had
been proven correct, most of the computers
in operation at the time were terminal servers.
The terminals connected to these servers were
carrying progressively more sensitive data. Fi-
nancial records, payroll information, trade se-
crets, and intellectual property; all crucial to
the success of a business were exposed to the
hot new hobby of wire tapping with gator clips.

Before the US government moved to create
a single encryption standard the private sec-
tor was taking its first steps into design cryp-
tographic algorithms. In what would become
crypto folklore, the NSA quietly send out let-
ters of solicitation to a few hand picked cryp-
tographic experts and laboratories. It is im-
portant to realize that previous to this the only
communication a mathematician would have
with the NSA was in the form of a “cease and
desist or be thrown in jail for conspiracy” let-
ters.

Of the few responses received by the NSA,
only one had actually met the minimum stan-
dards set out by the NSA in their solicita-
tion. The Lucifer block cipher designed by
Don Coppersmith, Horst Fiestel and company
at IBM was the winner practically by default.

There were two distinct differences between
the Lucifer algorithm submitted by IBM and
the final DES design.

• The effective key space was reduced by
several orders of magnitude.

• The core substitution boxes were re-
designed.

These changes were made without comment

from IBM or the NSA. Reducing the effec-
tive key strength of the algorithm and the omi-
nous change to possibly the single most crucial
sub-component of the algorithm had everyone
second-guessing the DES.

In the subsequent years after the 1976 DES
announcement, Shamir and Biham published
their paper on Differential Cryptanalysis (DC)
(1994, ISBN-0387979301). In this paper, the
two cryptographers of RSA fame (‘S’ to be pre-
cise), outlined how to correlate input changes
to the output of several variants of the DES. At
then end of the day, the Lucifer algorithm fell
to the attack of DC while DES remained unbro-
ken. To the shock of sceptics, the NSA appears
to have not weakened the DES for their evil
purposes but in fact made it impervious to an
attack not to be publicized for another eighteen
years.

After the announcement of DC, the Lucifer
co-designer Don Coppersmith confessed to
knowledge of DC at the time of DES standard-
ization. This kept the sky from falling on the
heads of the crypto sceptics as you can well
imagine.

2 Obsolescence of the DES

A 56bit key space did not provide sufficient
protection in lieu of the personal computer ex-
plosion of the late 1980’s and 1990’s. The
threat of attack was no longer from a sin-
gle powerful computer, but from thousands of
commodity computers coordinating their ef-
forts. In comes the Triple-DES. Encrypting the
data with three distinct keys resulted in a three-
fold increase in key material, a three-fold in-
crease in computational effort required for en-
cryption, and a5.2 × 1033 increase in the key
space.

Ottawa Linux Symposium 2002 75

Figure 1: The DES Cipher

E = 3DESk1,k2,k3(D)
E = DESk1(DES−1

k2 (DESk3(D)))
(1)

By the mid 1990’s, TripleDES was no longer
sufficient. The security of the algorithm was
assumed to be good, but there were other short-
comings with TripleDES.

TripleDES was too slow. The private sector’s
obsession with higher digital communication
bandwidths had made the integration of en-
cryption at the data link layer far too costly.
Economic conditions then predicted that all
data would be encrypted at least once by 2006.
Current economic conditions make this predic-
tion conservative.

Private sector dependence on secure data com-
munication was going to continue to grow be-
yond the capabilities of DES/TripleDES. A
new standard with greater security and a long

Figure 2: The 3DES Cipher

Figure 3: The OSI Network Stack

Ottawa Linux Symposium 2002 76

lifetime needed to be decided to mitigate the
impact of migrating to a new standard. “We
need to act fast before we’re in serious trou-
ble.”

Another issue with DES and subsequently
TripleDES, was a design limitation. DES
was not designed to be efficient in software.
The ubiquity of software in modern computer
and communication technology dictated an ef-
ficient hardware as well as software implemen-
tation for this new standard.

3 AES Round One

Contrasting the algorithm solicitation process
used in selecting the DES, a very public an-
nouncement was made by the NSA/NIST for
cipher designs. Appearing at private sector
security and cryptography tradeshows, it was
made very clear this time the standard was go-
ing to be a very public affair.

The NSA/NIST set out minimum requirements
for block cipher submission[NISTAESWWW]

AESCD1

AESCD2

AESCD3

.

• Size efficiency of hardware/software im-
plementation

• Speed efficiency of hardware/software
implementation

• M inimum 128bit block sizes

• Key sizes up to 256 bits

• Resilience to all known modern attacks.

Fifteen algorithms met these requirements.

• CAST-256 - Entrust Technologies Ltd.

http://www.entrust.com/

AESCD1

AESCD2

– The Communications Security
Establishment (CSE)—Canadian
equivalent to the US NSA—has
adopted the CAST5 algorithm as
their confidential government data
encryption algorithm.
CSE website:
http://www.cse.dnd.ca/

– CAST5 is synonymous with CAST-
128

– CAST-256 is an extension to
CAST5 for inclusion to the AES

• Crypton - Future Systems

http://www.future.co.kr/

AESCD1

AESCD2

– At the time of AES, this algorithm
submission would be allowed to
ENTER the US, but not leave. Is
something wrong here?

• DEAL - Outerbridge, Knudsen

Ottawa Linux Symposium 2002 77

http://www.ii.uib.no/˜larsr/newblock.html

AESCD1

AESCD2

– This is one of two submission co-
authored by Knudsen. See also Ser-
pent!

– At the time of AES, this algorithm
submission would be allowed to EN-
TER the US, but not leave. Is some-
thing wrong here?

• DFC - Centre National pour la Recherche
Scientifique - Ecole Normale Superieure

http://www.dmi.ens.fr/˜vaudenay/dfc.html

AESCD1

AESCD2

– Vive la resistance!

– At the time of AES, this algorithm
submission would be allowed to EN-
TER the US, but not leave. Is some-
thing wrong here?

• E2 - Nippon Telegraph and Telephone

http://info.isl.ntt.co.jp/e2/

AESCD1

AESCD2

– At the time of AES, this algorithm
submission would be allowed to EN-
TER the US, but not leave. Is some-
thing wrong here?

• FROG - TecApro

http://www.tecapro.com/aesfrog.htm

AESCD1

AESCD2

– Georgoudis is an amateur cryptogra-
pher, the only one in Puerto-Rico in
all likelihood! FROG was the first
cipher he ever designed, and it was
accepted to the AES process!

– At the time of AES, this algorithm
submission would be allowed to EN-
TER the US, but not leave. Is some-
thing wrong here? Or is Puerto-
Rico’s special status with the US ex-
empt them for this? Isn’t it nice we
live in the “free world” and don’t
have to worry about such ugliness?

• HPC - Schroeppel

http://www.cs.arizona.edu/˜rcs/hpc/

AESCD1

AESCD2

– An academic’s block cipher.
Schroeppel’s paper goes into great
detail on the theoretical advantages
of his Hasty Pudding Cipher. Not a
very practical cipher, underlines the
‘openness’ of the AES submission
process.

– Bonus question: Hasty Pudding and
Harvard University - what’s the con-
nection?

Ottawa Linux Symposium 2002 78

• LOKI97 - Brown, Pieprzyk, Beberry

http://www.unsw.adfa.edu.au/˜lpb
/research/loki97/

AESCD1

AESCD2

– At the time of AES, this algorithm
submission would be allowed to EN-
TER the US, but not leave. Is some-
thing wrong here?

• MAGENTA - Deutsche Telekom

no url available

AESCD1

AESCD2

– Author unknown . . . and for good
reason! At the first AES conference,
the presenter from DT had night-
mare of nightmares happen. The
MAGENTA cipher was cracked in
real-time! Discussions in the au-
dience between Biham and others
led to a mountable attack before the
presentation was even over! A pa-
per was written and published within
twenty-four hours. And the kicker
of it all was there were rumours that
MAGENTA had been used in pro-
duction DT equipment for years but
the algorithm was never published.
Chalk one up to security though non-
obscurity.

– At the time of AES, this algorithm
submission would be allowed to EN-
TER the US, but not leave. Is some-
thing wrong here?

• MARS - IBM

http://www.research.ibm.com/security
/mars.html

AESCD1

AESCD2

– The Lucifer/DES design team (most
of it) returns. A lot was expected
from this team.

• RC6 - RSA Laboratories

http://www.rsasecurity.com/rsalabs/aes/

AESCD1

AESCD2

– RC6, based on RC5, based on
RC4. Principle designer Ron
Rivest, the R in RSA, the man
behind MD1/2/3/4/5, RC1/2/3/4/5/6
and many other publications. If
there ever was a crypto rock star, this
is he.

• Rijndael - Daeman, Rijman

http://www.esat.kuleuven.ac.be/˜rijmen
/rijndael/

AESCD1

AESCD2

Ottawa Linux Symposium 2002 79

– Two Flemish Belgians (as apposed
to the French Belgians) designed Ri-
jndael. Cinderella story: no big
names, modest track record, and Eu-
ropean nationalities.

– At the time of AES, this algorithm
submission would be allowed to EN-
TER the US, but not leave. Is some-
thing wrong here?

• Safer+ - Cylink Corporation

mailto:williams.chuck@cylink.com

AESCD1

AESCD2

– Based on the Safer cipher.

• Serpent - Anderson, Biham, Knudsen

http://www.cl.cam.ac.uk/˜rja14
/serpent.html

AESCD1

AESCD2

– Strong cipher, big name authors. Bi-
ham co-authored the famous paper
on Differential Cryptanalysis. This
is one of two ciphers Knudsen co-
authored in the AES—see DEAL.

• TwoFish - Counterpane (Schneier,
Kelsey, Whiting, Wagner, Hall, Ferguson)

http://www.counterpane.com/twofish.html

AESCD1

AESCD2

– Based loosely on BlowFish. B.
Schneier we know from his seminal
introductory work on cryptography
“Applied Cryptography” and his au-
thoring of the most widely analyzed
private sector cipher BlowFish.

4 AES Round Two

The finalists are:

• MARS

– Stands for: Multiplication Addition
Rotation Subtraction. These are the
primitive operations used by the ci-
pher.

– No surprise the cipher made it this
far. Don Coppersmith and team have
the longest track record and the dis-
tinction of designing the DES.

• RC6

AESCD3

– No surprise here.

– Stands for: Ron’s Cipher number
6. Ron Rivest has written many
ciphers the entire world uses daily.

Ottawa Linux Symposium 2002 80

Remember Distributed.net had a dis-
tributed effort to crack RC5? Well
RC6 makes RC5 look easy to crack,
and difficult to implement.

– The frightening simplicity of the
RC6 encryption operation can be
summed up in 10 lines of ANSI-C
code for a 32-bit computer:

rc6_encrypt() {
{A,B,C,D} = plaintext
B=B + S[0];
D=D + S[0];
for (i=0; i<r; i++) {

t=ROL(B * (2*B + 1), 5);
u=ROL(D * (2*D + 1), 5);
A=ROL(A^t, u) + S[2*i];
C=ROL(C^u, t) + S[2*i+1];
{A,B,C,D}={B,C,D,A};

}
A=A + S[2*r + 2];
C=C + S[2*r + 3];

}

And the decryption operation:

rc6_decrypt() {
{A,B,C,D} = ciphertext
C=C - S[2*r + 3];
A=A - S[2*r + 2];
for (i=r; 0<=i; i--) {

{A,B,C,D} = {D,A,B,C};
u=ROL(D * (2*D + 1), 5);
t=ROL(B * (2*B + 1), 5);
C=ROR(C - S[2*r +1],t)^u;
A=ROR(A - S[2*r],u)^t;

}
D=D - S[1];
B=B - S[0];

}

– Now don’t go off and use this. This
cipher is trademarked and patented!
The AES process demanded the
winning cipher be unencumbered by
intellectual property restrictions in
all world markets (US export laws
don’t count?). RSA Labs explained
in their submission that if and only if
RC6 were to be selected as the AES

would they wave royalties, other-
wise they only allow use of RC6 for
research and educational purposes.

• Rijndael

AESCD3

– The cipher name is a play on words
and the author’s names. If you’re
Flemish I’d like to hear the explana-
tion. Many people can’t pronounce
the cipher properly and are happy
they won so they can just call it
“AES.” A Canadian wrote to the au-
thors early in the AES process and
suggested renaming the cipher to
“Bob.”

– Unlike RC6 Rijndael was developed
in academia. There were never any
IP restrictions.

• Serpent

AESCD3

– No surprise here.

– The Linux encrypted file system
loop back device had jumped the gun
and chose Serpent as the cipher of
choice. Newer versions of the en-
crypted file system support the Rijn-
dael cipher.

• TwoFish

AESCD3

Ottawa Linux Symposium 2002 81

Figure 4: High level design of all AES finalists

– No surprise here.

– Those who know Bruce know he
doesn’t have a good chance of win-
ning a seat on the United Nations if
he ever chose to run. But still, cryp-
tographers respect his abilities more
than his tact and Two Fish made it
this far on its own merits.

All five finalist algorithms were of excellent
design. At a high level, they were all very sim-
ilar.

• Employed a strong key expansion algo-
rithm

• Pre- and post-whitening to protect the in-
ner cipher rounds from “unfolding”

• Judicial combinations of linear and differ-
ential operations to thwart any differential
or linier cryptanalysis

• Constructed from sound mathematical
principles

5 The Winner - Rijndael

A Flemish cipher chosen to be an
American standard, what is the world coming
to? After the last AES conference where the
five finalists presented their closing comments,
the NSA/NIST distributed a questionnaire:

Figure 5:2nd AES Conference Survey

• ‘ ‘If only one algorithm were to be selected
as the AES, which should it be?”

• ‘ ‘If a back-up algorithm were to be se-
lected, which should it be?”

Results from question one showed a clear pref-
erence for Rijndael, Serpent coming in a dis-
tant second, and MARS, RC6 and TwoFish ac-
cumulating few votes combined than Serpent.

The four finalists were not as favoured to be-
come the AES for several reasons.

• RC6’s simplicity in software came at an
unacceptable cost to hardware. In smart-
cards, efficient 32bit multiplication con-
sumes far too much surface area.

• MARS was a strong cipher, with a very
complex structure that was not conducive
to straightforward analysis. Like RC6, it
also used 32bit multiplies.

• Serpent’s popularity was justified, their
design used the DES s-boxes so hotly con-
tested for the past two decades. These S-
boxes have been so heavily analyzed (sig-
nificantly by one of the Serpent authors)
that it would simply be unwise to create a

Ottawa Linux Symposium 2002 82

whole new net of S-boxes. And for you
Ditributed.Net people, the cracking effort
which brute forced a DES key in 22 hours
used an optimization technique called “bit
slicing.” This technique performed 32
parallel 4x4 DES S-box substitutions in
only a few instructions. Reducing each S-
Box to a Karnough map of bit-wise oper-
ators and performing transformations on
four 32bit words is how the optimization
was accomplished. Effectively transform-
ing a 32bit Single Instruction Single Data
(SISD) processor into a Single Instruction
Multiple Data (SIMD) processor. Serpent
used this “bit slicing” technique on its
128bit (4 x 32bit) blocks. They overcame
the speed limitation of DES by using the
AES block size requirement and a modern
optimization technique. Quite clever!

• TwoFish’s limitations lay in the extra
overhead required for full speed optimiza-
tion. A key and block dependent set of
lookup tables are created at the start of the
encryption/decryption operation.

Rijndael’s design was very tight. Not as sim-
ple to implement in software as RC6, but the
overall simplicity of its sub-components made
it the clear favourite. Hardware implementa-
tions could be made so small, that two parallel
implementations of the Rijndael algorithm can
fit on a single 8-bit smart card!

5.1 One Plus One Equals Zero

The cipher achieves its small footprint and sim-
plicity from its use of Galois Field (GF) the-
ory. Also known as “primitive polynomials”
or linier feedback shift registers (LFSR), arith-
metic in GF requires a minimum of hardware
resources—the principal motivation for their
use in cell phone and network telecommunica-
tions.

To understand how GF works, start by forget-
ting everything you learned in grade school—
for many of us this is easily done. Next, under-
stand that arithmetic in GF is undefined unless
you specify the field. In Rijndael this field is
calledGF (28). Meaning, there are 256 possi-
ble values, each value represented by 8 bits, no
7 or 9 bit values exist inGF (28).

There are several ways of representing values
in GF below we demonstrate a few:

01010101 = ′55′

= x6 + x4 + x2 + 1
10101010 = ′AA”

= x7 + x5 + x3 + x
11110001 = ′F1′

= x7 + x6 + x4 + x5 + 1

(2)

We define the addition operation. InGF (28)
this is what we commonly know as the
explosive-or (XOR) operation.

C = A + B
00000000 = 00000001 + 00000001
00010001 = 00010000 + 00000001

(3)

Notice addition and subtraction are identical in
this “new math.”

1 + 1 − 1 = 1
1 XOR 1 XOR 1 = 1

(4)

Next, we define the “multiply by x” operation.
This is where things get a bit strange. To keep
closure inGF (28) we need to define a primi-
tive polynomial (analogous to prime numbers
in an integer field) to “divide” our result by to
extract our “remainder.”

Multiplying a GF (28) polynomial by x is as
simple as sifting the bits to the left by one.

Ottawa Linux Symposium 2002 83

C = A • x
x3 + x2 + x = x2 + x + 1 • x

00001110 = 00000111 • 00000010
′0D′ = ′07′ • ′02′

(5)

In the case where A’s most significant bit(x7)
is high, we immediately know the value will
no longer be inGF (28). We perform a modulo
operation with our primitive polynomial on this
new C value to return it toGF (28).

P = x8 + x4 + x3 + x + 1
= 100011011
= ′11B′

(6)

Notice that ‘00’ will always map itself back to
‘00’ and only after 255 multiplications by ‘02’
will a value return to its starting value. (Equa-
tions 6 and 7.)

Using Knuth’s binary exponentiation tech-
nique where successive squaring of B are used
to calculateab in log2(b) loops.

Knuth_modExp(a,b) {
rslt = 1;
while (b != 0) {

if (b & 1) rslt = rslt * a;
a = a * a;

}
return rslt;

}

Using this same technique of binaryGF (28)
multiplication where successive multiplica-
tions by x are used to calculatea • b.

xtime(x) {
if (x & 0x80)

return (x << 1) ^ 0x1b;
else

return (x << 1);

Figure 6: The Rijndael ByteSub Layer

}
gf8_mult(a,b) {

rslt = 1;
while (b != 0) {

if (b & 1) rslt = rslt ^ a;
a = xtime(a);

}
return rslt;

}

You now know how to do math in the crazy
world of Galois Fields.

5.2 Inside Rijndael

The Rijndael algorithm’s round function con-
sists of 4 layers:

• ByteSub(data)

• ShiftRow(data)

• M ixColumn(data)

• BlendKey(data,exp)

5.2.1 ByteSub

This operation performs a byte level substitu-
tion. Unlike DES, this substitution is based on
a single bijective transformation defined below.
See Figure 6 and Equation 8.

5.2.2 ShiftRow

This layer does not alter the value of the data,
it simply moves it about in preparation for later

Ottawa Linux Symposium 2002 84

C = A • x mod P
= 10000001 • x mod P
= ′81′ • ′02′ mod ′11B′

= 100000010 mod 100011011
= 100000010 − 100011011
= 100000010 XOR 100011011
= 00011001

(7)

y0

y1

y2

y3

y4

y5

y6

y7

=

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

x0

x1

x2

x3

x4

x5

x6

x7

+

1
1
0
0
0
1
1
0

(8)

Figure 7: The Rijndael ShiftRow Layer

encryption rounds. It is required to have every
bit of input effect every bit of output. See Fig-
ure 7.

5.2.3 MixColumn

This operation is a bit more complex. Defin-
ing a column as a polynomial ofGF (28) co-
efficients, a cross product of this value by a
constant polynomial co-prime tox4 + 1 is per-
formed. What did I mean by that?

A column of Rijndael data contains 4 bytes.
Each byte represents a polynomial inGF (28).
The column however represents a polynomial
of polynomials. When two numbers are co-
prime, they do not share any factors other than
1, this applies to all number fields, not just inte-

gers. The requirement of co-primality tox4 +1
is required to make this transformation invert-
ible. Invertible operations are nice to have if
you ever want to recover the data you’re en-
crypting! See Figure 8 and Equations 9, 10,
11, 12, 13, and 14.

c(x) = ′03′x3 +′ 01′x2 +′ 01′x1 +′ 02′x0

(9)

b(x) = c(x)⊗ a(x) (10)

b0

b1

b2

b3

 =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

a0

a1

a2

a3

 (11)

d(x) = ′0B′x3 +′ 0D′x2 +′ 09′x1 +′ 0E ′x0

(12)

b(x) = d(x)⊗ a(x) (13)

Ottawa Linux Symposium 2002 85

Figure 8: The Rijndael MixColumn Layer

Figure 9: The Rijndael BlendKey Layer

a0

a1

a2

a3

 =

0E 0D 0B 09
09 0E 0D 0B
0B 09 0E 0D
0D 0B 09 0E

b0

b1

b2

b3

(14)

5.2.4 BlendKey

An XOR operation with the expanded key is
performed on each byte in the cipher’s block
of data. See Figure 9 and Equation 15.

b0

b1

b2

b3

 =

e0

e1

e2

e3

 ⊕

a0

a1

a2

a3

 (15)

5.3 The Sub-Round Function

These operations are combined to create the
Rijndael sub-round transformation (see Equa-
tion 16). This sub-round operation is per-
formed anywhere from four to eight times each
round depending on the block size specified.
The Round function is performed any where
from 10 to 14 times depending on the key and
block sizes specified.

5.4 Implementation

Efficient implementation of the Rijndael algo-
rithm lies in efficient implementation of the
Rijndael sub-round transformation. The sub-
round transformation has several layers. The
ByteSub layer is best implemented as a lookup
table, the ShiftRow layer by cyclic array offsets
and the BlendKey layer is a trivial matter.

The MixColumn operation requires a bit more
thought. The following code segment demon-
strates how to mix a single column. This oper-
ation would be performed several times though
a single sub-round which is itself executed sev-
eral times in a single round, which in turn is ex-
ecuted several times in a single block encryp-
tion operation. This procedure will net you a
nice (!) O(n3) time complexity if implemented
in serial!

void MixOneColumn(char a[4]) {
char Tmp, T;
Tmp = a[0] ^ a[1] ^ a[2] ^ a[3];
T = a[0] ^ a[1]; T = xtime(T);

a[0] ^= T ^ Tmp;
T = a[1] ^ a[2]; T = xtime(T);

a[1] ^= T ^ Tmp;
T = a[2] ^ a[3]; T = xtime(T);

a[2] ^= T ^ Tmp;
T = a[3] ^ a[0]; T = xtime(T);

a[3] ^= T ^ Tmp;
}

There is room for a significant increase in
speed if the implementer is willing to sacrifice
size. Collapsing the ByteSub and MixColumn
operations into a single 8x32 lookup table and
a little coaxing of the equations, the entire sub-
round transformation can be reduced to four
lookups, four 32bit XORs, and three cyclic bit
rotations by 8.

Ottawa Linux Symposium 2002 86

b0,j

b1,j

b2,j

b3,j

 =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

S [a0,j]
S [a1,j−C1]
S [a2,j−C2]
S [a3,j−C3]

 ⊕

e0,j

e1,j

e2,j

e3,j

 (16)

T0 [v] =

S [v] •′ 02′

S [v]
S [v]

S [v] •′ 03′

 (17)

bj = kj ⊕ T0[a0,j]⊕
ROR8(T0[a1,j−C1]⊕
ROR8(T0[a2,j−C2]⊕
ROR8(T0[a3,j−C3])))

(18)

At a cost of 4 kilobytes of lookup tables, this
can be further reduced to four lookups and four
32bit XORs.

bj = kj ⊕ T0[a0,j]⊕ T1[a1,j−C1]
⊕T2[a2,j−C2]⊕ T3[a3,j−C3]

(19)

At first glance, this seems far too simple a
transformation to be secure. One is left search-
ing for a backdoor but can find no place to hide
it.

5.5 What did/can the NSA do?

Unlike the DES, the AES publication has no
changes to the Rijndael algorithm other than
limiting the block size from any one of 128,
192 or 256bits to 128bits. I have written an-
other paper suggesting that block sizes and key
sizes be identical or the possibility of multiple
keys mapping one plaintext input to another
ciphertext output would exist. Don Copper-
smith took the time to explain there are circum-
stances where having a larger key to block size
would be preferable.

The question remains, did the NSA/NIST do
their job? Was the AES a success? The NSA’s
responsibility to monitor domestic and interna-
tional communication would naturally lead to
developing a backdoor into such a widely used
algorithm.

However, the NSA also has the responsibility
of protecting American interests for the pub-
lic as well as private sectors. A strong algo-
rithm would be conducive to one goal but not
the other.

The winning block cipher design was not of
American origin. It is strange how an Amer-
ican standard came from Belgium. Still, it
would appear as though the best cipher won the
day. Rijndael is fast (30Mbit/sec ANSI-C, P3
450), simple (see Equation 19), and efficient in
hardware as well as software, and widely con-
sidered to be secure.

How are these the contradictions in the respon-
sibilities of the NSA reconciled by the AES
standard? The answer is simple; an impervi-
ous block cipher is insufficient to insure the to-
tal security of transmitted data.

There are three broad classes of digital encryp-
tion algorithms:

• Message digest or hash algorithms such as
MD5 and SHA-1 operate without the use
of a key. These algorithms are ‘blenders,’
they reduce input data to a fixed length bi-
nary sequence. These sequences are con-
structed such that any minute change to
the input significantly changes the output.

• Block ciphers such as TripleDES and

Ottawa Linux Symposium 2002 87

AES operate with a single key. With this
key, data is encrypted in such a way that it
can only be decrypted with the same key.

• Public-key algorithms operate using two
distinct but mathematically related keys.
An operation performed by one key can
only be undone by its complement. This
facilitates the confidential exchange of
small pieces of data and the authentication
of data origin.

The laws of thermodynamics state the energy
in a closed system remains constant. The con-
nection of matter, energy, information and en-
tropy are well understood. Extending these
laws to the realm of system-level security as
applied by cryptography one can come to three
conclusions:

• Message digest algorithms The laws per-
mits the existence of a perfect message di-
gest algorithm. A hash algorithm with no
mountable attack other then brute force;
in this case the parallel collision attack.

• Block ciphers The laws permits the exis-
tence of a perfect block cipher. A cipher
with no mountable attach other than brute
force.

• Public-key algorithms The laws do not
permit the existence of a perfect public-
key algorithm. Looking purely at the flow
of information required to conserve con-
fidentiality of key pieces of data, the re-
strictions the law places on reality forbids
such an algorithm to exist.

To demonstrate this we consider two scenar-
ios, confidential exchange with a block ci-
pher/shared secret and with a public-key.

• Block Cipher
Consider two closed systemsA and B

communicating over channelC using in-
formationk only known toA andB.

– Assume a symmetric algorithmc =
Ek(d) exists with no possible crypt-
analytic attack. That is,d cannot be
recovered fromc unlessk is known.

– SystemA opens and communicates
c = Ek(d) with n = H(c) bits of
information thoughC to B.

– SystemC cannot recoverd since
only c is known.

– SystemB can recoverd sincec and
k are known.

– B now obtains informationd pos-
sessed byA and notC.

– This information or entropy was
communicated toB though channel
C using entropy held only byA and
B.

We have not contradicted ourselves, thus
we cannot disprove the existence of a per-
fect block cipher.

• Public-Key
Now consider our two closed systemsA
and B with channelC communicating
with no shared secret.

– Assume a perfect public-key algo-
rithm c = Ppub(d), d = Ppri(c). That
is, d cannot be recovered fromc un-
lesspri is known.

– SystemA opens and communicates
c = Ppub(d) with n = H(c) bits of
information thoughC to B.

– SystemC cannot recoverd since
only c andpub are known.

– SystemB can recoverd sincec and
pri are known.

– B now obtains informationd pos-
sessed byA and notC.

Ottawa Linux Symposium 2002 88

– This information or entropy was
communicated toB though channel
C using entropy common to allA, B
andC.

Here we have our contradiction,A gave B
more entropy than was ever transmitted though
C and possessed byA. So this tells us at least
one of our assumptions was flawed, either no
entropy was transmitted or there can be no per-
fect public-key algorithm.

What does this mean for RSA, ElGamal,
Diffie-Hellman, Elliptic curve systems, and
other public-key algorithms? The strength of
public-key algorithms stem from our ignorance
of their underlying mathematics. Any amateur
cryptographer could have told you that, this
was just a loose formalization proving it.

Will quantum cryptography come to the res-
cue? Simply replacing our ignorance of math-
ematics with our ignorance of physics is not a
lasting solution. The Standard Model of sub-
atomic particles explains the communication
of force (Gravity, Electro-weak and Strong nu-
clear forces) as an exchange of virtual particles.

Fixating a quantum-coupled photon will cause
its complement to fixate in the opposite spin.
The communication between these two pho-
tons is suspected to be in the form of some sort
of virtual particle. The key in usurping the in-
formation between these two parties would lie
in detecting the energy state of the virtual par-
ticles exchange between the two coupled pho-
tons.

It doesn’t matter how many ways you skin
Schrödinger’s Cat. At the end of the day even
his feline must obey the laws of thermodynam-
ics.

6 Modes of Operation

Equally important to the good design of a block
cipher is how it is used to encrypt data. In
1980 the NSA/NIST published a set of stan-
dard modes of operation for the DES.

The publication detailed 4 modes of operation.
There are three characteristics that differ from
each mode: the primitive data unit, the prop-
erty of memory and the property of state. S
e modes operate at the bit level, others at the
block level. Some modes operate with a mem-
ory of all data previously encrypted and others
are memoryless. Some modes operate with a
state variable, which is altered after each en-
cryption operation while others are completely
stateless.

• Encrypted Cipher Block (ECB)

– Data unit: block.

– Memoryless: yes.

– Stateless: yes.

• Cipher Block Chaining (CBC)

– Data unit: block.

– Memoryless: no.

– Stateless: no.

• Output Feed Back (OFB)

– Data unit: bit.

– Memoryless: yes.

– Stateless: yes.

• Cipher Feed Back (CFB)

– Data unit: bit.

– Memoryless: no.

– Stateless: no.

Ottawa Linux Symposium 2002 89

Figure 10: The CBC Mode of Operation

These modes of operation are sound and math-
ematically provable. However, security is not
the only concern in today’s cryptosystem de-
ployments. There are serious performance re-
strictions when using the stronger CBC and
CFB modes versus the ECB and OFB modes.

The memoryless modes of operation make par-
allelism possible. A stateless and memory-
less cipher mode leaves an attacker with many
opportunities for attacks that do not require
breaking any encryption algorithms. The ex-
change was clear, security for performance.

The CBC mode of operation is the most com-
monly used, in file and network encryption.
The CFB mode is commonly used by network
encryption protocols such as SSH where trans-
mitting an entire 128bit block to communicate
a single byte of data would be wasteful.

The author of this paper has another publica-
tion where he recommends a ‘tweak’ to the
classic CBC mode of operation. The Tweaked-
CBC mode proposed reduces the format pars-
ing and API requirements by implicitly en-
crypting the CBC initialization vector (IV) in
the ciphertext payload. While the decryption
operation will implicitly assign the IV after the
first block is processed and discarded.

The core requirements of the AES were high
security and high throughput. A new mode of
operation was needed to accommodate the pri-

Figure 11: The Tweaked CBC Mode of Opera-
tion

Figure 12: The CTR Mode of Operation

vate sector’s security and speed requirements.

The counter (CTR) mode of operation—
designed by Diffie and Hellman in 1979—
provides protection from the kinds of attacks
mountable against ECB and OFB modes as
CBC does, but with high parallelism.

The NSA/NIST has also made known their in-
tention of standardizing on another mode of
operation to be used not for confidentiality
but for authentication. Message Authentica-
tion Codes (MAC) exist today using the mem-
ory/state based modes of operation mentioned
above. However, confidentiality and authen-
tication are always viewed as orthogonal to
each other. One should not assume authentic-
ity when dealing with confidentiality and visa
versa.

Ottawa Linux Symposium 2002 90

7 Message Digest Algorithms

Message digest algorithms have followed a his-
tory of their own. Hash algorithms are suscep-
tible to a statistical attack known as the Birth-
day Paradox.

How many people do you need in room before
the probability of two people having the same
birthday is over 50%? The answer is 20.

Reword the question to “If two random 128bit
values are being generated in parallel, how
many 128bit number generations are required
before the probability of two values match-
ing?” The answer is2

128
2 or 264.

In 1994, van Oorschot and Weiner published
a design for an MD5 collision machine that
could produce a collision in less than 30 days
at a cost of $10M. Assuming that Moore’s law
was obeyed from 1994 to 2002 (which is in fact
a conservative assumption), the cost of such a
machine by the time this paper was written was
less than $200,000. Suffice it to say, 128bit
message digest algorithms should no longer be
considered cryptographically secure.

The digest size of MD5 was not the only weak-
ness in it design. The NSA in its Digital
Signature Standard (DSS) published what it
called the Secure Hash Algorithm (SHA). SHA
was highly criticized by the private sector and
academia, so an enhanced SHA-1 was pub-
lished in its place.

SHA-1 digest size was 160bit,2
160−128

2 or
65,536 times more secure than MD5’s 128bit
digest. Also, the SHA-1 algorithm was con-
structed in such a way that bit input into the
algorithm effected every possible output digest
bit. This is not a characteristic of MD5. For
this reason, research into digest algorithms has
stagnated. The private sector feels the NSA has
done as good a job as conceivably possible.

With the publication of the AES however,
a 160bit hash algorithm with an effective
strength of 80bits is mismatched with the 128,
192 and 256 bit key strengths of AES. The
NSA has stepped up and published new al-
gorithms to SHA family in a draft processing
standard. These algorithms are named SHA-
256, SHA-384 and SHA-512 with 256, 384
and 512bit digests and effective strengths of
128, 192, 256bits respectively. These hash al-
gorithms posses effective strengths equal to the
AES key sizes.

The SHA-384 algorithm is simply the SHA-
512 algorithm with a truncated digest. Many
of the SHA-512 core operations are 64bit addi-
tion, 64bit rotation and 64bit shifts. The SHA-
512 and SHA-384 were not designed with soft-
ware implementations on 32bit machines in
mind.

8 Summary

The Flemish Rijndael block cipher has been
chosen as the Advanced Encryption Standard
out of an international group of 15 modern al-
gorithms obsoleting the decades old Data En-
cryption Standard. The AES can be heavily
optimized for speed or size in either hardware
or software forms. The cipher represents the
state-of-the-art in private sector cryptography.
This possibility of backdoors for government
agencies is negligible due to the simplistic de-
sign of the AES.

There are five approved modes of operation for
the AES, 4 were adopted from the DES. The
new mode of operation is called CTR and is
highly parallelizable. Another mode of opera-
tion for authentication is still to be announced.

The new Secure Hash Algorithms support 256,
384 and 512bit digests, taking the Birthday
Paradox into account their effective strengths
are 128, 192 and 256 bits respectively. The new

Ottawa Linux Symposium 2002 91

Secure Hash Algorithms represent the state-of-
the-art in message digest algorithms.

References

[CertKeyRes] CertainKey Online Resources,
http://www.certainkey.com

/resources/

[CertKeyOLS2002] CertainKey At OLS
2002,http://www.certainkey.com

/ols2002/ , (2002)

[Cooke2001] Functionally Equivalent Keys in
the Advanced Encryption Standard,
http://jlcooke.ca/aes

/aes_fek.pdf , (2001)

[Cooke2001b] Plaintext Dependency of
Functionally Equivalent Keys in the
Advanced Encryption Standard,
http://jlcooke.ca/aes

/aes_fek2.pdf , (2001)

[Thermo] Wolfram Research: World of
Physics Online Reference,
http://scienceworld.wolfram.com

/physics/ThermodynamicLaws.html

[NISTDES] The Data Encryption Standard,
http://csrc.nist.gov

/publications/fips/fips46-3

/fips46-3.pdf , (1976-1999)

[NISTMODEOP] DES Modes of Operation,
http://www.itl.nist.gov

/fipspubs/fip81.htm , (1980)

[NISTAES] The Advanced Encryption
Standard, http://csrc.nist.gov

/publications/fips/fips197

/fips-197.pdf , (2001)

[NISTAESMODEOPS]Recommendation for
Block Cipher Modes of Operation,
http://csrc.nist.gov

/publications/nistpubs/800-38a

/sp800-38a.pdf , (2001)

[NISTAESWWW] The Advanced Encryption
Standard Website,
http://www.nist.gov/aes/ , (a)

[MD5] The MD5 Message Digest Algorithm,
http://www.faqs.org/rfcs

/rfc1321.html , (1992)

[NISTSHA1] The Secure Hash Standard,
http://www.itl.nist.gov

/fipspubs/fip180-1.htm , (1995)

[NISTSHA2] The Secure Hash Standard,
http://csrc.nist.gov

/encryption/shs

/dfips-180-2.pdf , (2001)

[NISTDSS] The Digital Signature Standard,
http://csrc.nist.gov

/publications/fips/fips186-2

/fips186-2.pdf , (2000)

[CAST128] The CAST-128 Encryption
Algorithm, http://www.faqs.org

/rfcs/rfc2144.html , (1997)

[CAST256] The CAST-256 Encryption
Algorithm, http://www.faqs.org

/rfcs/rfc2612.html , (1999)

[AESCD1] AES CD-1: Documentation

[AESCD2] AES CD-2: Source Code

[AESCD3] AES CD-3: Finalists

[DC] Differential Cryptanalysis of the Data
Encryption Standard,
ISBN-0387979301, Shamir Biham,
(1994)

[DEAL] A 128-bit Block Cipher,
http://www.ii.uib.no/˜larsr

/newblock.html , (1998)

[E2] The 1280bit Block Cipher E2,
http://info.isl.ntt.co.jp/e2/ ,
(1999)

Ottawa Linux Symposium 2002 92

[HPC] The Hasty Pudding Cipher,
http://www.cs.arizona.edu/˜rcs

/hpc/ , (1998)

[LOKI97] The LOKI97 Block Cipher,
http://www.unsw.adfa.edu.au

/˜lpb/research/loki97/ , (1997)

[MARS] MARS - a candidate cipher for AES,
http://www.research.ibm.com

/security/mars.html , (1999)

[RC6] RC6 Block Cipher,
http://www.rsasecurity.com

/rsalabs/aes/ , (1998)

[Rijndael] The Block Cipher Rijndael,
http://www.esat.kuleuven.ac.be

/˜rijmen/rijndael/ , (1999)

[Serpent] Serpent,
http://www.cl.cam.ac.uk/˜rja14

/serpent.html , (1998)

[TwoFish] TwoFish: A 128-bit Block Cipher,
http://www.counterpane.com

/twofish.html , (1998)

System Installation Suite
Massive Installation for Linux

Sean Dague
japh@us.ibm.com

Abstract

The first hurdle that a user or administrator
must overcome when migrating to Linux is the
installation. In the not so distant past, this was
a near Herculean task. Today, with a myriad
of Linux distributions available, many focusing
on the end user experience, installation of a sin-
gle machine has become much easier. In some
instances it is even Mom proof. This has given
rise to a new issue, however, as these methods
of installation tend to be distribution specific,
and tend to have a single machine view of the
world.

System Installation Suite attempts to solve the
massive installation problem, i.e. how does
an administrator handle installation and main-
tenance of hundreds or thousands of nodes
at once, in Linux. The solution is agnos-
tic of Linux distribution and architecture, and
presents a uniform interface on every Linux
platform. It does this through the creation
of installation images, which are built on a
centralized server somewhere. These images
are then deployed over the network to client
machines. The use of installation images,
which are in fact fully instantiated Linux sys-
tems stored on an image server, gives rise to
some interesting possibilities for system man-
agement and maintenance. The design process
that went into System Installation Suite, and
the possibilities that it provides for will be dis-
cussed further in this paper.

1 Background

System Installation Suite is a collaboration be-
tween two different open source massive in-
stallation tools, SystemImager and LUI (the
Linux Utility for Cluster Installation). The de-
sign of System Installation Suite came largely
from harvesting the strengths of both of these
tools, while attempting to leave their short
comings behind. It is appropriate that we ex-
plore some of the strengths and weaknesses
of both LUI and SystemImager before delving
into the design of System Installation Suite as
a whole.

1.1 LUI - Linux Utility for Cluster Installation

The Linux Utility for Cluster Installation (LUI)
was one of the first Open Source projects con-
tributed by the IBM Linux Technology Center.
The project was started by Rich Ferri to ma-
ture the state of Linux clustering. LUI version
1.0 was released to the world in April of 2000
under the GNU Public License.

LUI is a resource based cluster installation
tool, conceptually based on NIM (Network In-
stall Manager), the network installer for AIX.
In LUI everything was driven by resources.
LUI resources included: the list of packages
(RPMs) that will be installed on a client, tar-
balls that would be expanded on the client, disk
partition tables that would be used to setup the
disks, custom kernels and ramdisks, post in-
stall scripts, or single files that would be propa-

Ottawa Linux Symposium 2002 94

gated. A combination of these resources would
fully describe the final makeup of a client.

Resources were first abstractly defined in the
LUI database. Then clients were abstractly
defined in the LUI database. Finally re-
sources were assigned to clients. LUI also
supported arbitrary grouping, so resource and
client groups could be defined, and the alloca-
tion of resource groups to client groups could
be utilized.

LUI installation required nodes with network
interface cards that could network boot. For
clients which did not have network bootable
NICs, an floppy from the etherboot project
could be made to simulate this process. The
network booted kernel had a remote NFS root
on the LUI server, and the installation logic
was drive by acloneprogram contained within
the NFS root.

LUI had many weak spots where things would
often break down. The first issue was the re-
liance on PXE, TFTP, and NFS v2 which are
not entirely reliable, secure, or scalable proto-
cols. 1 When network booting worked prop-
erly, it was fantastic, when it failed, it was often
extremely difficult to debug the failure. This
was especially true due to the fact that there
are various versions of the PXE standard which
behaved slightly differently.

The second major issue was the timing of client
instantiation. All the resources were instanti-
ate into a working client machine on the client
when running from the network booted kernel
and NFS root. Although some sanity checks
were run on the resources before they were al-
lowed to be registered, many checks were ei-
ther too expensive or too complex to be run.
The most common failure was having an in-
consistent list of RPMs, i.e. one which did

1Since the time of LUI’s introduction, both NFS v3
and more robust implementations of tftp (such as atftpd)
have become available on Linux

not properly satisfy all package dependencies.
By the time such an error was detected (dur-
ing client installation), it was too late to re-
cover gracefully. In a best case scenario, the
machine had remote console access to debug
the issue. In the more common case, the ma-
chine was hung in the middle of an installation,
and a monitor and keyboard had to be wheeled
over to the node to examine the failure.

The final issue with LUI was overly compli-
cated with its resource model. Once a user un-
derstood all the possible resources, how they
related, and which ones were really required to
bring up a machine, it was great. However this
learning curve was often rather steep.

Many of these issues were being looked at for
a LUI 2.0 redesign during the spring of 2001.
However the interaction with the SystemIm-
ager project made the redesign take an entirely
different direction.

1.2 SystemImager

SystemImager is a project which was started by
Brian Elliot Finley. Its first incarnation was un-
der the name Pterodactyl, where it was a set off
programs designed to replicate Solaris installa-
tions. It later became a far more robust product
firmly rooted in Linux exclusively. SystemIm-
ager 1.0 was released in May of 2000 under the
GNU Public License.

SystemImager, as the name implies, is an im-
age based installation and maintenance tool.
Unlike many other image based tools, Sys-
temImager images are actually full live file sys-
tems which exist on the image server. These
images are captured from a running machine
that has been properly prepared, also known as
a golden client. The image consists of the en-
tire client file system, and is stored in a directly
under the/var/lib/systemimager/imagestree
on the image server. These images can later

Ottawa Linux Symposium 2002 95

be deployed to other client machines using the
SystemImager autoinstallation process.

The autoinstall process for SystemImager is
different from that of LUI. Instead of network
booting just a kernel, and using a remote NFS
root to drive installation, SystemImager uses
an embedded Linux, BOEL (Brian’s Own Em-
bedded Linux), to control the installation. The
kernel and initial ramdisk for BOEL fit on
a floppy, cd, or can be served from the net-
work for machines that support network boot-
ing. Once BOEL has brought the client ma-
chine onto the network, it reconnects to the
image server and fetches an autoinstall shell
script. The autoinstall script drives the remain-
der of the installation. All file transfer between
client and server is done usingrsync 2, which
provides a mechanism for remote file synchro-
nization.

The use of live file systems on the server and
rsync to transfer these file in SystemImager al-
lows for a number of additional features. Be-
causersync can use a number of different un-
derlying file transfer methods, the installation
can happen over a secure ssh connection. This
allows for unattended installation where client
and server are separated by significant physi-
cal distance and the only route between them
is a public, insecure network. Because images
are replicated at a file level and not a package
level, the process of file transfer is inherently
distribution agnostic. Software on the node
needs not have come from a distribution pack-
age (RPM, Deb, etc.), but may have been in-
stalled from source or binary tarball.

However, SystemImager is not an stand alone
installation tool. It doesn’t solve the “first
node” issue. When using SystemImager for in-
stallation, one must first build the golden client
using some native installation method. Only
after the node is fully installed and configured

2http://rsync.samba.org

manually can the image be captured. Before
System Installation Suite, SystemImager also
did only very minimal customizations to the
images after installation. This meant that sim-
ple hardware differences like different models
of network cards in client machines could re-
quire separate images on the server.

1.3 System Installation Suite

System Installation Suite takes the best parts
of SystemImager and LUI and adds other fea-
tures that neither of them previously had. The
LUI project morphed into a project called Sys-
temInstaller, which uses a much simpler model
for instantiating a machine from a set of pack-
ages and disk partition files. In System In-
stallation Suite, SystemImager stays largely
unchanged from a user perspective, however
some of the internals have changed to allow
interaction with SystemInstaller, and all of the
image customization code was removed from
the autoinstallation process and replaced with
calls to System Configurator. System Config-
urator is the third major component of System
Installation Suite, a uniform configuration API
for installation. It supports features such as
network setup, boot loader setup, and ramdisk
creation. System Configurator also makes im-
ages deployed under System Installation Suite
more generic, and applicable to a wider range
of hardware.

2 SystemInstaller

SystemInstaller is the image build tool for Sys-
tem Installation Suite. It is very similar to LUI
in function, however instead of building clients
directly, SystemInstaller builds images on the
image server. The images are made to look just
as if they were harvested from a live machine
that was installed by a native installer.

The design of SystemInstaller came from many

Ottawa Linux Symposium 2002 96

lessons learned during the LUI project. The
SystemInstaller team attempted to keep all the
strengths of LUI without retaining any of the
weaknesses.

2.1 SystemInstaller Architecture

The biggest hurdle that any LUI user had to
overcome was understanding all the possible
resources that existed, and how they interacted
with each other. In many instances resources
were either co-dependent, redundant, or could
have been auto detected and allocated during
installation. An example of just such and in-
stance was the ramdisk resource.

Most modern distribution kernels are built ex-
tremely modularly. This makes it very easy to
use the same kernel on many different types of
hardware by only changing the modules.conf
file. If the root filesystem of the machine is on a
device that needs one or more of these modules
to access it, an initial ramdisk needs to be built
to support this. LUI did not support the auto-
matic create of an initial ramdisk, and required
the user to create, and allocate one manually.
If the creation of the initial ramdisk took place
on a system running an smp kernel, but was at-
tempted to be used on a up kernel system, the
boot would fail. This was a common occur-
rence for beginner LUI users. Hence one of the
early goals of SystemInstaller was to make the
resource model much simpler, or even totally
transparent to the user.

Even though LUI had weaknesses, it also had
many strengths that other install tools did not
have. Chief among these was the LUI database.
All of the user facing LUI commands did noth-
ing more then add the appropriate meta data
into the LUI database. During installation, the
clonescript fetched data from the LUI database
and used it to instantiate the resources on the
client machines. After installation was done,
LUI no longer needed this data at all. How-

ever, a decision was made that the data should
be persistent, and an API created to access it,
in the hopes that some other application might
find it useful.

This is exactly what happened. When the OS-
CAR Clustering project was looking for an in-
stallation tool, they choose LUI because it had
a cluster database already. OSCAR could just
ride on top of LUI’s database, and add extra in-
formation if required. As OSCAR was one of
LUI’s biggest users, when looking to replace
LUI with System Installation Suite, the con-
cept of a cluster database was a requirement
that had to be kept.

With these two key points: simplify the re-
source model, and provide a cluster database,
design on SystemInstaller began. Sys-
temInstaller retained a flat file database, as LUI
had, as it was still felt that requiring an SQL
database was too significant an overhead for an
installation tool. Although this did mean sac-
rificing some functionality, and the ability for
remote access to the data store, it did mean the
prerequisites were far lighter. The intent was
always to move towards a model where vari-
ous data stores (flat file, SQL, or even LDAP)
could be accessed transparently. However, this
goal was a bit beyond the scope of the initial
release. In addition to the data store, many con-
venience functions were defined and exported
so that products such as OSCAR would have a
clean interface to interacting with System In-
stallation Suite.

SystemInstaller has a far more simple com-
mand line interface than LUI had. Only the
package list and disk partition table resources
were retained. This was possible because the
image could be tweaked after initial creation
but before deployment manually. The addi-
tion of custom kernels, or hand compiled soft-
ware could be handled at this stage, and did
not need to be incorporated into the early Sys-

Ottawa Linux Symposium 2002 97

temInstaller interface. This reduced complex-
ity makes System Installation Suite much eas-
ier to use out of the box than LUI ever was.

2.2 SystemInstaller Interface

The SystemInstaller interface consists of a
number of non-interactive command line util-
ities, an interactivebuildimage program, and
a graphical user interface,tksis which uses the
Perl Tk bindings. Both buildimage and tksis
are built on top of the command line interfaces
of SystemInstaller and SystemImager. This
separation between the functional interface and
user interface was extremely important in mak-
ing it possible for other user interfaces to be
built on top of the command line utilities.

There are four extremely important commands
in SystemInstaller that do all the real work for
creating images and client definitions. These
commands are as follows:

• mksiimage - Build an image from a list of
packages

• mksidisk - Add disk partition information
to an image

• mksimachine - Update, Delete, or Show a
machine definition

• mksirange - Create a group of machine
entries

The mksiimage , mksidisk , and mksima-
chine commands are entirely contained within
the SystemInstaller package. Themksirange
command is a wrapper on top of SystemIm-
ager’s addclients command, which also in-
serts the client definitions into the System In-
stallation Suite database.

Most SystemInstaller commands support the
following actions: add (-A), delete (-D), and

list (-L). The major exception is themksi-
machineandmksirangecombination of com-
mands. This limitation is currently based on
limitations of theaddclientscommand, specif-
ically its inability to add a single machine def-
inition of arbitrary name.

All of the commands in SystemInstaller serve
both manipulate the System Installation Suite
database, and perform the actual instantiation
of their commands. Because of this, failures in
image and client instantiation are immediately
returned to the user. The full advantages of this
will be discussed later.

3 SystemImager Redux

In order to initially integrate SystemImager
into System Installation Suite, only minor en-
hancements were needed. Many of these en-
hancements were generally applicable to Sys-
temImager outside of the scope of System In-
stallation Suite, and hence seen as merely addi-
tional function to existing SystemImager users.

SystemImager logically breaks up into three
components: server, client, and autoinstalla-
tion. With the version 2.0 release of SystemIm-
ager, which integrated with the other compo-
nents of System Installation Suite, only ele-
ments of the server component were changed.
The following is a brief overview of merely the
changes in those components. For further in-
formation on SystemImager design, please re-
fer to the SystemImager manual.

3.1 SystemImager Server Changes

Before System Installation Suite, SystemIm-
ager was a complete product which consisted
of a number of command line utilities. Princi-
ple among these were two commands that did
most of the work on the server.

Ottawa Linux Symposium 2002 98

• getimage - captures images from a pre-
pared client, and creates autoinstall script

• addclients - adds a range of client defini-
tions associated with an image

In order to accommodate SystemInstaller
and System Installation Suite the following
changes were made:

The getimagecommand was broken into two
separate commands. The newgetimagewas
responsible only for harvesting the image from
a client. This primarily involved rsyncing the
entire contents of the golden client node into a
directory within /var/lib/systemimager/images.
An additionalmkautoinstallscript command
now became the interface for generating the
autoinstallation script. This functional separa-
tion was needed by SystemInstaller, as its mk-
siimage and mksidisk commands performed
the functional equivalent of getimage. This
functional separation also enabled the ability to
regenerate autoinstall scripts from within Sys-
temImager. Prior to this change, users had to
utilize a documented hack of pointing getim-
age against the localhost interface.

The second major change was the addition of
a non interactive mode toaddclients. Prior
to SIS, addclients could only be run in an in-
teractive mode. Although this provided a sim-
ple console user interface that was easy to un-
derstand, it hindered the ability for other in-
terfaces to sit above the SystemImager com-
mands. It would have been relatively easy to
duplicate the function of addclients within Sys-
temInstaller, however it was it was still felt
that it would be extremely beneficial if the ex-
act same math was used to calculate the list of
clients irrespective of the interface the user was
utilizing. As SystemImager’s logic for this ex-
isted solely insideaddclients it was simplest
to wrap theaddclientscommand frommksir-
ange.

In addition to these command line interface
changes, the beginnings of a SystemImager
library was started. A number of functions
were added to this library during the evolu-
tion of SystemImager 2.0 which allowed Sys-
temInstaller to add entries to the SystemImager
rsyncd.conf file reliably. In SystemImager, this
process is handled by the getimage command.
When building an image with SystemInstaller,
getimage is never called, so this aspect of the
SystemImager interface could not be used.

4 Image Deployment

Once an image is either built with Sys-
temInstaller, or harvested with SystemImager,
it resides on an image server, generally in
/var/lib/systemimager/images. This image is
then ready to be deployed to client machines.
Although most of the logic for image de-
ployment in System Installation Suite remains
unchanged from SystemImager, it is signifi-
cantly different from most package based in-
stall mechanisms that it is worthy of discus-
sion. The differences in image based deploy-
ment over package based deployment lead to a
number of interesting pros and cons of the two
methodologies.

4.1 BOEL

The engine for the autoinstallation process
is BOEL (Brian’s Own Embedded Linux).
BOEL consists of a monolithic Linux Kernel
2.2 and a ramdisk containing Glibc 2.1, Busy-
Box 0.60.0, rsync 2.4.6, sfdisk, and a num-
ber of other utilities. BOEL’s entire job is to
bring the client machine to a state where it can
remotely access the image server, and then it
hands off its job to the autoinstallation script.
BOEL is based on Tom’s Root Boot distribu-
tion. More details about BOEL can be found
in a recent article in Embedded Linux Journal.

Ottawa Linux Symposium 2002 99

BOEL can be booted from a number of media,
including floppy disk, cdrom, network boot, or
even the local hard drive in the special case of
an autoinstallation update of a client. When
booted from a floppy disk or local hard drive,
BOEL will attempt to access a local config-
uration file. This file can contain informa-
tion about things such as the ip address of the
client, the default gateway, and image server
ip address. The local configuration file is very
useful when doing installations on a network
where the installation administrator does not
have control over the site dhcp server. If the
local configuration file is not available, a dhcp
client is used to activate the network devices
during boot.

Once the network device is configured, BOEL
will attempt to determine which image server
it should contact. This information may either
be provided via local configuration file or dhcp
options. After that, BOEL attempts to deter-
mine the host name of the machine it is running
on. This is accomplished through either val-
ues in the local configuration file, reverse DNS
lookup, or a special hosts file served from the
image server.

With the network enabled, and the image
server and local host name found, BOEL con-
nects to the image server using rsync, and re-
trieves the autoinstall script for the host. This
script is stored in thescripts rsync module as
the file HOSTNAME.sh. At this point BOEL
turns over control to the autoinstall script that
it has downloaded.

4.2 The Auto Install Script

BOEL is an extremely constrained environ-
ment. It contains only a minimal glibc, a stati-
cally linked ash shell, and the BusyBox imple-
mentation of standard Linux commands. This
means the autoinstall script must be POSIX
shell. The tasks the autoinstall script must ac-

complish are as follows:

1. partition the disk drives with sfdisk

2. format all the partitions appropriately
(ext2, ext3, and reiserfs are supported)

3. mount all the partitions to the proper
mount points

4. rsync the appropriate rsync module from
the server to the local disk

5. run systemconfigurator to setup network,
modules.conf, and bootloader

6. execute a specified post install action (one
of: beep, reboot, or shutdown)

If at any point the auto installation attempts an
operation which fails, it will dump its console
out to a shell and await human input. At this
point no remote notification is provided in the
event of failure.

Because the autoinstall script is merely a
POSIX shell script, it can be easily mod-
ified to perform other actions beyond the
straight scope of the autoinstallation process.
Themkautoinstallscript command should be
considered to generate a template autoinstall
script. Although it will work fine for most sce-
narios without any modification, the possibility
exists to easily modify it to add extra function.

4.3 Image Customization

Once the files from the image are transfered
to the client machine, the job of installation is
nearly complete. The only thing that remains
is modifying the abstract image so that it has
node specific information in it. For a machine
to actually boot and connect to the local area
network the network scripts must properly re-
flect the state of the node, and the bootloader

Ottawa Linux Symposium 2002 100

must be installed. Setting up networking is
something which tends to be very distribution
specific. Making a machine bootable is very ar-
chitecture specific. Instead of forcing that code
into the autoinstall script, where one only has
access to the POSIX shell environment, a dif-
ferent approach was taken.

System Installation Suite installs all the soft-
ware in the image to the client machine. The
client machine is a full instantiation of a
runnable node. It has all the C, Perl, and
Python libraries that a running machine would
have. Why not exploit this fact by installing
an additional program in the image or on
the golden client which is transferred to the
client during installation. This program would
be called via thechroot function, and would
present a unified API for configuration of net-
working, bootloader setup, and other required
tasks to the autoinstall script, which would be
exactly the same on any architecture or distri-
bution. This program became known as the
System Configurator project.

System Configurator implements a unified
calling interface to setup both network scripts
and boot loaders. In the process of setting up
these features, it also can detect local hardware
and modify the appropriate underlying files ac-
cordingly. This feature is even exploited from
SystemImager outside the scope of System In-
stallation Suite. This allows an image to be
used on machines which have different net-
work interface cards. Prior to SIS, this was not
possible. System Configurator will also auto
generate initial ramdisks upon request. This
solves the long standing issue with LUI where
one had to create an appropriate initial ramdisk
if attempting to install with a modular kernel
on SCSI hardware.

4.4 Foot Printing

There were many possible ways that System
Configurator could have implemented its ab-
straction. One that was suggested, and firmly
rejected, was classifying features in terms of
distributions. The problem is to support a
dozen or so distributions, over 3 or more re-
leases, means 40+ code paths. Also, signifi-
cant updates between stable releases of a dis-
tribution would be nearly impossible to track
or support. The eventual design concept that
won was “foot printing”.

Let’s say you know there are two different pro-
grams to create ramdisks, and each of them
takes different options. You could either first
try to find a comprehensive list of all Linux dis-
tributions that use one or the other, and then
detect distribution, and use the right one (as
stored in your matrix), or you could just say
“If program a is there, run it like this, if pro-
gram b, run it like that”. This takes out a whole
lot of indirection in detection, and provides for
the possibility of supporting distributions that
you didn’t even know existed.

The idea of foot printing naturally leads to a
modular architecture. Each module registers
itself for a specific type of job (Network, Boot-
loader, Hardware, etc.), and when the phase for
that job is executed, the modules are asked if
their footprint is found. If so, their setup rou-
tine is executed. Depending on the type of job
being accomplished, it may either be ok to ex-
ecute all modules which footprint properly, or
only the first one to do so. This decision is
made per task module.

4.5 System Configurator

System Configurator can do many tasks, and
does different tasks when used in a System In-
stallation Suite context or a SystemImager only
context. The basic setup directives include sup-

Ottawa Linux Symposium 2002 101

port for the following:

• pci hardware detection

• network setup

• initial ramdisk generation

• bootloader configuration file generation

• bootloader setup (running the proper
bootloader)

• time zone setup

• network time sync

At every stage the main line code uses foot-
printing and plugin modules to accomplish
tasks. Whenever possible System Configurator
calls native setup tools for the distribution it is
running on. The attempt is to make it very hard
to determine that System Configurator created
or modified files, as it did exactly what a na-
tive user or tool in the distribution environment
would do.

A good example of this is the creation of mod-
ules.conf on the Debian distribution. In De-
bian there is a directory of files in /etc/modutils
which are all merged into modules.conf using
the update-modulescommand. System Con-
figurator modifies the appropriate files and runs
update-modules if the /etc/modutils directory
is found.

In the current release of System Configura-
tor 4 different types of networking are sup-
ported, which provides support for Red Hat,
Mandrake, Conectiva, SuSE, TurboLinux, and
Debian. An additional 2 types of networking
have been identified that would add support for
Caldera and Slackware, but haven’t been im-
plemented yet. System Configurator can sup-
port as many network adapters as your Linux
system can handle, though SystemImager and

System Installation Suite only support config-
uration of the primary network adapter at this
time.

System Configurator also supports four dif-
ferent methods for bootloader setup, Lilo and
Grub on i386, and two ways to setup Elilo on
IA64. There is experimental support for PPC
and PA-RISC setup at the moment, though the
autoinstallation process does not yet support
either of those platforms.

After System Configurator runs, the abstract
image has become a real live node, tuned for
the distribution and hardware that it is running
on. This node will be able to reboot and be-
come network accessible. Once the machine
is network accessible, any additional custom
setup could be performed by remote shell com-
mands or programs such as cfengine.

5 Maintenance

Images are live file systems stored on an im-
age server. Images get transfered across the
network via rsync. Before rsync transfers files
it first computes the difference between the
source and destination for the files. One image
can be applied to many machines.

All these facts taken together paint a picture
of how SIS provides an extremely efficient up-
date mechanism for client nodes. Suppose that
some core library to your system has a secu-
rity vulnerability, for instance zlib. Pushing
this update to all your running machines is as
simple as applying the update to the image,
then rsyncing that image back out to the client
nodes. In most cases updates of a running node
can be performed without a reboot, the notable
exceptions being an update to a kernel or com-
monly used shared library with a security vul-
nerability.

SystemImager provides an interface to per-

Ottawa Linux Symposium 2002 102

forming this update process via theupdate-
client command. Updateclient is intelligent
enough to exclude many directories that are
used for variable or node specific information,
such as /var/log, /var/run/, /var/spool, /tmp,
/proc and ext3 journal files. This list of ex-
cludes is stored in a file on the client, so it can
be tailored to meet site specific needs.

Because the rsync protocol computes the dif-
ference between the source and destination file
systems, only those files that have changed get
propagated. This reduces network traffic sig-
nificantly. Rsync can even check for changed
byte ranges within a large file, so that it can
replicate on a sub file level.

6 Image vs. Client Instantiation

As has been shown in this paper, System Instal-
lation Suite takes a novel approach to instal-
lation. Most other tools used for unattended
massive installation pull packages across the
network, and instantiate them directly on the
client during install. System Installation Suite
does this instantiation on the server, then trans-
fers the resultant image across the network.
There are many advantages to this methodol-
ogy. Maintenance mode, and support for non
packaged software have previously been dis-
cussed. However there are many other advan-
tages, some of which are still not fully ex-
ploited, to this approach.

All installation methods must have some code
running on the client node to perform the in-
stallation. With SIS, all the code run on the
client during install is SIS code. Packages
are not allowed to run their own scripts dur-
ing the portion of installation which occurs on
the client. This means there are far less moving
parts during the SIS install process, and hence
less things that can go wrong with the install.
In a package based installation, one bad pack-

age can prevent the install from working. With
SIS, the one package can be manually force fit
into the image where the user has far greater
latitude (tools like alien might even be used to
install non native packages). The SIS install
process doesn’t care where the content of the
image came from. This reduced complexity
during actual installation of the clients trans-
lates into a smaller number of problems that
can occur during the autoinstall phase. This is
true in theory, and in has been shown in prac-
tice as well.

One of the things that image installation does
not do as well as package based install tools, is
conserve disk space. In a package based instal-
lation environment the main server stores only
packages. When the client installs, it will de-
termine which combination of package it needs
to complete installation, and fetch only those
packages it needs to complete the process. The
space required on the server is all the pack-
ages off the distribution CDs, plus any addi-
tional update packages. For most distribution
releases this will amount to about 3 GiB of disk
space per distro, per release, per architecture.

With image based installation the images are
fully instantiated and stored on the server. An
average image with a full load of software
ranges from 1 to 2 GiB of data. There have
been thoughts about providing an image nor-
malization tool that would reduce the space re-
quired to store multiple images on the server, or
to support multiple phase images, where many
different images would be overlayed to create
the final installation. Neither of these options
are being seriously explored at this point be-
cause of one important fact: a 60 GiB EIDE
drive costs less than $100. Disk space is cheap.
Adding complexity to the project to save stor-
age space requirements does not seem like a
valuable use of developer resource.

The final advantage that System Installation

Ottawa Linux Symposium 2002 103

Suite’s image implementation provides is the
ability to live test an image on the server be-
fore deployment. The image is a live file sys-
tem. Any user level program run chrooted from
an image will run just as if it was a live ma-
chine. If you want to know whether an appli-
cation will run properly in your image, you can
chroot $IMAGEDIR $CMD.

This methodology was used when adding
SuSE support to SystemInstaller. I harvested
a SuSE 7.2 system onto my Mandrake 8.1 de-
velopment machine. I then chrooted into the
SuSE image and built additional SuSE images
from inside it. This meant I could develop
for multiple distributions on a single machine
without having to reboot. This feature of Sys-
temInstaller has begun to be exploited by a
number of users that wish to create test and
build environments for many distributions, but
have a limited number of physical machines.
The only limitation to this is testing software
which needs access to physical hardware or
kernel interfaces, as the host kernel will be
used for that. There is a possible way around
this limitation, discussed in the next section.

7 Future Work

SIS right now is at the very beginning of its
life. There are a number of short comings that
it has, and many directions it can go from here.
What follows is a few of those thoughts, some
of which are very pie in the sky, and some that
will probably make it into the code stream by
the end of this year.

7.1 Current Weaknesses

SIS has a number of weaknesses currently. The
first major one is the fact that images currently
contain more than just the software that is ap-
plied to the image. Because images also con-
tain files like /etc/raidtab, and /etc/fstab, an im-

age is bound to a partition model. This means
that an image build for /dev/hda, cannot be ap-
plied to a machine with only SCSI devices. As
most software doesn’t care about the underly-
ing disk devices, this should be able to be ex-
tracted from the main image and put into the
autoinstall script.

The lack of multiple adapter support is also
a big weakness. SIS currently only will set
up theeth0 interface during installation. Al-
though there are hacks to change which inter-
face is setup and to bring up additional adapters
via dhcp, real multiple adapter support needs
to be added to the autoinstall script to support
this.

Remote logging existed in LUI, but there is no
equivalent in SIS. This needs to be put in place
before SIS can be considered enterprise ready,
as lack of remote logging makes the discovery
of failures far more difficult.

The autoinstallation kernel needs a Debian en-
vironment to build in. The main reason for
this is that Debian provides libc_pic packages,
which make it easy to create a smaller version
of glibc to go on the autoinstall media. This is
a serious limitation to having true source pack-
ages that can be rebuilt on any environment.
There are a number of possible options here,
the use of uClibc, dietlibc, or minilibc are top
on the list.

Although building images directly on the
server works for most packages, it doesn’t for
all of them. Occasionally a package will at-
tempt to start a daemon which needs to com-
municate with other services or directly with
hardware. Although it is questionable for a
package to do this in a post install script with-
out having a good way to shut it down, it does
happen. There has been the possibility of doing
some manner of freeze / thaw on post install
scripts, so that certain package scripts would
be stopped from running, then executed on first

Ottawa Linux Symposium 2002 104

boot of the client. This is possible, but the full
implications would need to be worked out.

7.2 New Directions

There are many new directions we would like
SIS to take, however it is unlikely that more
then one or two of these will get accomplished
this year due to the size of the development
team. So consider some of these pie in the sky
ideas that hopefully some eager volunteers will
help us do.

7.2.1 SIS to other Platforms

Currently in the pipe is work to bring SIS to
PowerPC, HPARISC, and S/390 Linux. Some
of these ports should see the light of day
this summer. There has always been the
thought that SIS could be applied to other op-
erating systems, especially the *BSD family
(FreeBSD, OpenBSD, and NetBSD) of oper-
ating systems. Any OS which Linux supports
creation of, and read / write access to, their
filesystem should be able to be supported by
SIS in some manner.

7.2.2 Multicast SIS

Once upon a time a multicast library was writ-
ten for SystemImager called multicaster. The
library was never fully finished, but was posted
to Source Forge anyway. The funny thing with
open source projects, is they pop up in the odd-
est places. Sometime in October of last year,
a new project was announced on Freshmeat
calledmrsync which was a derivative of mul-
ticaster with an rsync like command line inter-
face. This is being used in production shops at
the moment. The possibility exists of making
SIS use mrsync instead of rsync during initial

installation to allow installation to scale to hun-
dreds or thousands of simultaneous nodes.

7.2.3 Diskless SIS

SIS creates fully chrootable images on a server
which can then be deployed to clients. With
very few modifications it should be able to
build fully chrootable environments which
could be used for diskless environments as
well. There is significant interest from certain
segments of the high performance computing
community for this, so I believe this will hap-
pen in the near future.

7.2.4 UML Verification Suite

Because the images on the server are full in-
stallations of a running system, it seems possi-
ble that a more hearty verification on system
integrity could be run on them. The natural
choice for this would be User Mode Linux. Af-
ter image instantiation, a custom verification
program could be run in a UML instance which
uses the image as its root filesystem. This
would allow for a burn in test of the image be-
fore it was ever deployed, and could help track
down possible conflicting libraries or software
revisions. This type of burn it would be essen-
tial for large installations that want an assur-
ance test on their images before deployment.

8 SIS in Action

One of the areas that Linux has penetrated ex-
tremely well, is the High Performance Com-
puting arena, specifically High Performance
Linux Clusters. This arena is very will suited
to the strengths of SIS, as all the machines in
a cluster tend to be nearly identical. Only a
small number of images will be needed to de-
ploy hundreds or thousands of machines. The

Ottawa Linux Symposium 2002 105

installation method is distribution independent,
so no matter what distribution the user chooses
to deploy, the methodology is the same. SIS
also has both a command line and graphic user
interface, so it can be driven by another appli-
cation very easily.

OSCAR (Open Source Cluster Application Re-
source) is a cluster building based on the best
known practices in Linux clustering. As of OS-
CAR 1.2, System Installation Suite is the in-
staller for all the client nodes in an OSCAR
cluster. The OSCAR wizard is written in Perl
Tk, and hence can use TkSIS panels directly.
Every panel in TkSIS allows a callback to be
registered. OSCAR uses this feature to do
other cluster setup tasks at every stage. This
integration was very easy to accomplished, and
has given the OSCAR project a very robust dis-
tribution independent mechanism for installa-
tion. SIS was instrumental in allowing OS-
CAR support both Red Hat and Mandrake in
OSCAR version 1.3.

Other clustering projects such as Clubmask,
SCore, and SCE are looking at moving to SIS
for their installation so they can support numer-
ous underlying distributions. We expect many
tools to leverage the image based framework
for systems management that System Installa-
tion Suite has created in the future.

9 Conclusion

System Installation Suite is a novel approach
to the massive installation problem in Linux
which is both distribution and architecture ag-
nostic. It provides an image based framework
for extremely scalable installation and main-
tenance. It has always been the intent of the
project to expose as many clean interfaces as
possible to other applications, so System In-
stallation Suite can be cleanly integrated into
other projects or products requiring an install

method that works on many distributions. The
expectation is that other components could be
easily added to System Installation Suite over
time to exploit many of the capabilities of im-
age based systems that have yet to be explored.

Our motto has always been: “Do it once, do it
right, do it for every buddy”. We want to sup-
port every distribution and every architecture
that will run Linux equally well. By doing so,
we raise the base line for Linux system’s man-
agement, and make Linux easier to deploy for
administrators everywhere.

For more information on System Installation
Suite: how to use it, how to join the project,
and what you can do to help, please visit our
web site athttp://sisuite.org. Links to all the
component parts of System Installation Suite
are provided there, as well as a network in-
staller which will download and install the lat-
est version of System Installation Suite.

10 Acknowledgements

Credit must always be given where credit is
due. System Installation Suite has had many
contributors, and hopefully many more (for a
full list please see the credits files of all the var-
ious projects). Specifically mentioned should
be the follow folks that have put long hours into
making System Installation Suite happen over
the past year, Michael Chase-Salerno, Brian
Finley, and Dann Frazier. The following com-
panies have donated a significant amount of
time and effort to the project as well, and
should be commended for that: Bald Guy Soft-
ware, Hewlett Packard, and IBM.

Special thanks go out to my editing crew: Trey
Belew, Michael Chase-Salerno, Joe Greenseid,
and Barb Kane. Without their assistance, this
paper would have been far less legible. I also
want to thank my employer, IBM, for allowing
me to spend the last year working full time on

Ottawa Linux Symposium 2002 106

the System Installation Suite project. I believe
this project is a significant contribution to the
Linux community, and am thrilled to have been
a part of it.

11 References

LUI,
http://oss.software.ibm.com/lui

System Configurator,
http://systemconfig.sf.net

SystemImager,
http://systemimager.org

SystemInstaller,
http://systeminstaller.sf.net

System Installation Suite,
http://sisuite.org

OSCAR,http://oscar.sf.net

12 Trademarks

Linux is a registered trademark of Linus Tor-
valds.

IBM, PowerPC, and S/390 are trademarks or
registered trademarks of International Business
Machines Corporation.

Solaris is a trademark of Sun Microsystems,
Inc.

All other trademarks are the property of their
respective owners.

Making Linux Safe for Virtual Machines

Jeff Dike (jdike@karaya.com)

Abstract

User-mode Linux (UML)1 is the port of Linux
to Linux. It has demonstrated that the Linux
system call interface is sufficiently powerful
to virtualize itself. However, the virtualization
isn’t perfect, in terms of individual UML per-
formance, aggregate performance of a number
of UML instances sharing a host, or, in one
way, functionality.

This paper discusses the current weaknesses in
the ability of Linux to host virtual machines
and proposes some ways of correcting those
shortcomings.

1 Introduction

User-mode Linux (UML) is a port of the Linux
kernel to the Linux system call interface. Since
this had not been done before, it is impressive
that, except for one trivial patch, Linux already
provided the functionality needed to virtualize
itself.

However, as development of UML has contin-
ued, some weaknesses in this support have be-
come evident. Although UML has been suc-
cessfully implemented using the existing sys-
tem call interface, in some respects, it is highly
non-optimal. This results in poor performance
in some areas of UML and poor code in others.

The principal area which hurts UML perfor-
mance is the Linuxptrace interface, which
is used to virtualize system calls. Every kernel

1http://user-mode-linux.sourceforge.net

entry and kernel exit in UML requires two full
context switches on the host. This makes sys-
tem calls, in particular, far more expensive than
on the host, but it also hurts the performance of
interrupts, which also require four host context
switches to complete.

For better context switching performance, each
UML process has an associated host process.
The host processes are created to gain access to
their address spaces. The fact that threads also
need to be created wastes host kernel memory
and complicates UML context switching. To
fix this problem, this paper proposes that Linux
address spaces be made independent of threads
and that they be created, populated, switched
between, and destroyed as separate Linux ob-
jects.

Finally, there is the issue of maximizing the
capacity of a given server to host virtual ma-
chines. Dealing with the issues described
above will certainly help, but when considering
the hosting throughput of a server, new prob-
lems arise. The largest one is memory man-
agement. The host and the virtual machines
sharing it all have independent virtual memory
systems which likely will have completely dif-
ferent pictures of how scarce memory is. Over-
all, this will lead to inefficient use of the host’s
memory because some virtual machines will
perceive a memory shortage when there isn’t
one and free memory too aggressively. Simi-
larly, others will not feel any memory pressure
when there is some, and will consume mem-
ory that could more productively be used else-
where. So, there will need to be new mecha-
nisms for the host to communicate the true ex-

Ottawa Linux Symposium 2002 108

tent of memory pressure to the UMLs that it’s
hosting and for the UMLs to respond appropri-
ately to that information.

2 Debugging interface enhance-
ments

2.1 Background

2.1.1 System call virtualization

UML runs the same executables as the host.
Since those executables invoke system calls by
trapping into the host kernel, UML needs some
way to intercept and cancel them, and then ex-
ecute them in its own context.

This is done through theptrace mechanism.
ptrace allows one process to intercept the
system calls of another, letting it read them out
and modify them. UML virtualizes the system
calls of its processes by having a master thread,
the tracing thread, useptrace to trace the
system calls of all UML processes. It annuls
them in the host kernel by changing them into
getpid() .

This works well, but it’s slow, since each UML
system call involves four context switches, to
the tracing thread and back at the start of each
system call and again at the end.

2.1.2 Kernel debugging

ptrace is exclusive in the sense that a given
process can be traced by only one other process
at a time. This is inconvenient for UML be-
cause the use ofptrace by the tracing thread
precludesgdb from attaching to UML threads,
making it harder to use as a UML debugger.

This was solved by having the tracing thread
also tracegdb , intercepting its system calls,

and manipulating theptrace calls in order
to fakegdb into believing that it’s attached to
UML.

This works well, but it’s inconvenient, and has
some unpleasant side-effects. Sinceptrace
reparents the process to whatever has attached
to it, the original parent can change its behav-
ior as a result. This generally isn’t a problem,
since UML usually runsgdb itself, or gdb is
run under a shell oremacs, which don’t no-
tice the reparenting. However, a prominent ex-
ception isddd , which spawnsgdb , and calls
wait() on it periodically. When UML at-
taches to thatgdb , wait starts behaving dif-
ferently forddd , resulting in it not working at
all.

2.2 A new debugging interface

To solve the performance problems of
ptrace , UML needs a way for a process
to intercept its own system calls. This could
be done by delivering a signal whenever it
performs a system call and having the signal
handler nullify it in the host kernel and execute
it inside UML.

Another possibility, which is more elegant, is
to introduce a notion of two contexts within a
single process. One context would trace the
other, gaining control whenever it entered the
kernel. This would be implemented by the
debugging interface saving the master context
state while the traced context runs. When the
traced context makes a system call or receives a
signal, the master context would be restored. It
would have the state of the traced context avail-
able, and it could modify it however it saw fit.

This would reduce the cost of a UML system
call from four host context switches to about
two host system calls.

To allow gdb to debug UML, it would also be
necessary to simultaneously allow other pro-

Ottawa Linux Symposium 2002 109

cesses to trace it. This doesn’t pose any prob-
lems as long as their needs don’t interfere with
each other or with UML’s own system call trac-
ing.

These requirements are sufficiently different
from what ptrace provides that a new in-
terface is called for. David Howells of Red
Hat is working on aptrace replacement. It
doesn’t allow threads to trace themselves, but
that looks like it can be added, and it satisfies
all of the other requirements that UML has.

3 Address spaces

3.1 Background

3.1.1 UML address space switching

Currently, each UML process gets a process on
the host. This is to provide each UML pro-
cess with a separate host address space, which
makes context switching faster. The alterna-
tive, all UML processes sharing a host address
space, requires that that address be completely
remapped on each context switch. So, if UML
switches from a bash to an Apache, that ad-
dress space would need to be changed from
a bash address space to an Apache address
space. In fact, this is how UML was first im-
plemented. The change to giving each process
a different host address space was done in or-
der to avoid the overhead of walking the ad-
dress space and remapping it on every context
switch.

This optimization nearly converts a UML con-
text switch into a host context switch. The
exception is when a process has had its ad-
dress space changed while it was not running.
Most commonly, this is the result of the pro-
cess being swapped. It can also happen when
a threaded process forks. The thread that’s out
of context will have its address space COWed.

When the process is next run, its address space
needs to be updated to reflect these changes.

This is done with the help of two architecture-
specific flag bits in the pte,_PROT_NEWPAGE
and_PROT_NEWPROT. In a process that’s not
running, when a page is unmapped or a new
page is mapped,_PROT_NEWPAGEis set in
the page’s pte. Similarly, when a page’s pro-
tection is changed,_PROT_NEWPROTis set.
When that process is next run, the page tables
are scanned for these bits, and the appropri-
ate action (mmap, munmap, or mprotect) is
taken on the host in order to bring those pages
up to date.

A second complication with bringing an ad-
dress space up to date during a context switch
is the kernel virtual memory area. The ker-
nel, including its VM, is mapped into each
process address space. When a process
causes a change in the kernel virtual map-
pings, by adding or removing swap areas or
by loading a module, those mappings need
to be updated in each process that subse-
quently runs. The_PROT_NEWPAGEand
_PROT_NEWPROTbits can’t be used in this
case because the kernel page tables, which
store those mappings, are shared by all pro-
cesses. So, there’s no way for a single pte bit
to indicate which processes are up to date and
which aren’t.

This problem is handled by using a counter
which increments each time a change is made
in the kernel VM area. Each UML process
holds in its thread structure the value of that
counter when it last went out of context. If the
counter hasn’t changed, then the process has
an up to date kernel VM area. If it has, then
it scans the kernel page tables in order to bring
its address space up to date.

Ottawa Linux Symposium 2002 110

3.1.2 Execution context switching

The fact that every UML process has an associ-
ated host process has implications for switch-
ing execution contexts. The obvious way of
doing this is for the outgoing process to do the
following

1. send the incoming processSIGCONT

2. send itselfSIGSTOP

However, this is unfixably racy. To see this,
consider this sequence of events (process A is
the outgoing process, and B is the incoming
process).

1. A sends BSIGCONT

2. B is now runnable on the host, so the host
scheduler switches to it, putting A to sleep
temporarily

3. B finishes its work before its UML quan-
tum expires, so it switches back to A

4. A now runs on the host and finishes its
original UML context switch by sending
itself SIGSTOP

Now, all UML processes are asleep and will
never wake up, effectively hanging the ma-
chine.

This was the first implementation of UML’s
context switching. When this race was discov-
ered, it was eliminated by having the tracing
thread mediate context switches. The outgo-
ing process would send a message to the trac-
ing thread asking it to start the incoming pro-
cess. The tracing thread would do that, leav-
ing the outgoing process stopped. Using the
tracing thread as a synchronization point elim-
inated the race.

In order to eliminate the role of the tracing
thread in context switching, two further de-
signs were tried. The first avoided the race
by the outgoing process stopping itself with
a signal, but blocking that signal and using
sigsuspend to atomically sleep and enable
it:

1. A blocksSIGTERM

2. A sends BSIGTERM

3. A calls sigsuspend, simultaneously sleep-
ing and enablingSIGTERM

In this case, if B runs and switches back to A
before it sleeps, then theSIGTERMwon’t be
delivered until thesigsuspend call, avoid-
ing the race.

However, implementing this involved some
non-obvious signal manipulation, so a simpler
method was implemented, and it is the current
context switching mechanism.

Now, each UML process creates a pipe which
is used by other processes to bring it into con-
text. A context switch now works as follows:

1. A writes a character to B’s pipe

2. B, which has been blocked in a read on
that pipe, returns and continues running

3. A calls read on its own pipe

This avoids races in a similar, but simpler, way
to theSIGTERMdesign.

3.2 The solution

So, while assigning a host process to each
UML process provides reasonable context
switching performance, it has a number of
problems of its own:

Ottawa Linux Symposium 2002 111

• Changes to address spaces of other pro-
cesses can’t be effective immediately be-
cause one process can’t change the ad-
dress space of another. So, whenever a
process is switched in, it must bring its ad-
dress space up to date if necessary.

• Context switching is complicated by the
need to avoid races when one host process
continues another and stops itself

The proposed solution is to allow Linux ad-
dress spaces to be created, manipulated, and
destroyed just as processes are. In effect, this
would turn address spaces into objects in their
own right, separating them from threads. The
capabilities that are needed are

• Creation of a new address space

• Changing the mappings in an arbitrary ad-
dress space

• Switching between address spaces

• Destruction of address spaces

The implementation of this is fairly straight-
forward. Address spaces are already repre-
sented by a separate structure within the kernel,
the mm_struct . Access to anmm_struct
can be provided by a new driver which pro-
vides userspace access to it through a file
descriptor. So, a handle to a process’ ad-
dress space may be obtained by opening
/proc/ pid /mm and a new, empty address
space may be created by opening/proc/mm .
Creating a new handle to anmm_struct
would increment its reference count, and clos-
ing it would decrement it. So, an address
space would not disappear as long as there are
processes running in it or there are processes
which have handles to it.

Allowing a process to change the mappings in
another address space would be done with an
extension tommap:

void *mmap2(void *start,
size_t length, int
prot, int flags, int
src_fd, off_t offset,
int dest_fd);

The new argument,dest_fd , specifies the
address space within which the new mapping is
to take place. A value of -1 would specify the
current address space, making this interface a
superset of the existingmmap.

munmap and mprotect would need to be
similarly extended.

3.3 Moving the UML kernel to a separate ad-
dress space

With the ability to arbitrarily create new ad-
dress spaces, and the debugging interface de-
scribed in section 2.2, it is possible to move the
UML kernel out of its process address spaces.
What’s needed is for the debugging interface
to switch to the kernel address space when it
restores the tracing context.

This would hurt performance somewhat by
adding a memory switch to each kernel entry
and exit, but would have some large compen-
sating advantages.

The primary gain from doing this would be that
it would make UML’s data completely inacces-
sible to its processes. Currently, UML text and
data occupy the top .5G of its process’ address
spaces. By default, this memory is not write-
protected when userspace code is running.

This is a problem for applications of UML
such as jails and honeypots that need to con-
fine a hostile root user. There is a jail mode

Ottawa Linux Symposium 2002 112

in UML which write-protects kernel memory
while userspace code is executing by using
mprotect to enable write permission on kernel
entry and to disable it on kernel exit.

However, there is a severe performance penalty
doing this. Implementing jail mode by locating
the kernel in a different address space would
replace the calls to mprotect with two mem-
ory context switches. This is likely to be much
faster, and if it’s enough faster, it could become
the default for UML.

4 AIO

5 Memory management primitives

6 Cooperative memory manage-
ment between host and guest

6.1 Background

The changes discussed elsewhere in this pa-
per are focussed on improving the performance
of an individual UML instance. However, in
some applications, such as virtual hosting, the
aggregate performance of UML is of equal
or greater importance. The aggregate perfor-
mance is the performance of a set of UML in-
stances running on the same host. Improving
this at the expense of the individual UMLs can
improve the economics of a virtual hosting in-
stallation if the capacity of the host improves
enough to increase its overall throughput.

The consumption and use of host memory by
UML is a crucial aspect of the server’s hosting
capacity. There are currently a number of as-
pects of Linux and UML which cause it to use
more host memory than is necessary and to use
it less efficiently than it should.

6.1.1 Unused memory is wasted memory

A basic assumption of the Linux VM system is
that memory should be used for something, and
if memory is plentiful, it doesn’t matter what
the excess is used for, because it might prove
useful in the future. So, data is not thrown out
of memory until there is a shortage.

This is fine for a physical machine which con-
tains memory which can’t possibly be used by
anything else, but this policy hurts the UML
hosting capacity of Linux. UML inherits this
from the generic, architecture-independent ker-
nel and thus won’t free memory until it is feel-
ing a shortage.

The problem is that the host may be short of
memory without any of the UMLs it’s host-
ing being short. So, they will hang on to their
own data even though they could increase the
host’s performance by giving up some of it. If
the host is swapping enough, they could even
improve their own performance by giving up
enough of their data to stop the host from need-
ing to swap.

6.1.2 UML memory isn’t shared

UML memory is instantiated by creating a tem-
porary file on the host and mapping that into
the UML address space. When some of this
memory is used for file data, the UML block
driver requests, via theread() system call,
that the data be copied from the host’s page
cache into its own page cache. There are now
two copies of that data in the host’s memory.
If ten UMLs each boot from separate copies of
the same filesystem and copy the data into their
own page caches, there will be twenty copies of
that data on the host, ten in the host page cache
because it loaded ten identical filesystems, and
one for each UML. Clearly, this is a waste of
memory.

Ottawa Linux Symposium 2002 113

This waste can be alleviated by having them
boot from the same filesystem image with sep-
arate, private COW files. This will reduce the
number of copies of shared data from twenty to
eleven. Since they are sharing the same under-
lying filesystem, the number of copies in the
host page cache is now one. However, there is
still one copy per UML. This is still a waste of
memory.

The problem is that there is currently no mech-
anism for reducing this any further. Clearly,
the copy count could be reduced to one by hav-
ing UML map data directly from the host page
cache into its own page cache.

This would require a different I/O model in the
generic kernel. Currently, Linux considers that
it has a fixed amount of memory available to
is, and when it reads data from disk, it has to
allocate memory for that data and copy it from
the disk. A UML instance mapping file data di-
rectly from the host memory is akin to having
that memory, with the data already in it, mate-
rialize from nowhere.

6.1.3 VM information isn’t shared

A further problem is that the host and the UML
instances running on it all have completely in-
dependent VM systems which likely will have
completely different ideas of how scarce mem-
ory is at any given moment. This is a problem
because they are all sharing the same memory,
and there is only one true picture of how scarce
it is, and it is held in the host’s VM system.

Somehow, this information needs to be com-
municated to the UMLs in a way that they can
respond to. There are a number of require-
ments that need to be met if this is to happen:

• UML instances need to be able to
free memory to the host. This can be

done by unmapping unneeded mem-
ory or by calling madvise(...,
MADV_DONTNEED). The basic mecha-
nisms are available on the host, but the
generic kernel provides no clean way of
using them.

• The host needs to be able to demand that a
UML free a certain amount of memory of
a certain type, i.e. dirty or clean pages, in
a given time. This is needed in order for
UML instances to feel memory pressure
when the host does and to respond appro-
priately to it.

• UML instances need to be able to tell the
host that memory which appears dirty, be-
cause it has been changed and not writ-
ten to its backing store, is really clean, be-
cause it is in sync with its backing store
from the UML point of view. This would
happen when the UML instance had itself
swapped the data to its own swap area. In
this case, the host could treat the memory
as clean and reallocate it without swap-
ping it out.

6.2 Improving memory management coopera-
tion

In contrast to the other problems identified in
this paper, this is not a single problem that has
a single fix as much as it is a set of problems
which will require a set of improvements. This
will likely require thought and work for some
time to come in order to develop solutions that
work reasonably well.

So, I will outline a set of possible partial solu-
tions rather than the single fixes that have been
described so far. Some of these may turn out to
be of limited value, while other ideas, not de-
scribed here, may be the ones that solve major
parts of the problem.

Ottawa Linux Symposium 2002 114

6.2.1 Passing memory pressure from the
host to UML

If there is to be any cooperation at all between
the host and its UML instances in memory
management, the host needs to be able to com-
municate memory pressure and its severity to
UML. There are currently no mechanisms at
all for doing this in Linux.

The host would need to be able to communi-
cate the following information to the UML in-
stances that it is hosting:

• the existence of memory pressure

• the amount of memory that a given in-
stance should release

• the type of memory, i.e. dirty or clean
pages, that should be released

• a deadline

The amount of memory that the host asks for
may be more a guess than a calculation. It
may be more useful for the host to decide
what it will do to a UML instance if it doesn’t
get enough memory released from all sources.
This would likely be some number of pages
of that UML’s memory that will be swapped
out. Then, the UML instance can decide what
it will do in order to try to avoid that fate. It
would likely have a better idea of what mem-
ory it can do without than the host, so it could
release pages that it thinks it needs less than
what the host would choose to swap out.

Whether the host wants clean or dirty pages
released depends on whether the host is also
I/O-bound and on the timeframe within which
it wants the memory. If it is I/O-bound, then
freeing dirty pages isn’t going to be useful be-
cause they would need to be written to swap
before they could be freed, adding to the I/O

congestion. Similarly, if the need for memory
is immediate, then releasing dirty pages won’t
help because there will be a significant time lag
between their release by UML and their avail-
ability to the system.

A UML instance will have some pages which
it considers to be clean, but which the host
considers to be dirty. A mechanism to inform
the host that these should be considered clean
would increase the proportion of clean pages
available for release.

Another possible mechanism for reclaiming
memory is for the host to just take clean pages
from a UML without it explicitly releasing
them. This would require that the host sig-
nal the UML instance when it next accesses
such a page. It would have to refill the page
with its original data before it could continue
to be reused. This has the disadvantage that the
UML has no choice in what pages are taken, so
there is no guarantee that the host will choose
pages that the UML instance can do without.
The host could make reasonable guesses by
looking at the hardware access bit, but it will
still not have information about access patterns
within the UML that may be relevant.

6.2.2 Freeing memory to the host

Currently, a UML instance is assigned a cer-
tain amount of memory which is considered to
be its physical memory. It is not allocated on
the host immediately. Rather, the host allocates
it as it is used. However, once it is used, it is
never given back. So an instance with a large
amount of memory that has not been used re-
cently will hold onto it even if there are other
instances which have a much greater need for
it.

As described above, there are mechanisms for a
process to free memory back to the host. How-

Ottawa Linux Symposium 2002 115

ever, there is no way in the generic Linux ker-
nel to give up memory. With some hooks in
the page allocation and page release code, it is
possible for the architecture to do some things.

Given a hook in the page release path, the ar-
chitecture could release a page to the host by
unmapping it or callingmadvise appropri-
ately. It also has a choice between freeing it to
the page allocator or not. This decision would
be based on whether the UML instance is to
reduce the amount of memory it has at its dis-
posal. If the page is made available to the page
allocator, it will very likely be reallocated and
reused. Thus, the host will need to reallocate
the page soon after having it freed. This will
limit the benefits to the host of freeing the page
in the first place.

So, there would appear to be benefits to not
freeing pages to the page allocator if the host
is under memory pressure. However, if this is
done, there would need to be some way of get-
ting those pages back when the memory pres-
sure on the host has abated.

Given a mechanism of the sort described in
section 6.2.1, there should also be an obvi-
ous way of indicating that the memory pressure
has diminished, and that the UML instance can
start reclaiming the memory that it gave up. In
both cases, there would need to be some indica-
tion from the host of how much memory should
be given up and how much can be reclaimed.
This would prevent undershooting and over-
shooting in both cases and make it more likely
that the host will have a reasonable amount of
free memory.

7 Conclusion

Fixing the problems described above will
greatly increase both the performance of indi-
vidual UML instances and the hosting capacity
of a given server.

A more efficient system call interception in-
terface will greatly increase the performance
of system-intensive applications running inside
UML. Compute-bound processes typically run
as fast inside UML as on the host, but other,
more system-intensive workloads can run two
to three times slower. Allowing a thread to in-
tercept its own system calls would bring the
performance of these processes much closer to
their performance on the host.

Similarly, using AIO to allow many out-
standing I/O requests would help I/O-intensive
workloads. Without AIO, UML is limited to
one outstanding I/O request at a time. As a re-
sult, I/O-intensive processes can spend much
of their time idle, waiting for their data to
be read from the host. This isn’t a waste of
the host’s processing power like the use of
ptrace is, so it may not hurt the host’s capac-
ity, but it does noticeably hurt the performance
of individual UML instances.

Allowing host address spaces to be manipu-
lated as objects separate from threads would
help UML’s context switching performance.
It would also greatly simplify the low-level
context-switching code. There would be no
need to traverse the address spaces of pro-
cesses coming into context in order to bring
them up to date with whatever changes were
made while they were out of context. There
would also be no need for the optimizations
that have been made in order to make the ex-
isting algorithms faster. A further benefit to
the code would be that the execution context
switch would be completely race-free, since
it would no longer be switching between host
processes. This code has been significantly
simplified over time, but it would become triv-
ial once a single thread could switch between
address spaces arbitrarily.

This enhancement, in conjunction with a
single-thread system call interception capabil-

Ottawa Linux Symposium 2002 116

ity, would also allow the UML kernel to be lo-
cated in a completely different address space
than its processes. This would be particularly
beneficial to jailing applications, which cur-
rently suffer from the poor performance of the
current mechanism of protecting UML kernel
data from userspace.

Finally, by improving the ability of the host to
communicate memory pressure to the UML in-
stances running on it and improving their abil-
ity to respond would noticeably improve the
hosting capacity of a given server. In some
cases, this would also improve the individual
performance of the UML instances.

This area is also interesting because this is
of much more general use than the others.
ptrace , AIO, and address spaces are of fairly
limited use to most applications. In contrast,
memory management is of concern to practi-
cally all processes. So, implementing meth-
ods of cooperative memory management be-
tween the host and UML instances would pro-
vide those mechanism to other processes as
well. This would open the way to this sort of
cooperation being common, presumably with
the result that the system performs better than
it would otherwise.

This relatively small list summarizes the prob-
lems that Linux has as a virtual machine host-
ing environment. They mostly appear to have
fairly straight-forward fixes, and some of these
fixes are in progress already. The most com-
plicated area is the cooperative memory man-
agement. That is a set of related problems that
will require a set of measure to deal with them,
rather than a single problem with a single fix.
In contrast to the others, it will likely be the
subject of study and work for some time to
come.

Linux is currently quite viable as a virtual ma-
chine platform for a number of applications.
Once these problems are fixed, Linux will be-

come even more attractive for hosting virtual
machines.

Online ext2 and ext3 Filesystem Resizing

Andreas E. Dilger
adilger@clusterfs.com,

http://www-mddsp.enel.ucalgary.ca/People/adilger/

Abstract

It is difficult to predict the future, yet this is
what you have to do each time you partition a
disk. There are several HOWTOs giving ad-
vice on ways to partition a disk for Linux, yet
everyone’s usage pattern is different. Invari-
ably, your filesystems fill up, often in the mid-
dle of doing something important.

With the advent of Linux LVM in 1999, Linux
was finally getting to the stage where one could
add space to “partitions” dynamically. The
missing link was allowing the widely-used ext2
filesystem to grow to use newly added disk
space without having to kill your applications,
unmount the filesystem, do an offline resize
(which was in its infancy at that time also), and
remount the filesystem.

We start with a brief overview of the layout
of the ext2 filesystem to give an understand-
ing of the constraints behind the design of the
online ext2 resizer. The three ext2 resizing
scenarios are discussed, and implementation of
each case is presented. The rationale behind
offline filesystem preparation is given, and the
(incompatible and yet unimplemented) alterna-
tive is presented. We continue with the require-
ments for ext3 online resizing discuss how this
leads to a totally different implementation.

1 Introduction

One of the many reasons why a system stops
doing the job it is intended to do is because it
runs out of space in an important filesystem.
While it is possible to increase the size of a
partition or disk which is in use (via software
or hardware RAID, LVM [LVM], and more re-
cently EVMS [EVMS]) you normally have to
stop applications and unmount ext2 and ext3
filesystems in order for the filesystem itself to
be resized to take advantage of this increased
space. To avoid an interruption to the system
(and applications, and users), one has to be able
to grow ext2 and ext3 filesystems while they
are mounted and in active use (i.e. read and
write operations in progress, current working
directory of a process, etc).

The GNU ext2resize package [resize]
is GPL licensed code which contains the
ext2online tool and a kernel patch, which
together allow increasing the size of a mounted
filesystem without interruption to processes
using that filesystem. In addition, the
ext2resize tool also allows you to grow
and shrink an unmounted filesystem. The
ext2prepare tool is also part of GNU
ext2resize , and is discussed later. While
ext2online only allows one to increase the
size of a mounted filesystem, in a vast ma-
jority of cases it is increasing the free space
in a filesystem which is the critical operation
needed to keep an application running. In rare
cases you might need to shrink one filesystem

Ottawa Linux Symposium 2002 118

in order to grow another, but given the ease
of increasing the size of a mounted filesystem
on a system using LVM and online filesystem
resizing, there is little need to make filesys-
tems too large for their anticipated short-term
growth as was needed previously.

The bulk of the ext2 online resizing kernel
code was written in the fall of 1999 for the
2.0.36 and 2.2.10 kernels, but has remained rel-
atively unchanged through all of the kernels
since then, with only minor changes to locking
and patch context. The 2.4 “code freeze” of
the fall of 1999 prevented the patch from being
added to the kernel at that time, and ongoing
stabilization of 2.4 and other tasks have pre-
vented me from doing more than minor code
maintenance for the most part. The require-
ment to have online resizing for ext3 was the
first restructuring of the kernel code, and in-
volved a complete code rewrite. It is antic-
ipated that the ext2 and ext3 online resizing
code will be submitted for inclusion into the
2.4 and 2.5 kernels some time in the summer of
2002. The user space tools that form theGNU
ext2resize package have undergone a slow
evolution during their lifetime to support newer
ext2 features such as large files and offline re-
sizing of ext3 filesystems, as well as having
more complete support for unusual filesystem
layouts such as RAID stripe aligned metadata
and filesystems whose inode tables are not at
the same offset in every group.

In this paper we focus primarily on theonline
(mounted) aspect of filesystem resizing. For
offline (unmounted) filesystem resizing, there
are additional aspects of resizing, such as in-
ode renumbering, moving the contents of data
blocks and the inode table, and renumbering
the data block pointers within an inode. The
ext2resize tool can do all of these things.
In order to keep the amount of kernel code to a
minimum (and to make it actually work) these
aforementioned operations are never done dur-

Group 0 Group 1 Group 2 Group 3 Group 4

B
L

O
C

K
S

U
P

E
R

B
L

O
C

K

B
IT

M
A

P
IN

O
D

E

B
IT

M
A

PGROUP
DESCRIPTOR

TABLE
TABLE
INODE

BLOCKS
DATA

BLOCKS
DATA

11 f(fs size) 1 N

Figure 1: Block Group Layout

ing online filesystem resizing.

2 Anatomy of an ext2 File System

In order to understand the constraints under
which the ext2 filesystem resizer operates, we
must first have some understanding of the on-
disk filesystem layout. For the purposes of
filesystem resizing, the ext2 and ext3 on-disk
layouts are identical. We do not cover all as-
pects of the ext2 filesystem layout, such as in-
odes and directories, because for the purposes
of online filesystem resizing those details are
mostly irrelevant. They are covered in many
other general ext2 papers [ext2].

The on-disk layout of the ext2 filesystem is
strongly influenced by the layout of the BSD
Fast File System. The disk/partition is di-
vided into one or more sections, calledblock
groups. Block groups are of a fixed size, de-
termined at filesystem creation time, and all
contain the same number of blocks, except the
last block group which may have fewer blocks.
By default, ext2 block groups are created at
their maximum size (32MB for the default 4kB
blocksize), and are numbered from the begin-
ning of the filesystem starting with 0.

Each block group contains several key pieces
of filesystem metadata, as shown in

Figure 1. For each block group, there is one
block which is theblock bitmap, one block
which is the inode bitmap, and one or more
blocks which make up theinode table. In addi-

Ottawa Linux Symposium 2002 119

tion, there may be a copy of both the filesys-
tem superblockand the filesystemgroup de-
scriptor table in a block group. Whether a
block group will contain either a primary or
backup superblock and group descriptor table
depends on the group number and/or parame-
ters at filesystem creation time.

The block bitmap describes the allocation sta-
tus of all data and metadata blocks within that
block group. If a bit is set, this indicates that
a block is in use as either a data or metadata
block, and if it is clear then the block is avail-
able for allocation. Since the block bitmap is
limited to a single block in size, this imposes
the maximum size of a block group - the num-
ber of bits which will fit in a single filesystem
block is 8 times the blocksize, and this is the
maximum number of blocks that can be in a
single group. For the last group in a filesys-
tem, the bits representing blocks past the end
of the filesystem will be set (marked in use) so
that the kernel does not need to special-case the
search for free blocks in the last group.

The inode bitmap describes the allocation sta-
tus of the inodes in its group’s inode table.
Since the inode bitmap is limited to a single
block in size, this imposes the maximum num-
ber of inodes that can be allocated in a sin-
gle group. If there are less than the maximum
number of inodes in a group, the bits corre-
sponding to non-existent inodes will be set (in
use).

The inode table contains one or more blocks
which hold the inode data. Each group has the
same number of blocks in the inode table, and
this number is determined at filesystem cre-
ation time. Multiple inodes are packed into
each inode table block, and fill the block com-
pletely, so this imposes the minimum number
of inodes that can be allocated in each group
- the number of inodes that fill a single block.
The maximum number of inodes in each group

is the same as with the maximum number of
blocks in each group - the number of bits that
fit within a single filesystem block, so 8 times
the blocksize.

The superblock contains critical filesystem
configuration parameters (e.g. blocksize, to-
tal number of blocks and inodes, group size,
number of inodes in each group, etc.) and also
dynamic filesystem status (e.g. the number of
free blocks and inodes, the number of times
the filesystem was mounted, the error status,
the last time it was checked, etc). The pri-
mary superblock is located at 1024 bytes from
the start of the filesystem, and is 1024 bytes
in size. There are backup copies of the su-
perblock stored in block groups1with numbers
which are integer powers of 3, 5, and 7 (i.e. 1,
3, 5, 7, 9, 25, 27, 49, ...). Under normal opera-
tion, only the primary copy of the superblock is
ever used, and the backups are only needed by
e2fsck in case the primary copy is corrupted
or overwritten.

The group descriptor table contains one or
more blocks which holdgroup descriptors. A
group descriptor contains the location of the
block bitmap, inode bitmap, and the start of the
inode table for its block group. It also contains
the count of free blocks, free inodes, and allo-
cated directories for its group. There is a group
descriptor for each group in the filesystem, so
the number of blocks that make up the group
descriptor depends on the number of groups in
the filesystem, which in turn depends on the
size of the filesystem. Because the group de-
scriptor table is critical in locating the filesys-
tem metadata, backup copies of the group de-
scriptor table are placed in the same groups as

1When the ext2 on-disk layout was first developed,
backup copies of the superblock were placed inevery
block group. For large filesystems, the amount of space
consumed by the backup superblocks and group descrip-
tor tables became too large, so modern ext2 filesystems
only place backups insparsegroups (i.e. as described
here).

Ottawa Linux Symposium 2002 120

S
B

G
D

T
B

B IB IT DATA

S
B

G
D

T
B

B IB IT DATA
S

B
G

D
T

B
B IB IT DATA

B
B IB IT DATA

B
B IB IT DATAGroup 4

Group 3

Group 2

Group 1

Group 0

Figure 2: Several block groups make up
filesystem

backup superblocks.

Figure 2 shows a filesystem with several block
groups. Note that all but the last group have the
same number of blocks. The inode table is the
same size in each block group, and each block
group has both an inode and block bitmap. The
group descriptor table is the same size in each
group, if it exists. While this example shows
the most common case of the bitmaps and in-
ode table in the same location in each group,
the ext2 format allows the bitmaps and inode
table each to be in any (non-overlapping) lo-
cation within the group. The actual location
within each group is solely determined by the
entries in the group descriptor table for that
group. The backup superblock and group de-
scriptor table must be located in the first blocks
of the group so that they can be located in case
of filesystem corruption. By defaultmke2fs
will create the bitmaps and inode table in the
same position within each group.

3 Three Resizing Scenarios

3.1 Common Resizing Operations

There are several operations that are common
to all of the growth scenarios discussed here:

• Increasing the total number of filesys-
tem blocks in the primary and backup su-
perblocks by the number of blocks added
to the filesystem. Since it is possible

that the primary superblock may be cor-
rupted at some later date, we also need
to update the backup superblocks to re-
flect the new size of the filesystem. Oth-
erwise, e2fsck would believe that all
block numbers higher than the old filesys-
tem size are invalid and the data therein
would be discarded.

• Increase the count of free filesystem
blocks in the primary superblock and
group descriptor for that group. The
count of free blocks, like other dynamic
ext2 metadata, does not necessarily need
to be updated in the backup superblocks
or group descriptors. The total and
per-block-group count of free filesystem
blocks can be recovered by counting the
bits set in each of the block bitmaps,
and is only really a convenience for ef-
ficient statfs() and ENOSPCimple-
mentation.

• Increase the number of reserved filesys-
tem blocks proportional to the number of
new blocks added to the filesystem.

• In order to notify the filesystem that it
should begin its resizing operation, the
filesystem is remounted with the option
-o remount,resize=<new size> .
While this seems somewhat awkward, it
does have the benefit that it can be done
from the command-line with only the
mount command. It is also very practical
from the point of view that the resize
operation uses all of the same checks and
setup code inext2_setup_super()
as the initialmount call.

Since the goal of online resizing is to allow
the filesystem to continue to be used while the
resizing operation is being done, we need to
make sure that we do the appropriate locking of

Ottawa Linux Symposium 2002 121

the filesystem structures that we update. Cur-
rently, there is only a single lock for the su-
perblock and all of the group descriptors, so
we only need to hold this superblock lock to
ensure our operations are safe. Also, the crit-
ical filesystem values are each stored in only
one place so we don’t need to ensure consis-
tency between multiple data fields of different
in-memory data structures. Obviously we want
to hold the superblock lock for as little time
as possible to avoid excluding other processes
from doing filesystem operations. It is antic-
ipated that in the future the filesystem lock-
ing will become more fine-grained to allow in-
creased parallelism in block and inode allo-
cation. This will likely be done by having a
read/write lock for each group’s block bitmap,
inode bitmap, and group descriptor, separate
from the superblock lock, and may be added
to the kernel during 2.5 development.

One other aspect of increasing the filesystem
size which makes it relatively trouble-free is
the fact that all of the blocks which are added
to the system are new. This means that there
can not be any users of these blocks or pages or
buffers mapped to them, so we do not need to
be concerned with hashing or locking or other
such aspects of block I/O which may cause
deadlocks or data corruption. This is one of
the major reasons why shrinking a mounted
filesystem is completely impractical. In lim-
ited cases it might be possible to shrink a
mounted filesystem by a single group, the na-
ture of the ext2 block and inode allocation al-
gorithms mean that the last group will almost
always have inodes and blocks allocated in
them. While it might be possible to relocate
data blocks on a mounted filesystem (exclud-
ing issues such asFIBMAPof those blocks ex-
porting the block numbers to user space), the
relocation of inodes is even more problematic
because of the use of inode numbers in directo-
ries and NFS file handles, let alone the locking
issues involved.

Group 4

Group 3

Group 2

Group 1

Group 0

NEWLY ADDED BLOCKS

Figure 3: Adding blocks to a single group

3.2 Adding Blocks to a Single Block Group

The first and simplest filesystem growth sce-
nario is adding blocks to the end of a sin-
gle block group, as shown in Figure 3. In
order to efficiently and safely implement the
operations of updating the block bitmap and
increasing the free blocks count in the su-
perblock and group descriptor, we take a short
cut and create a fake inode which spans the
newly-added blocks at the end of the last
block group. All we have to do now is in-
crease the total number of filesystem blocks in
the superblock, and delete the fake inode via
ext2_free_blocks() . This will take care
of updating the bitmaps and the free blocks
count in the superblock and group descrip-
tor. The fake node is only created in-memory
and only has enough fields filled in to satisfy
those accessed byext2_free_blocks()
and what it calls. This also has the advantage
that any locking changes which take place in
the ext2 code will be handled for us.

We can easily do everything we need for this
resizing operation from within the kernel, since
it has no more impact on performance than
deleting a file of the same size (less actually,
since we don’t need to update the on-disk in-
ode data). Since this resize operation is virtu-
ally identical to deleting a file, it is almost im-
possible for it to fail, excluding bugs in the core
ext2 code. This resizing operation needs no ad-
ditional updates to the on-disk metadata. De-
pending on the blocksize of the filesystem, this
scenario would allow us to grow a filesystem
up to the next 8MB, 16MB, or 32MB bound-

Ottawa Linux Symposium 2002 122

Group 0

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

NEWLY ADDED GROUP

NEWLY ADDED GROUP

NEWLY ADDED GROUP

Figure 4: Adding new block groups within the
same descriptor block

ary (for 1kB, 2kB, or 4kB blocks, respectively)
for all filesystems.

The only operation which is left to user-space
is that of copying the new primary superblock
to the backup superblock locations, if any.
Since the backup superblocks are never ac-
cessed by the kernel, there is no problem writ-
ing them directly to the block device from
user space. If the resize command is done
manually via themount command instead of
ext2online , the superblock is not copied
to the backup locations. Under all but the
most extreme failure conditions that will be
OK, and the ability to do a filesystem resize
using an available tool is convenient. The
backup superblocks will be updated the next
time e2fsck does a full check of the filesys-
tem.

3.3 Adding a Block Group Within a Group De-
scriptor Block

The second filesystem growth scenario is that
of adding a new group to the filesystem, as
shown in Figure 4, after the end of a full block
group. Each block group must have a block
bitmap, inode bitmap, and inode table, and
possibly a backup superblock and group de-
scriptor table. This means that we need to add
at least enough new blocks to the filesystem to
hold all of this metadata before we can actu-
ally increase the size of the filesystem. Since

we are adding an inode bitmap and inode ta-
ble, we also need to update the total number of
inodes in the primary and backup superblocks,
and the number of free inodes in both the pri-
mary superblock and group descriptor for the
new group. All of these operations can be done
by simply updating the appropriate fields in the
superblock while holding the superblock lock.

There are two things that distinguish this case
from the first case:

• We need to create a new block bitmap,
inode bitmap, and an inode table for
each group added to the filesystem. The
bitmaps have to be filled to reflect the
availability of blocks and inodes within
the new group.

• We need to add a new entry to the group
descriptor table for the new group. The
group descriptor table is stored on disk
and is accessed in the kernel via an ar-
ray of buffer heads. If we are adding a
group that fits within the last group de-
scriptor block then we do not need to add
a new buffer head, but we do need to in-
crease the number of groups in the filesys-
tem so that the block and inode allocation
routines know to check for free blocks in
the new group(s).

In order to minimize kernel code growth and
in-kernel processing overhead, the creation of
the block bitmap, inode bitmap, and inode ta-
ble are done from user space before the kernel
is told about the new group(s). This is per-
fectly safe even on a busy filesystem because
the blocks being modified from user space are
beyond the end of the existing filesystem, so
there will not be any other processes reading
from or writing to these blocks.

The creation of the new group descriptor entry
is slightly more problematic, because it is shar-
ing a block with other group descriptors that

Ottawa Linux Symposium 2002 123

are in active use. Reading the block to user
space, modifying it, and writing it back to disk
cannot be done safely on an active filesystem
because it would lose any updates that had been
done by the kernel since the group descriptor
block had been read. Fortunately, existing ker-
nels have cache coherency between the block
device and the buffer heads in the kernel, so
it is possible with ext2 to write a new group
descriptor entry into the last group descriptor
block and have it visible to the kernel without
corrupting the existing group descriptors. The
new group descriptor entry has the correct val-
ues for the free block and inode counts of that
group, in addition to the location of the bitmaps
and inode table.

The new group descriptors are written to the
disk from user space before the resize opera-
tion takes place, as are the bitmaps and inode
table. The filesystem is notified via themount
parameter of the new filesystem size and adds
the new blocks and inodes to the free and to-
tal block and inode counts in the superblock.
As the group’s free block and inode counts are
added into the totals in the superblock (under
the superblock lock, of course), the new groups
are immediately available to the filesystem for
allocation. Again, once the kernel is finished
its resizing operation the new superblock and
group descriptor table is copied to the backup
locations, if any. Since we need to create
the bitmaps and inode table from user space,
it is not practical to do this resize operation
with anything other than theext2online
tool, which also handles the updating of the
backup superblock and group descriptor tables
once the resize operation has completed suc-
cessfully.

Resizing the filesystem in this manner allows
it to add groups until the last group descriptor
block is full. Since each group descriptor is a
fixed size (32 bytes), the number of group de-
scriptors that fit into a single filesystem block

depends on the blocksize. Likewise the size
of each group also depends on the blocksize.
The boundaries for group descriptor blocks are
256MB, 1GB, and 16GB for 1kB, 2kB, and
4kB blocks, respectively. This allows one to
resize any default 4kB blocksize filesystem a
considerable amount without any prior prepa-
ration.

The failure scenarios for this resizing case are
very minimal. The in-kernel code basically is
just adding the new block and inode counts
from the group descriptors into the superblock.
Although the group descriptors, bitmaps, and
inode table were just written from user space,
the kernel does some validity checks of every-
thing before activating each group to avoid any
problems.

3.4 Adding a Block Group in a New Group De-
scriptor Block

The final resizing scenario happens when the
last block in the group descriptor table is full.
This brings up one of the major limitations im-
posed by keeping on-disk compatibility with
the existing ext2 format. Because the number
of groups in the filesystem is linearly depen-
dent on the filesystem size, and we keep all
group descriptors in each group descriptor ta-
ble, eventually we need to allocate new blocks
for the group descriptor table in each group that
has a copy. As Figure 1 shows, the default
configuration of metadata within a group is to
have the superblock and group descriptor table
first (these twohaveto be first in the group),
with the block bitmap, inode bitmap, and inode
table following immediately afterward. This
means that the group descriptor table cannot
normally allocate a new block at the end be-
cause the block bitmap is using this block.

Fortunately, the design of the ext2 on-disk lay-
out allows us to circumvent this problem by
moving the bitmaps and inode table further

Ottawa Linux Symposium 2002 124

DATA BLOCKSTABLE
INODE

IBB
B

G
D

T
R

S
V

S
B

G
D

T

NEWLY ADDED GROUP

Group 1

Group 0

Group 127

Group 128

Figure 5: Adding a new block group in a new
group descriptor block

from the start of the group to allow the group
descriptor table to grow, as shown in Figure 5.
Since the location of the bitmaps and inode
table for each group can be set in the group
descriptor, it is simply a matter of creating a
filesystem with the bitmaps and inode table off-
set from the end of the group descriptor table.
For existing filesystems, theext2resize
package has anext2prepare tool which
will relocate the bitmaps and inode table.
Since the operation of relocating the bitmaps
and inode table is also necessary for resizing
the filesystem (for the same reason - because
the group descriptor table will grow to need
the blocks they occupy) theext2prepare
code can re-use most of the same code as
ext2resize . The moving of the bitmaps
and inode table must be done while the filesys-
tem is unmounted.

The second issue for this case is how to re-
serve the blocks after the end of the group de-
scriptor table so that they are not allocated to
regular files. One way would have been to
store an extra field in the superblock which
holds the number of reserved blocks. If the
blocks were set unused in the block bitmap,
kernels ande2fsck that do not know about
this scheme would happily assign those blocks
to files and potentially prevent the filesystem
from being resized later. If the blocks were set
as used in the block bitmap, then ane2fsck
which didn’t know about this scheme would
think they were unused and clear them the next
time it checked the filesystem. Instead, one of
the reserved ext2 inodes (#7) was used to hold

these reserved group descriptor blocks. To both
the kernel ande2fsck inode #7 is using the
reserved group descriptor blocks and everyone
is happy.

In order to do an online resize when we need to
add a new group descriptor block, we perform
all of the steps as before:

• Write a group descriptor, block bitmap,
inode bitmap, and inode table for each
group to the disk from user space.

• Tell the filesystem to grow to the new size.

• The kernel adds the new inodes and
blocks from each group to their respective
total and free counts in the superblock.

• Update the backup superblocks and group
descriptors from user space once the re-
size has completed successfully.

There are two additional steps which must be
done in order to handle the new group descrip-
tor block:

• The kernel must read the new block into
a buffer and add it into the array of
group descriptor block buffer heads be-
fore adding these groups to the filesys-
tem. In order to minimize kernel code
growth, the existing code to allocate the
array and read the buffers was extracted
into a function which could start reading
the group descriptor table at a non-zero
offset. The existing buffers are left un-
touched in order to avoid having other
parts of the filesystem code with point-
ers to no-longer-existing buffer data. Only
the group descriptor array is re-allocated
at the new size and filled in with pointers
to the existing and new buffers. A fail-
ure during this part of the resizing infor-
mation will simply cause the resize not to

Ottawa Linux Symposium 2002 125

happen, as the old array is not freed un-
til after the new array and buffer(s) have
been allocated.

• We must transfer the blocks from the re-
served inode to the group descriptor table.
This is actually relatively simple. Because
the blocks are already marked as in-use
in the block bitmap, we do not need to
change it for blocks assigned to the group
descriptor table. The number of blocks
in the group descriptor table is calculated
from the total number of blocks in the
filesystem, so we do not need to update
the superblock to reflect this (we have al-
ready updated the total number of blocks).
The only thing that remains, for consis-
tency, is to deallocate the blocks from the
reserved inode. This can be done from
user-space by writing directly to the block
device after the resize is complete, be-
cause this reserved inode is not accessible
from the mounted filesystem. A failure
at this point will mean thate2fsck will
complain about blocks shared between the
reserved inode and the group descriptor
table, and will automatically clean it up.

3.5 Incompatible Online Resizing

Adding the reserved group descriptor blocks to
the reserved inode is done byext2prepare
while the filesystem is unmounted as it moves
the bitmaps and inode table out of the way.
The number of blocks to be reserved for each
group descriptor table copy is calculated from
the desired future maximum filesystem size
given by the user on the command line. For
the default 4kB block size, we only need to re-
serve 1 block for each 16GB of future growth,
so the overhead of reserving enough blocks
for a 2TB filesystem is fairly minimal —only
512kB per group descriptor copy. The require-
ment for users to prepare a filesystem while

it is unmounted, before doing large online re-
sizes is a fairly minimal price to pay in order
to keep 100% forward and backward compati-
bility with the existing ext2 filesystem layout.
This requirement could be removed by having
mke2fs create new filesystems that already
have these blocks allocated to the reserved in-
ode.

The alternative to doing offline filesystem
preparation is to make an incompatible change
to the on-disk layout when we run out of space
in the last group descriptor block. This change
would involve storing new group descriptor
blocks at the beginning of the first group that
needs a new block for its group descriptor. The
backup of this block would be stored in the
second group that needs this group descriptor
block. This has the added benefit that the group
descriptor of a group is relatively closer to
the groups that it describes, which may reduce
seeking some small amount. The major draw-
back of this scheme is that it results in a filesys-
tem that can not be mounted by older kernels,
nor can older ext2 filesystem tools work with
it. It also adds some small amount of additional
code to the kernel to deal with the two different
layouts of the group descriptor table, although
this is fairly minimal. There is also a proposed
filesystem change to allow larger contiguous
extents on the disk to be allocated which would
also benefit from this format change, so there
may be additional justification for making such
an incompatible change.

Given that people use online filesystem resiz-
ing when they are running out of space, they
may choose to pay this penalty in order to keep
their system running smoothly. The poten-
tial drawbacks are only a problem if you have
back-level filesystem tools or need to boot an
older kernel. This problem could be mitigated
by adding functionality toext2resize or
ext2prepare to remove the incompatibil-
ity from unmounted filesystems after the fact.

Ottawa Linux Symposium 2002 126

This would be done by moving the bitmaps and
inode table out of the way and moving the new
group descriptor block(s) to their normal posi-
tion, in a manner very similar to resizing the
filesystem.

4 Online Resizing an ext3 Filesys-
tem

The ext3 filesystem is the journaling version
of ext2[ext3]. Interestingly, although ext2 and
ext3 share a virtually identical on-disk for-
mat (the ext3 journal is simply a regular file
stored inside the filesystem), the requirement
for a 100% consistent filesystem in the face
of a crash at any point during the resize made
the ext3 online resize implementation totally
different from that of ext2. Writing into the
filesystem from user space for ext2 online re-
sizing is not safe to do with an ext3 filesystem
because the journal layer may make copies of a
buffer while it is being written to disk, so there
is no guarantee of cache coherency between
user space access to the block device and ker-
nel space2. The requirement that the resize op-
eration be atomic and leave the filesystem cor-
rect also precludes writing directly to the block
device, because these writes will not be in the
journal.

Instead, all of the operations which were for-
merly done inside journaled transactions3 in
the kernel. The user space code is still re-

2In fact, the ext3 journaling layer has a large num-
ber of assertions embedded in it which will catch buffers
which enter the ext3 “food chain” incorrectly, to avoid
data corruption. This prevents such access as a rule,
rather than letting it succeed most of the time but fail
mysteriously at other times.

3Actually, the ext3 journal layer has a larger oper-
ation called atransaction. What is referred to here as
a transaction is actually called a journalhandle in the
code, but transaction more clearly represents the opera-
tion being described and the actual functionality is the
same.

sponsible for determining the locations of the
metadata structures within each group, but the
kernel code is responsible for creating the ac-
tual data. This turns out to be less complex
than initially thought, as most of the opera-
tions are simply tomemset() the buffers to
zero (for the inode table and group descriptor
and most of the bitmaps), then use the kernel
bitmap handling routines to mark appropriate
bits set, and finallymemset() any large parts
of the bitmap to 0xffffffff as necessary. Since
we are creating the data in the kernel, we do
not need to verify its correctness, excluding a
limited number of parameters passed from user
space.

The addition of each group is placed into its
own journal operation to avoid trying to create
too large of a single transaction. Transactions
which do not need to be atomic because they
do not affect filesystem recovery such as zero-
ing the blocks in the inode table and copying
data to the backup superblock and group de-
scriptor tables are put into separate transactions
to allow other filesystem operations to happen
concurrently. Those operations which need to
be atomic, such as moving blocks from the re-
served inode to the group descriptor table and
updating the superblock to include new groups,
are done within a single transaction. Because
the journal imposes ordering between transac-
tions, it is enough that a previous transaction
was closed and a new one opened to ensure that
the previous operations will exist after a crash
if any following operation also exists.

In order to keep in-kernel processing to a min-
imum, the layout of the reserved group de-
scriptor inode was changed from that used with
ext2. Under ext2 the updating of the reserved
inode was done in user space and searching the
inode for blocks that had been added to the
group descriptor table was acceptable. With
ext3 the layout was changed to allow group de-
scriptor blocks to be put into use by updating

Ottawa Linux Symposium 2002 127

Reserved
Inode #7

Grp 5

Grp 3

Grp 1

Grp N

Grp 5

Grp 3

Grp 1

Grp N

Grp 5

Grp 3

Grp 1

Grp N

Grp 5

Grp 3

Grp 1

Grp N

Grp 5

Grp 3

Grp 1

Grp N

Grp 5

Grp 3

Grp 1

Grp N

X

Backups

RGDB RGDB
PrimaryPrimary

X+1 X+2 X+3
RGDB RGDB

PrimaryPrimary Primary
RGDB RGDB

Primary

Indirect
Double

Block

Block X+1 Block X+2 Block X+Y
BackupsBackups

Block X+3
BackupsBackupsBackups

X+Y−1 X+Y

Block X+Y−1Block X

Figure 6: New arrangement of blocks in the
reserved inode

only a single inside the transaction, and with-
out searching the inode. This required a change
to the user spaceext2prepare tool to set up
the new format. I took advantage of this format
change to also add an ext2 compatible feature
flag to the ext2 superblock, so thate2fsck
could properly detect and verify the more rigid
layout requirements for the reserved inode.

Figure 6 shows the layout of the reserved GDT
blocks in the inode. The reserved blocks are
arranged such that the double indirect inode
block points to the primary copy of each re-
served group descriptor block, which is an in-
direct inode block. The reserved group de-
scriptor blocks are shown numbered starting
with X, which is the block number for the
block immediately following the last group de-
scriptor block currently in use. The offset of
the primary reserved group descriptor block is
X mod (blocksize/4) . which allows us
to locate each reserved group descriptor block
and its backups without any searching.

All of the backup copies for this group descrip-
tor block are leaf blocks attached to the in-
direct (primary) block. There is one backup
group descriptor block for each of the “sparse”

groups which have a backup superblock and
group descriptor table. Using this layout al-
lows us to transfer the reserved descriptor
blocks from the reserved inode to the group de-
scriptor table by simply zeroing out the indirect
block pointer in the double indirect block. This
is done within the same journal transaction as
creating the group descriptor data in the pri-
mary descriptor block and adding that group to
the filesystem, so if there is any error during
this process the filesystem remains consistent.

There is one additional point which needs to be
handled by the ext3 resizing code which cannot
exist in ext2. In the case where a resize opera-
tion was completed in the journal, but the sys-
tem crashes before the resize is flushed from
the journal to the filesystem, the filesystem
size in the superblock will still reflect the old
filesystem size. Journal recovery is normally
done bye2fsck , but for the root filesystem
or other ext3 filesystems mounted without an
fsck, journal recovery is done after the su-
perblock has been read from the disk. We de-
tect this case by comparing the filesystem size
from before journal recovery to that after jour-
nal recovery, and if the filesystem has grown
we need to read any additional group descrip-
tor blocks from disk in the same manner we
would do in a normal resizing operation.

5 Conclusion

The ext2 filesystem resizing code is a fairly
mature piece of code, even thought it has not
been included in the stock kernel yet. While
the thought of resizing the filesystem while it
is mounted and in use is somewhat daunting,
the actual simplicity of the resizing operations
gives little room for error. In fact, other than
minor math errors in updating the group or su-
perblock inode or block counts during devel-
opment (which are easily detected and/or fixed
by both the kernel ande2fsck) , I have never

Ottawa Linux Symposium 2002 128

had a reported filesystem corruption from the
online resizing.

The advent of online resizing for ext3 does
add additional complexity to the kernel code,
but the requirements for high-availability sys-
tems demand both online resizing and journal-
ing support, so the extra overhead can be jus-
tified. Since the online resizing code is only
used very rarely, it would be possible to put the
bulk of this code into a separate module that
is only loaded when a resize operation is done.
The cleaner layout of the reserved inode and
thee2fsck support for it mean that it is desir-
able to change the ext2 online resizing support
over to use the new inode format also. In the
short term this is accomplished by an updated
ext2online user tool.

As was previously mentioned, theGNU
ext2resize package is available
from Sourceforge at http://sf.net
/projects/ext2resize/ in .tgz
and .rpm formats. There is also a very
low volume mailing list dedicated which
can be accessed from this same page.
General ext2 and ext3 filesystem design
and coding discussions take place on the
ext2-devel@lists.sourceforge.net
mailing list.

Special thanks go to Ted Ts’o and Stephen
Tweedie, who helped me understand ext2 and
the kernel when I was first trying to learn what
kernel programming was all about, and all
the interesting ext2/ext3 discussions we’ve had
since then. Lennert Buytenhek was the orig-
inal author of theGNU ext2resize code
and libext2resize , and this gave me the
foundation on which to build the user tools for
online resizing and offline filesystem prepara-
tion.

Thanks also go to Miguel de Icaza, whose ext2-
volume patch[volume] gave me a rough idea of
where I should look at in the kernel to find the

ext2 filesystem code and how it all fit together.
The ext2-volume code was written to allow one
to concatenate full ext2 filesystems together to
form a single filesystem, prior to the availabil-
ity of MD RAID and LVM in the kernel, but
had the major drawbacks that it only supported
offline resizing, and produced a totally incom-
patible filesystem.

References

[resize] Lennert Buytenhek, Andreas Dilger,
GNU ext2resize, http://sf.net

/projects/ext2resize/

[ext2] Rémy Card, Theodore Ts’o, Stephen
Tweedie,Design and Implementation
of the Second Extended Filesystem,
http://e2fsprogs.sf.net

/ext2intro.html , (1994)

[LVM] Michael Hasenstein,The Logical
Volume Manager,
http://www.sistina.com/lvm

/lvm_whitepaper.pdf , (2000)

[EVMS] Ben Rafanello, John Stiles, Cuong
H. Tran,Emulating Multiple Logical
Volume Management Systems within
a Single Volume Management
Architecture,
http://oss.software.ibm.com

/developerworks/opensource

/evms/doc

/EVMS_White_Paper1.ps.gz ,
(2000)

[ext3] Stephen Tweedie,Journaling the
ext2fs Filesystem, LinuxExpo ’98
Proceedings,
ftp://ftp.uk.linux.org/pub

/linux/sct/fs/jfs

/journal-design.ps.gz , (1998)

[volume] Miguel de Icaza,Ext2fs volume
support, http://www-

Ottawa Linux Symposium 2002 129

mddsp.enel.ucalgary.ca

/People/adilger/online-ext2

/ext2-volume-0.1.tar.gz ,
(1997)

Running Linux on a DSP?
Exploiting the Computational Resources of a

programmable DSP Micro-Processor with uClinux

Michael Durrant Jeff Dionne Michael Leslie

1 Introduction

Many software developers in recent years have
turned to Linux as their operating system of
choice. Until the advent of uClinux, how-
ever, developers of smaller embedded sys-
tems, usually incorporating microprocessors
with no MMU, (Memory Management Unit)
could not take advantage of Linux in their
designs. uClinux is a variant of mainstream
Linux that runs on “MMU-less” processor ar-
chitectures. Perhaps a DSP? If a general pur-
pose DSP has enough of a useable instruction
set why not!

Component costs are of primary concern in
embedded systems, which are typically re-
quired to be small and inexpensive. Micropro-
cessors with on-chip MMU hardware tend to
be complex and expensive, and as such are not
typically selected for small, simple embedded
systems, which do not require them.

Benefits

Using Linux in devices, which require some in-
telligence, is attractive for many reasons:

• It is a mature, robust operating system

• It already supports a large number of de-
vices, filesystems, and networking proto-
cols

• Bug fixes and new features are constantly
being added, tested and refined by a large
community of programmers and users

• It gives everyone from developers to end
users complete visibility of the source
code

• A large number of applications (such as
GNU software) exist which require little
to no porting effort

• Linux’s very low cost

2 uClinux System Configurations

Embedded systems running uClinux may be
configured in many ways other than that of the
familiar UNIX-like Linux distribution. Nev-
ertheless, an example of a system running
uClinux in this way will help to illustrate how
it may be used.

Kernel / Root Filesystem

The Arcturus uCdimm is a complete computer
in an so-DIMM form factor, built around ei-
ther a Motorola 68VZ328 “DragonBall” mi-
crocontroller, the latest processor in a family
widely popularized by the “Palm Pilot” or a
Motorola CF5272 “ColdFire” microcontroller.
It is equipped with 2M of flash memory, 8M of
SDRAM, both synchronous and asynchronous
serial ports, and an Ethernet controller. There

Ottawa Linux Symposium 2002 131

is a custom resident boot monitor on the de-
vice, which is capable of downloading a bi-
nary image to flash memory and executing it.
The image that is downloaded consists of a
uClinux kernel and root filesystem. In UNIX
terms, the kernel makes a block device out of
the memory range where the root filesystem re-
sides, and mounts this device as root. The root
filesystem is in a read-only UNIX-like format
called “ROMFS”. Since the DragonBall runs
at 32MHz, the kernel and optionally user pro-
grams execute in-place in flash memory. Faster
systems like the MCF5272 ColdFire running at
48 MHz or 66 MHz benefit from copying the
kernel and root filesystem into RAM and exe-
cuting there.

The Micro Signal Architecture MSA devel-
oped by ADI (and Intel) is very interesting.
While a DSP processor, it possesses enough
general-purpose processor instruction support
to allow operating systems like uClinux to be
deployed. The ADI BlackFin is one such pro-
cessor.

Other embedded systems may be inherently
network-based, so a kernel in flash memory
might mount a root filesystem being served
via nfs (Network File System). An even more
network-centric device might request its kernel
image and root filesystems via dhcp (Dynamic
Host Configuration Protocol) and bootp. Note
that drivers for things like IDE and SCSI disk,
CD, and floppy support are all still present in
the uClinux kernel.

User Space

The contents of the root filesystem vary more
dramatically between embedded systems using
uClinux than between Linux workstations.

The uClinux distribution contains a root
filesystem which implements a small UNIX-
like server, with a console on the serial port,

a telnet daemon, a web server, nfs (Network
File System) client support, and a selection of
common UNIX tools.

A system such as an mp3 (MPEG layer 3 com-
pressed audio) CD player might not even have
a console. The kernel might contain only sup-
port for a CD drive, parallel I/O, and an audio
DAC. User space might consist only of an in-
terface program to drive buttons and LEDs, to
control the CD, and which could invoke one
other program; an MPEG audio player. Such
an application specific system would obviously
require much less memory than the full-fledged
uClinux distribution as it is shipped.

3 Development Under uClinux

Development Tools

Developing software for uClinux systems typ-
ically involves a cross-compiler toolchain built
from the familiar GNU compiler tools. Soft-
ware that builds under gcc (GNU C Compiler)
for x86 architectures, for example, often builds
without modification on any uClinux target.

Debugging a target via gdb (GNU debugger)
presents a debugging interface common to all
the platforms supported by gdb. The debug-
ging interface to a uClinux kernel on a target
depends on debugging support for that target.
If the target processor has hardware support for
debugging, such as IEEE’s JTAG or Motorola’s
BDM, gdb may connect non-intrusively to the
target to debug the kernel. If the processor
lacks such support, a gdb “stub” may be in-
corporated into the kernel. gdb communicates
with the stub via a serial port, or via Ethernet.

uClibc

uClibc, the C library used in uClinux, is a
smaller implementation than those which ship

Ottawa Linux Symposium 2002 132

with most modern Linux distributions. The li-
brary has been designed to provide most of the
calls that UNIX-like C programs will use. If
an application requires a feature that is not im-
plemented in uClibc, the feature may be added
to uClibc, it may me linked in as a separate li-
brary, or it may be added to the application it-
self.

Differences Between uClinux And Linux

Considering that the absence of MMU sup-
port in uClinux constitutes a fundamental dif-
ference from mainstream Linux, surprisingly
little kernel and user space software is affected.
Developers familiar with Linux will notice lit-
tle difference working under uClinux. Embed-
ded systems developers will already be familiar
with some of the issues peculiar to uClinux.

Two differences between mainstream Linux
and uClinux are a consequence of the removal
of MMU support from uClinux. The lack of
both memory protection and of a virtual mem-
ory model are of importance to a developer
working in either kernel or user space. Certain
system calls to the kernel are also affected.

Memory Protection

One consequence of operating without mem-
ory protection is that an invalid pointer refer-
ence by even an unprivileged process may trig-
ger an address error, and potentially corrupt or
even shut down the system. Obviously code
running on such a system must be programmed
carefully and tested diligently to ensure robust-
ness and security.

Virtual Memory

There are three primary consequences of run-
ning Linux without virtual memory. One is
that processes, which are loaded by the ker-
nel, must be able to run independently of their

position in memory. One way to achieve this
is to “fix up” address references in a program
once it is loaded into RAM. The other is to
generate code that uses only relative address-
ing (referred to as PIC, or Position Independent
Code). uClinux supports both of these meth-
ods.

Another consequence is that memory alloca-
tion and deallocation occurs within a flat mem-
ory model. Very dynamic memory allocation
can result in fragmentation, which can starve
the system. One way to improve the robustness
of applications that perform dynamic memory
allocation is to replacemalloc() calls with re-
quests from a preallocated buffer pool.

Since virtual memory is not used in uClinux,
swapping pages in and out of memory is not
implemented, since it cannot be guaranteed
that the pages would be loaded to the same lo-
cation in RAM. In embedded systems it is also
unlikely that it would be acceptable to suspend
an application in order to use more RAM than
is physically available.

System Calls

The lack of memory management hardware on
uClinux target processors has meant that some
changes needed to be made to the Linux system
interface. Perhaps the greatest difference is the
absence of thefork() andbrk() system calls.

A call to fork() clones a process to create a
child. Under Linux,fork() is implemented us-
ing copy-on-write pages. Without an MMU,
uClinux cannot completely and reliably clone
a process, nor does it have access to copy-on-
write.

uClinux implementsvfork() in order to com-
pensate for the lack offork(). When a parent
process callsvfork() to create a child, both pro-
cesses share all their memory space including
the stack.vfork()then suspends the parent’s ex-

Ottawa Linux Symposium 2002 133

ecution until the child process either callsexit()
or execve(). Note that multitasking is not oth-
erwise affected. It does, however, mean that
older-style network daemons that make exten-
sive use offork() must be modified. Since child
processes run in the same address space as their
parents, the behaviour of both processes may
require modification in particular situations.

Many modern programs rely on child pro-
cesses to perform basic tasks, allowing the sys-
tem to maintain an interactive “feel” even if the
processing load is quite heavy. Such programs
may require substantial reworking to perform
the same task under uClinux. If a key applica-
tion depends heavily on such structuring, then
it may be necessary to either re-create the ap-
plication, or an MMU-enabled processor may
also be needed.

A hypothetical, simple network daemon,
hyped, will illustrate the use offork(). hyped
always listens on a well-known network port
(or socket) for connections from a network
client. When the client connects,hypedgives
it new connection information (a new socket
number) and callsfork(). The child process
then accepts the client’s reconnection to the
new socket, freeing the parent to listen for new
connections.

uClinux has neither an autogrow stack nor
brk() and so user space programs must use the
mmap()command to allocate memory. For
convenience, our C library implementsmal-
loc() as a wrapper tommap(). There is a
compile-time option to set the stack size of a
program.

4 Brief Anatomy Of The uClinux
Kernel

This section describes the changes that were
made to the Linux kernel to allow it to run on

MMU-less processors.

Architecture-Generic Kernel Changes

The architecture-generic memory management
subsystem was modified to remove reliance on
MMU hardware by providing basic memory
management functions within the kernel soft-
ware itself. For those who are familiar with
uClinux, this is the role of the directory/mm-
nommuderived from and replacing the direc-
tory /mm. Several subsystems needed to be
modified, added, removed, or rewritten. Kernel
and user memory allocation and deallocation
routines had to be reimplemented. Support for
transparent swapping / paging was removed.
Program loaders which support PIC (Position
Independent Code) were added. A new binary
object code format, named “flat” was created,
which supports PIC and which has a very com-
pact header. Other program loaders, such as
that for ELF, were modified to support other
formats which, instead of using PIC, use abso-
lute references which it is the responsibility of
the kernel to “fix up” at run time. Each method
has advantages and disadvantages. Traditional
PIC is quick and compact but has a size re-
striction on some architectures. For example,
the 16-bit relative jump in Motorola 68k archi-
tectures limits PIC programs to 32K. The run-
time fix-up technique removes this size restric-
tion, but incurs overhead when the program is
loaded by the kernel.

Porting uClinux To New Platforms

The task of adding support for a new CPU ar-
chitecture in uClinux is similar to doing so in
Linux proper. Fortunately, there is a great deal
of code in Linux that can be ported with mi-
nor adaptations and reused in uClinux. Ma-
chine dependent startup code and header files
already exist in Linux for MMU versions of
processors in the ARM, Motorola 68k, MIPS,

Ottawa Linux Symposium 2002 134

SPARC and other families. This code may be
adapted to support non-MMU versions of these
processors in uClinux.

Driver code, which already exists in Linux, is
often easily portable to run under uClinux. Is-
sues in porting such code may involve endian
issues or memory handling code, which as-
sumes the presence of MMU support.

5 The Future of uClinux

Numerous enhancements are in the works for
uClinux. The diversity of the innovations that
mainstream Linux receives from the commu-
nity pave a good path for the development of
uClinux. The uClinux developer community is
very active; enhancements and innovations are
frequently made.

Real-Time

Linux is now a platform for hard real-time
application development (that is, applications
with deterministic latency under varying pro-
cessor loads). The Linux kernel scheduler
already provides non-deterministic, or “soft”,
real-time, and systems such as RT-Linux and
RTAI (Real-Time Application Interface) up-
grade the Linux kernel to provide hard (deter-
ministic) real-time support. Real-time applica-
tions in Linux have access to the extensive re-
sources of the Linux kernel without sacrificing
hard real-time performance. Efforts are under-
way to provide the RTAI subsystem for use on
various MMU-less processors.

Adding DSP support or adding general purpose
processor support to a DSP

Processors like the ColdFire MCF5272 are pri-
marily general purpose processors with a RSIC
instruction set. Yet Motorola included limited
DSP functionality with a multiply and accu-

mulate DSP functions. This is an approach
of adding functionality into general purpose
processors. In this case the ColdFire proces-
sor can and does have uClinux support. Other
processors like the Analog Devices BlackFin
(MSA DSP), the processor is primarily a DSP
with added general purpose processor support.
uClinux is portable to the BlackFin and ex-
pected to be publicly available in the fall of
2002.

The attached paper“Exploiting the Compu-
tational Resources of a Programmable DSP
Micro-processor (Micro Signal Architecture
MSA) in the field of Multiple Target Tracking”
(Hussain et al 2001), is a technical represen-
tation of the computational requirements for a
multiple target acquisition system. Such a sys-
tem would require a DSP and would greatly
benefit from a UNIX like operating system af-
forded by uClinux. Commercial uses for such
a system would include traditional sonar/radar
devices allowing for affordable collision detec-
tion systems, for robots, and automobiles.

uClinux 2.4

uClinux 2.4, with support for Motorola Drag-
onBall and ColdFire, was released in January
of 2001. New ports, including MIPS, Hitachi
SH2, ARM, and SPARC, will be made to the
uClinux 2.4 tree, which is based on Linux 2.4.
but enhancements are also still being made to
the uClinux 2.0 tree. uClinux 2.4 will give de-
velopers access to many of the new features
added to Linux since 2.0, including support
for USB, IEEE Firewire, IrDA, and new net-
working features such as bandwidth allocation,
(a.k.a. QoS: Quality of Service) IP Tables, and
IPv6.

Since uClinux is Open Source, development
effort spent on uClinux will never be lost. En-
gineering professionals world-wide, are using
uClinux to create commercial products and a

Ottawa Linux Symposium 2002 135

significant portion of their work is contributed
back to the open source community.

References:

“Running Linux on low cost, low power,
MMU-less processors”, Michael Durrant, Arc-
turus Networks Inc.

“Building Low Cost, Embedded, Network Ap-
pliance with Linux”, Greg Ungerer, SnapGear
Inc.

“Embedded Coldfire-Taking Linux On-
Board”, Nigel Dick, Motorola Ltd

“When hard real-time goes soft”, D. Jeff
Dionne, Arcturus Networks Inc.

Real-Time Application Interface (RTAI):
http://www.rtai.org

The uClinux project:http://www.uClinux.org

Ottawa Linux Symposium 2002 136

EXPLOITING THE COMPUTATIONAL RESOURCES OF A PROGRAMMABLE DSP
MICRO-PROCESSOR (Micro Signal Architecture MSA) IN THE FIELD OF MULTIPLE

TARGET TRACKING

Principal Researcher: Dr. D.M. Akbar Hussain
Contributions: Michael Durrant michael.durrant@ArcturusNetworks.com

Jeff Dionne jeff.dionne@ArcturusNetworks.com

Arcturus Networks Inc. 195 The West Mall, Suite 608, M9C 5K1, Toronto CANADA
Tel: 416 621 0125 Fax: 416 621 0190

Abstract: During the last few decades the im-
proved technology available for surveillance
systems has generated a great deal of interest
in algorithms capable of tracking large num-
ber of objects.. Typical sensor systems, such
as radar or sonar using information from one
or more sensors can obtain noisy information
data returns from true targets and other pos-
sible objects. The tracking problem requires
the processing of this data to produce accurate
estimates of the position and velocity of the
targets. There are two types of uncertainties
involved with the measurement data, first the
position inaccuracy, as the measurements are
corrupted by noise, and second the measure-
ment origin since there may be uncertainty as
to which measurement originates from which
target. These uncertainties lead to a data asso-
ciation problem and the tracking performance
depends not only on the measurement noise but
also upon the uncertainty in the measurement
origin. Therefore, in a multiple target environ-
ment extensive computation may be required
to establish the correspondence between mea-
surements and tracks every radar scan.

It is also true that tremendous advancement has
also been made in the computational capabili-
ties of a processing unit to deal with such de-
manding tasks. In this paper we present a sim-
ulated study of implementing a recursive mul-

tiple target tracking (MTT) algorithm using a
track splitting filter, study uses a MSA proces-
sor from Analog Devices Inc. (ADI) which is a
programmable Digital Signal Processor (DSP)
with the added functionality to realize many
of the programming advancements more nor-
mally associated with Micro-controllers. In ad-
dition, the study also explores the porting and
support of an embedded real time operating
system to such an architecture.

Keywords: DSP, RTAI, Kalman Filter, Target
Tracking, State Estimation, uClinux.

1. INTRODUCTION

In the ideal situation of tracking a single tar-
get, where one noisy measurement is obtained,
standard Kalman filter technique can be used at
each radar scan In the multi-target case, an un-
known number of measurements are received
at each radar scan and, assuming no false mea-
surements, each measurement has to be associ-
ated with an existing or new target tracking fil-
ter. When the targets are well apart from each
other forming a measurement prediction ellipse
around a track to associate the measurement
with the appropriate track is a standard tech-
nique [1]. When targets are near to each other,
more than one measurement may fall within
the prediction ellipse of a filter and prediction

Ottawa Linux Symposium 2002 137

ellipses of different filters may interact. The
number of measurements accepted by a filter
will therefore be quite sensitive in this situation
to the accuracy of the prediction ellipse. Sev-
eral approaches may be used for this situation
[2, 3]. One such approach is called the Track
Splitting Filter algorithm. In this algorithm, if
n measurements occur inside a prediction el-
lipse, then the filter branches or splits inton
tracking filters.

This situation, which results in an increased
number of filters, requires more processing
power and in some cases the system may satu-
rate. A mechanism for restricting excess tracks
splitting is required, since eventually this pro-
cess may result in more than one filter tracking
the same target. The first criterion is the sup-
port function, which uses the likelihood func-
tion of a track as the pruning criterion. The
second, similarity criterion, which uses a dis-
tance threshold to prune similar filter tracking
the same target [4]. The flow chart shown in
Fig. 1 depicts the actual processing sequence
of a recursive MTT algorithm.

2. TARGET MOTION MODEL AND
STATE ESTIMATION

The motion of a target being tracked is as-
sumed to be approximately linear and modeled
by the following equations

xn+1 = Φxn + Γωn (1)

zn+1 = Hxn+1 + νn+1 (2)

where the state vector

xT
n+1 = (x x• y y•)n+1 (3)

is a four dimensional vector,ωn is the two di-
mensional disturbance vector,zn+1 is the two
dimensional measurement vector andνn+1 is

the two dimensional measurement error vec-
tor. AlsoΦ is the assumed (4x4) state transition
matrix,Γ is the excitation matrix (4x2) and H is
the measurement matrix (2x4) and are defined
respectively by,

Φ =

1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 (4)

Γ =

∆t2/2 0

∆t 0
0 ∆t2/2
0 ∆t

 (5)

H =

[
1 0 0 0
0 0 1 0

]
(6)

Here ∆t is the sampling interval and corre-
sponds to the time interval (scan interval) as-
sumed constant, at which radar measurement
data is received. The system noise sequence
ωn is a two dimensional Gaussian sequence for
which

E(ωn) = 0 (7)

where E is the expectation operator. The co-
variance ofωn is

E(ωnω
T
n) = Qnδnm (8)

whereQn is a positive semi-definite (2x2) di-
agonal matrix andδnm is the Kronecker delta
defined as

δnm =
0 n 6= m
1 n = m

The measurement noise sequenceνn is a two
dimensional zero mean Gaussian white se-
quence with a covariance of

Ottawa Linux Symposium 2002 138

E(νn νT
n) = Rnδnm (9)

whereRn is a positive semi-definite symmetric
(2x2) matrix given by

Rn =

[
σ2

x σxy

σxy σ2
y

]
(10)

σ2
x andσ2

y are the variances in the error of the
x, y position measurements, andσxy is the co-
variance between the x and y measurements er-
rors. It is assumed that the measurement noise
sequence and the system noise sequence are in-
dependent of each other, that is

E(νn ωT
n) = 0 (11)

The initial statex0 is also assumed independent
of theνn andωn sequences that is

E(x0 ωT n) = 0 (12)

E(x0 νT n) = 0 (13)

x0 is a four dimensional random vector with
meanE(x0) = x0/0 and a (4x4) positive semi-
definite covariance matrix defined by

P0 = E[(x0 − x−
0)(x0 − x−

0)
T] (14)

wherex−
0 is the mean of the initial statex0.

The Kalman filter is an optimal filter as it min-
imizes the mean squared error between the esti-
mated state and the true state (actual) provided
the target dynamics are correctly modeled.

The standard Kalman filter equations for esti-
mating the position and velocity of the target
motion described by eqns. (1) and (2) are

Figure 1: Recursive MTT

x∧
n+1/n = Φx∧

n (15)

x∧
n+1 = x∧

n+1/n + Kn+1 νn+1 (16)

Kn+1 = Pn+1/nH
TB−1

n+1 (17)

Pn+1/n = ΦPnΦT + ΓQF
nΓT (18)

Bn+1 = Rn+1 + HPn+1/nH
T (19)

Ottawa Linux Symposium 2002 139

Pn+1 = (I−Kn+1H)Pn+1/n (20)

νn+1 = zn+1 −Hx∧
n+1/n (21)

wherex∧
n+1/n, x∧

n+1, Kn+1, Pn+1/n, Bn+1, and
Pn+1 are the predicted state, estimated state,
the Kalman gain matrix, the prediction covari-
ance matrix, the covariance matrix of innova-
tion, and the covariance matrix of estimation
respectively.QF

n is the covariance of the mea-
surement noise assumed by the filter which is
normally taken equal toQn. In a practical sit-
uation, however, the value of this covariance
is not known so the choice should be such that
the filter can adequately track any possible mo-
tion of the target. To start the computation an
initial value is chosen forP0. Even if this is
a diagonal matrix, then clearly from the above
equations the covariance matricesBn+1, Pn+1

andPn+1/n for a given n, do not remain diago-
nal whenRn+1 is not diagonal.

3. MSA

The MSA processor has five independent,
full functional computation units: Two
Arithmetic/Logic Units (ALU), Two Multi-
plier/Accumulator Units and a Barrel Shifter,
Fig. 2 shows the MSA. The processor units
can process 8-bit, 16 bit, 32 bit and 40 bit data,
depending upon the type of function being per-
formed.

• Data Address Generator (DAG)

The Micro Signal Architecture processor base
is a dual data path, modified Harvard Architec-
ture. The two DAG support the sophisticated
operations required in DSP algorithms, such
as reversed addressing, circular buffering. In
addition, auto increment, auto decrement and
base plus immediate offset addressing are pos-
sible. These units update dedicated register

files, the DAG register file and the pointer reg-
ister file. In general, DSP mathematical opera-
tions involving circular buffers uses the DAG
register file. The DAG register file contains
four sets of 32 bit Index, Length, Modify and
Base registers, for a total of sixteen 32 bit regis-
ters. With these two independent DAGs, MSA
can generate two 32 bit addresses in a single
cycle, fetching or storing two 32 bit or four 16
bit operands. The pointer register file is used
for more general operations. It has six gen-
eral purpose 32 bit addressing registers and two
dedicated 32 bit Stack Pointers for stack ma-
nipulation. The Micro Signal Architecture pro-
cessor can access a unified 4 GB linear address
space.

Figure 2: MSA

• Memory Management Unit (MMU)

The memory Management unit (MMU) pro-
vides protection to individual tasks that may
be operating on the Micro Signal Architec-
ture Processor and may protect system Mem-
ory Mapped Registers from unintended access.
The architecture includes two Memory Man-
agement Units: one for instruction memory
and the other one for data memory. These
MMUs control accesses to caches, on chip

Ottawa Linux Symposium 2002 140

SRAM and off chip memories. The Micro Sig-
nal Architecture Processor supports multiple
pages of memory, in four page sizes: 1 K byte,
4 K byte, 1 M byte, 4 M byte. The instruction
MMU may designate as many as sixteen dis-
tinct memory pages, each with a separate set
of criteria governing its cache and protection
properties. The Data MMU may designate a
further sixteen memory pages.

The Micro Signal Architecture Processor uses
a modified Harvard Architecture in combi-
nation with a hierarchical memory structure.
Memory closest to the Core are referred to as
level 1 (L1), and generally have a single cycle,
zero latency access by the core. Other mem-
ories on chip are referred to as level 2 (L2)
and may have multiple-cycle access or latency.
Off-chip memories are usually seen at the same
hierarchical level as the on chip L2 memory. At
the L1 level, the instruction memory holds in-
structions only and the two data memories hold
only data. At L2 level a single unified mem-
ory space exists, holding both instructions and
data. Also L1 instruction memory and L1 data
memories may be configured as either SRAM
or caches. The Micro Signal Architecture Pro-
cessor has a dedicated scratch data memory
that is always configured as an additional L1
data SRAM. Scratchpad memory is designed
to store stack and local variables.

• Program Sequencer

The program sequencer is used to get instruc-
tions from the L1 instruction memory and de-
termine if these instructions are 16 bit ‘Con-
trol’ instructions, 32 bit ‘DSP’ instructions or
64 bit ‘DSP multi-function’ instruction. The
sequencer manages the control of data through
the processor core, insuring that the pipe line is
fully interlocked and that zero overhead loop-
ing is correctly managed.

• Event Controller, Timer and JTAG Inter-
face

The event controller supports nested and priori-
tized events. The controller has five basic types
of events: Emulation, Reset, Non-maskable In-
terrupt (NMI), Exception and Interrupts. The
programmable interval timer is used to gener-
ate periodic interrupts. The 8-bit pre-scale reg-
ister can be used to set the number of cycles
for decrementing a 32 bit counter register. The
number of clock cycles per timer decrement
may be one to 256. An interrupt is generated
when this count register reaches zero. The reg-
ister may be automatically reloaded from a 16
bit period register and the count resumed.

The JTAG interface provides the method by
which the Micro Signal Architecture emula-
tions interact with the processor core. The em-
ulation unit contains an instruction register and
data register that is accessed through the JTAG
port. These two registers are used to control
and interrogate the processor during emulation
mode. Additionally the trace unit can be used
to store the last 16 non-sequential PC values,
which can be used to reconstruct the processor
sequence.

• Performance Monitor Unit (PMU)

During the operation of the Micro Signal Ar-
chitecture Processor, the performance moni-
tor unit can be used to review the efficiency
of certain operations, e.g., cache misses, and
provide the information for code optimization.
The performance unit consists of six instruc-
tion address watch points and two data address
watch points. These address watch points may
be combined in pairs to create address range
watch points, which additionally may be asso-
ciated with various counters for evaluating the
performance and profiling the processor code.

Ottawa Linux Symposium 2002 141

• Instruction Set

The Micro Signal Architecture Processor as-
sembly level instruction set employs an alge-
braic syntax, presenting code to the program-
mer that is very readable even at the assembly
level. The instructions have been specifically
tuned to provide a very flexible, yet densely
encoded instruction set that will compile to a
very small final memory size. The instruction
set also provides fully featured multi-function
instructions that allow the programmer to use
any of the Micro Signal Architecture Processor
core resources in a single instruction. Coupled
with a variety of enhanced features more often
seen on micro-controllers, this instruction set is
very efficient when compiling code for C and
C++ languages.

• Modes of Operation

The Micro Signal Architecture Processor has
five distinct modes of operations: User, Su-
pervisor, Emulation, Idle and Reset. User
mode has restricted access to certain system
resources, thus providing a protected soft-
ware environment. Supervisor and Emula-
tion modes have unrestricted access to core re-
sources. Idle and Reset modes prevent soft-
ware execution, so resource access is not an
issue.

4. DSP PROGRAMMING MODEL

The instruction set for the Micro Signal Archi-
tecture processor provides two types of instruc-
tions: one primarily for micro-controller and
general tasks, and those used for DSP oriented
computation. Specific Micro Signal Architec-
ture instructions are tuned for their correspond-
ing task, but instructions can easily be com-
bined. Table 1 shows the resources available to
the DSP processing. DSP instructions usually
read two 32 bit operands from the register file,

compute results and either store results back to
the register file or accumulate them in the two
accumulators as shown in Fig. 3.

Resources Description

Data Exe-
cution Unit
0

• 16 x 16 bit MAC unit (MAC
0)
• 40 bit accumulator (a0)
• 40 bit shifter

Data Exe-
cution Unit
1

• 16 x 16 bit MAC unit (MAC
1)
• 40 bit accumulator (a1)

Data Regis-
ter File

8, 32 bit wide, accessible as
register halves

Table 1: Execution Units and Register File

Figure 3: Register Files and Execution Unit

The register file delivers two 32 bit operands
to MAC units and accepts two 32 bit results
in return. In addition, the register file delivers
two 32 bit values to the memory system or it
receives two 32 bit values from memory. To
perform multiplication, each MAC unit select
two 16 bit operands from the two 32 bit words
that it receives from the register file as shown
in Fig. 4.

It also means that each MAC unit uses
four possible combinations of input operands.
Therefore, when both MAC units operate in
parallel, sixteen possible combinations of 16

Ottawa Linux Symposium 2002 142

Figure 4: Operand Selection

bit input operand results. Multiply and accu-
mulate operations can be performed on four
combinations of input operands, as shown in
Fig. 5, for MAC 0. Assembly instruction ex-
ample of dual MAC operation.

A0 += R1.H*R2.L, A0
+=R1.L*R2.L;

In addition to performing a multiply accumu-
late, the multiplier results may optionally be
written to the register file, independently of
each other. In addition to multiply accumulate,
in which the contents of the accumulator are
effected, MSA also has multiply instructions
which does not effect the contents of the ac-
cumulator.

The ALUs have a different mechanism than
MACs, ALU 0 as the primary source of arith-
metic and logic operation, it can perform the
following operations:

• 32 bit operation on two 32 bit inputs pro-
ducing one output.

• One 16 bit operation on two 16 bit inputs
residing in arbitrary register halves pro-
ducing one 16 bit output.

• Two 16 bit (dual) operation on four 16 bit
inputs (in two registers). Dual 16 bit ALU
operations can perform four combinations

Figure 5: MAC 0 Possible Choices

of addition and subtraction on the input
operands as shown in Fig. 6.

Figure 6: Dual 16-bit ALU Operations

The result from the upper halves are placed into
the upper half of the destination register and
lower halves to the lower half of the destina-
tion register. It also supports the cross option,
in which case the order of the two 16 bit result
is inverted. In addition to the operations sup-
ported on the primary computation unit ALU

Ottawa Linux Symposium 2002 143

0, a small number of instructions support the
secondary arithmetic unit ALU 1 in parallel
with ALU 0. The Micro Signal Architecture
core does not support full dual ALU function-
ality, because the maximum number of input
operands that may be transferred from the reg-
ister file to the execution units is limited to two
32 bit operands. Therefore, parallel ALU oper-
ations on ALU 0 and ALU 1 can be performed
only on the same two 32 bit words.

5. IMPLEMENTATION

For the implementation of the target tracking
algorithm employing a track splitting filter, a
sensor was simulated in two dimensions to
generate data for different scenarios. The sim-
ulating program is capable of generating up to
20 targets in a predefined scan window, two
versions of the program can be used: one, in
which initial position, heading, noise and other
parameters are taken as default, in the second
case all this data can be entered by the pro-
grammer. The generated data basically pro-
vides the following input information corre-
sponding to each individual target.

x y σ2
x σ2

y σxy Flag CID

Where x, y is the noisy position measurements,
σ2

x, σ2
y andσxy are the measurement noise co-

variance values, Flag is an index used to see if
a measurement has been used by the filter and
CID is another index color ID used for iden-
tification of each tracking filter/measurement.
Basically, first five variables will be available
in real time to the tracking algorithm through
an interface, in an actual implementation. Here
the input data is given to the algorithm through
hand coded assembly instructions.

6. RESULT AND CONCLUSION

For the evaluation of our algorithm, a simula-
tor for MSA hardware architecture was writ-
ten as the actual silicon for MSA is expected

in September, 2001. For our evaluation a two
crossing target scenario was used, the sensor
was moving parallel to the target, towards the
targets at a very high speed compared with the
targets. The two targets at start up were ap-
proximately 30 Km from the sensor and cross
each other at 30th scan. After successful initial-
ization of two targets, tracking proceeded with
each tracking filter accepting only one mea-
surement as they are well apart. Track split-
ting (branching) starts at the 24th scan, maxi-
mum number of tracks occur at 31st scan. At
38th scan all the redundant tracks are pruned
and normal tracking of two targets resume. It
should be noted here that lots of detail about
tracking is not revealed [5][6] as the actual em-
phasis is about utilizing the architecture advan-
tages of the processor.

The main concern was to implement the com-
putationally expensive algorithm in such a way
to take the advantages of the DSP instruction
set for MSA also, one of the reason of selecting
Blackfin was its DSP assembly language alge-
braic syntax which is probably ideal for such
an application. As pointed out earlier, the algo-
rithm is hand coded in assembly in order to ex-
ploit the DSP. Where ever necessary C is used
for the actual implementation. As the archi-
tecture supports richly encoded instruction set
for such a demanding task, in some cases mul-
tiple operations are performed with less num-
ber of cycles, this obviously improves real time
processing. Here, we just present one particu-
lar sequence where the implementation helps
in achieving our mission of exploiting its ar-
chitecture. At each radar scan incoming mea-
surements (returns) are to be tested with each
established track (path) for a possible match.
The following computation sequence that in-
cludes multiplication of three matrices of di-
mensions [(1x2)*(2x2)*(2x1)] is to be calcu-
lated and then compared with a known value to
find out if a possible match exits. Therefore,
each track should accept the true measurement

Ottawa Linux Symposium 2002 144

from the same target, although this situation
changes at the time of multiple measurements
existing in the same vicinity. In our case when
the target cross each other. Now to evaluate
this expression

d2
n = νn

TB−1
nνn

supposeνT
n of dimension (1x2) is stored in data

register R0 such that:

R0.L = νn
T(0, 0) R0.H = νn

T(0, 1)

(0, 0) represents first row, first column element
of the matrix and so on. SimilarlyB−1

n is stored
in two registers as

R2.L = B−1
n (0, 0) R2.H = B−1

n (0, 1)

R3.L = B−1
n (1, 0) R3.H = B−1

n (1, 1)

By using MSA instruction set we can perform
this task in just four steps:

A0 = R0.L ∗ R2.L
A1 = R0.L ∗ R2.L

]
(Parallel Op)

R4.L = A0+ = R0.H ∗ R3.L
R4.H = A1+ = R0.H ∗ R3.H

]
(Parallel Op)

A0 = R4.L ∗ R0.L
A1 = R4.H ∗ R0.H

]
(Parallel Op)

d2
n = A0 + A1

The above calculation is just a replica of
calculations performed repeatedly in a recur-
sive filter, which basically suite such DSP
architecture. Because DSP processors are
characterized by tight code loop and in-fact
data flow driven. Therefore, this type of
loop/calculations can be implemented very
efficiently. Actually, the number of times
d2

n is evaluated to find a probable track-
measurement pair increases exponentially with
increasing number of track splitting. If it is
possible to do such calculations quickly the ef-
ficiency will increase in terms of time. The
simulated study carried out here has logically
determined the advantage of using MSA core
for such an application. The simulated study
after running a number of scenarios and careful
evaluation reveals that MSA may provide 20 to
30% improved performance in processing for
such a computationally intensive application.
Although, no bench mark evaluation criterion
is used for such evaluation.

The selection of an operating system suitable
for implementation in a target tracking sys-
tem presents many challenges. The main chal-
lenge is selecting a processor and complimen-
tary operating system able to handle the com-
putationally expensive load. The combination
of Blackfin architecture and Linux operating
system meets this challenge with Linux Ker-
nel. The second being the ability of the op-
erating system to respond in a deterministic
manner. This can be achieved by operating
system that are designed to operate in Real
Time. Linux was selected in this study as
its characteristic performance achieves close to
a predictable real time response under known
loads. However, Linux on its own is not a suit-
able Real Time Operating System (RTOS) and
some characterize Linux’s response time as
“Soft Real Time”, the observed jitter is larger
than the jitter associated with running Linux
under the control of a real time scheduler such
as found in “Real Time Executive in C for DSP

Ottawa Linux Symposium 2002 145

(RTXCDSP)” or the Real Time Application In-
terface (RTAI) [11].

Recently, efforts are underway to provide the
RTAI subsystems for use on various MMU-less
processors. If one is to develop an embedded
system using such a DSP (MSA) for real time
applications, uClinux with uClibc may provide
an excellent platform for such real time target
tracking implementation. The work is already
underway for porting uClinux and uClibc for
this processor (MSA).

7. REFERENCES

[1] P. L. Smith and G. Buechler, “A branching
algorithm for discriminating and tracking
multiple objects,” IEEE Transactions Au-
tomatic Control, Vol. AC-20, February
1975, pp 101-104.

[2] Y. Bar-Shalom and T. E. Fortmann,
“Tracking and Data Association”, Aca-
demic Press, Inc. 1988.

[3] S. S. Blackman, “ Multiple Target Track-
ing with Radar Applications”, Artech
House, Inc. 1986.

[4] D. P. Atherton, E. Gul, A. Kountzeris and
M. Kharbouch, “Tracking Multiple Tar-
gets using parallel processing,” Proc. IEE,
Part D, No. 4, July 1990, pp 225-234.

[5] D. P. Atherton, D. M. A. Hussain and
E. Gul, “Target tracking using transputers
as parallel processors,” 9th IFAC Sympo-
sium on Identification and System Param-
eter Estimation, Budapest, Hungary July
1991.

[6] M. Kharbouch, “Some investigations on
target tracking,” D. Phil thesis, Sussex
University, 1991.

[7] The Carmel DSP core user’s manual, infi-
neon, 1999.

[8] Clifford Liem, Pierre Paulin, Ahmed Jer-
raya, “Address calculation for retarget-
able compilation and exploration of in-
struction set architecture.”

[9] The scientist and engineer’s guide to Dig-
ital Signal Processing.

[10] 1999, DSP architecture directory.

[11] Michael Durrant, Michael Leslie, Using
Linux for MMU-less micro-processors.
Electronics Engineering UK, Feb. 2001.

8. ACKNOWLEDGEMENTS

The author would like to thank Arcturus Net-
works Inc. and Lineo Canada Corp for their
support in every aspect for doing such a study,
and special thanks to Analog Devices Inc., for
providing all the technical details, documents
etc., about MSA which really encouraged the
author to carry out such investigation. The
author also likes to extend his appreciation
and gratitude to his colleagues, having been
very kind to extend their comments at difficult
times. Also there is lot of literature available on
the Internet about DSP, few of the references
are given here for the acknowledgement of this
wonderful technology feast, thanks Internet.

An Approach to Injecting faults into Hardened
Software

Dave Edwards, Lori Matassa
Intel Corporation

Abstract

There are many efforts within the Linux* com-
munity to produce a distribution of Linux* that
meets industry standards for quality and reli-
ability. There has been acknowledgment for
the need to introduce faults into various soft-
ware layers of the Linux* OS to achieve this.
This paper focuses on the results of our de-
velopment of a prototype fault injection har-
ness. The prototype focused on a black box ap-
proach for injecting faults into device drivers.
The technology proved in this prototype can be
applied to any software layer in the operating
system. This presentation proposes and proves
the feasibility of a method for injecting faults
called, “state analysis.” This method is the key
to our black box approach for driver harden-
ing. It does not require a test writer to have
intimate knowledge of the implementation for
the driver. It also provides a solid founda-
tion for driver developers to augment the fault
injection harness to meet whatever the Linux
community presents to the world in the way
of driver hardening criteria. The target audi-
ence includes developers focusing on Linux*
hardening (Drivers and Kernel), test engineers
looking for a starting point to fault injection,
and anyone looking for input into the kinds of
capabilities that can be provided by the use of
fault injection.

THIS DOCUMENT IS PROVIDED "AS IS"
WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF
MERCHANTABILITY, NONINFRINGEMENT,
FITNESS FOR ANY PARTICULAR PURPOSE,

OR ANY WARRANTY OTHERWISE ARISING
OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE. Intel disclaims all liability,
including liability for infringement of any
proprietary rights, relating to use of information in
this specification. No license, express or implied
by estoppel or otherwise, to any intellectual
property rights is granted herein, except that a
license is hereby granted to copy and reproduce
this document for internal use only.

Intel(R) software products are copyrighted by and
shall remain the property of Intel Corporation.
Use, duplication or disclosure is subject to
restrictions stated in Intel’s Software License
Agreement, or in the case of software delivered to
the government, in accordance with the software
license agreement as defined in FAR 52.227-7013.

Copyright (c) 2001-2002, Intel Corporation. All
rights reserved.

Intel and the Intel logo are registered trademarks of
Intel Corporation.

*Other names and brands may be claimed as the
property of others.

1 Introduction

A hardware device has a finite set of functions
to perform and a rigid programmatic method
for utilizing its functions. A device driver con-
tains many code paths that exercise the func-
tionality of a hardware device. This paper dis-
cusses the learning obtained from a prototype
fault injection test harness in which hardware

Ottawa Linux Symposium 2002 147

faults are emulated and injected into Linux*
device drivers.

1.1 Purpose and Scope

The purpose of this paper is to provide insight
into fault injection through the discussion of
a prototype fault injection harness implemen-
tation. This paper and will provide its audi-
ence with one proposed method for ensuring
the hardening level of a device driver.

Actual design details of the entire prototyped
implementation are not included in this docu-
ment.

1.2 Intended Audience

This paper is intended for development and test
engineers and anyone interested in designing,
implementing or utilizing fault injection capa-
bilities that are reproducible, portable across
software revisions and flexible.

1.3 Recommended Reading

The appendix of this paper contains back-
ground and reference information. This infor-
mation is provided to assist in clarifying con-
cepts that are touched upon in this document. It
is recommended that these be looked at closely
once the basic concepts are understood. It is
expected that these sections will provide suf-
ficient detail to explain anything that has not
been directly addressed in the main portion of
this paper.

The overview sections contain information
about the purpose behind fault injection and
how each of the software components are re-
lated with regards to their interfaces.

The section titled, “Fault Injection (FI) Pro-
toype” describes each major component of the
prototype in a little more detail. The purpose of

which is to describe the intent and major func-
tion of each sub-component.

Definition of Terms

State: A deterministic path from one starting
point to another. A state refers to the var-
ious states of the hardware as it is pro-
grammed (by a driver) for its particular
function.

State Analysis: The process of tracking the
state of hardware and making decisions
about what to do as various hardware
states are encountered.

State Machine: The mechanism that can
track and respond to changes in hardware
state. The machine itself consists of a
collection of code segments.

Code Segment:A simple code fragment that
provides the functionality of the state ma-
chine.

State Machine Test: This is the input file
used by the State Machine Compiler to
create a binary state table that can be dy-
namically loaded.

FI Engine: Fault Injection Engine. The con-
cept of an engine refers to the central con-
trol component for monitoring state and
injecting faults into a device driver.

2 Driver Hardening Overview

Device drivers can be a source of operating
system instability and are often contributors
to system degradation and/or unscheduled out-
ages. Therefore, device drivers must be robust.
A hardened device driver is a robust device
driver. Hardened device drivers are designed
and developed with the focus of minimizing
the instability and downtime of the system.

Ottawa Linux Symposium 2002 148

Measuring the hardness of a driver is difficult
and unclear. A concept known as driver hard-
ening levels is documented in a white paper ti-
tled, “Device Driver Hardening and Manage-
ability.” The white paper can be found at the
http://developer.intel.com web-site. These
levels are used to define fundamental hardened
driver guidelines, measure the hardness of the
driver and create a better understanding as to
how robust a driver is. These guidelines are
used by device driver writers who wish to sup-
port higher levels of availability through the
use of some or all of the hardening techniques
described in each level. The levels include:

Level 1 - Stability and Reliability Includes
good coding practices and requires fault
injection testing.

Level 2 - Manageability Provides infor-
mation that can be used by driver
management applications to understand
the status of the system and to identify
potential problems that might be growing.
This information includes driver statistics,
event logging and driver diagnostics. All
of this information is essential in proac-
tively recognizing potential problems.
Together, this information can identify a
problem and report it immediately so that
downtime can be prevented or at least
minimized. Therefore, handling the fault
gracefully.

Level 3 - High Availability This is the high-
est level of a hardened driver. High avail-
ability systems minimize system down-
time. Guidelines in this level support high
availability features which enable a driver
to repair or reconfigure devices without
needing to power down or reboot the sys-
tem. These guidelines also include fault
recovery to the extent that when a fault
is identified, the driver repairs the fault if
it can keep the device in service and, at

a minimum, isolates the operating system
from being affected.

Fault injection can be applied to any level of
driver hardening. for illustration purposes, this
paper focuses on level 1 where a developer
is ensuring the integrity of the source code
through fault injection, before introducing the
work effort to validation.

For purposes of this paper, this paper concen-
trates on Level 1 Hardening. Level 1 Hard-
ening guidelines specify that hardened drivers
must be fault injected tested.

Good coding practices alone cannot ensure the
stability and reliability of a system. Device
drivers typically are written and tested with
emphasis on the normal operation of the hard-
ware. Details as to how a driver identifies and
recovers from faulty hardware or system con-
ditions are often minimal.

Hardened device drivers are designed to be
more robust because they are coded to expect
anomalies and process them in a way that min-
imizes the impact to the overall system, thus
preventing unplanned downtime of the system.
The implementation of the code should test for
such things as: values that are illegal, states
that should never occur and expect that the de-
vice should complete a command within a de-
fined amount of time.

The only way to test a driver’s robustness is to
include tests that purposefully inject conditions
that simulate hardware and system faults. This
is known as Fault Injection Testing.

There are several ways to inject faults into a
system. The most common method involves
altering the branch paths to purposefully mod-
ify good data into bad data. This can be ac-
complished with many tools. For instance, the
use of in-circuit emulators (ICE’s) or in-target
probes (ITP’s) can change the execution path

Ottawa Linux Symposium 2002 149

and data values at run-time. Other methods
include the use of debuggers or special code
additions with the specific purpose of causing
error paths to be exercised. This is known as
“white box” testing where the goal is to maxi-
mize code coverage.

White box tests pinpoint exact areas and val-
ues within the software that are changed. This
means that the test is implemented knowing ex-
actly where and what will occur. There are a
few issues with white box testing. First, the
setup for the test is very labor intensive and
in some cases, requires complete manual inter-
vention to control and execute tests, thus mak-
ing it nearly impossible to repeat test results
consistently. Second, there is the possibility
that the object code under test is not the same
object code that is shipped as the final product.
This is not acceptable to most suppliers of high
availability and hardened systems.

There is a method of implementing fault in-
jection tests that is fully automated, can pro-
vide reproducibility in test results and uses the
same version of object code for fault injection
testing as the shipped product. This method,
known as “black box” testing. Black box test-
ing uses carefully designed tests that emulate
faults at software layers below the component
under test. In the case of the prototype fault in-
jection effort, faults are emulated in the hard-
ware layer and the component under test is a
hardened device driver.

This method for injecting faults that can be au-
tomated, provides reproducible test results, is
portable across driver revisions, and is sim-
ple to augment as software capabilities and
test requirements change. This concludes the
overview of driver hardening, why fault in-
jection testing is required and different ap-
proaches testing. The remainder of this docu-
ment will describe the key concepts and critical
design details for a prototype implementation.

3 Software Overview

There are three main components to the proto-
type, the System Driver, the Fault Injection En-
gine and the Common Driver Interface (hooks).
The system driver is the component under test
that utilizes a Common Driver Interface (CDI)
that contains software hooks to interface with
the FI Engine component transparently. The FI
Engine is the core software component, provid-
ing all of the services necessary to inject faults
into a device driver.

Device drivers execute in kernel space. As
such, the FI Engine is a driver with inter-
faces designed to allow connections to occur
between a system driver and itself. The CDI
(used by the system driver) contains special
software hooks that allow it to connect to the
FI Engine during the driver initialization se-
quence. Once the connection is made there is
a method to make a direct call to the FI Engine
from the connected system driver. For the pro-
totype, the CDI consisted of macros that were
created to represent an abstraction on the ex-
isting Linux* macro set for programmed IO,
DMA and PCI configuration.

Application Space

Kernel Space

Operating System Tools

System Driver

CDI (hooks)

F
I E

n
g

in
e

D2D IOCTL

IO
C

T
L

In
tf

Application Interface

Figure 1: Major Software Components

Ottawa Linux Symposium 2002 150

State analysis is the process of tracking I/O
transactions for the purpose of 1) detecting
hardening violations 2) injecting faults at spe-
cific points in the usage model for that hard-
ware and 3) to emulate the appropriate hard-
ware behavior from the time a fault is injected
to the time the hardware is expected to be exe-
cuting normally.

Hardening violations are categorized by warn-
ings, and rule violations. A warning is some
indication that a driver inappropriately ac-
cessed registers given the current state of the
hardware. This can be useful for detecting
known hardware problems that have potential
for causing failures under adverse conditions,
but aren’t guaranteed to do so every time. This
is a way for a test engineer to create warning
flags for special events. A hardening violation
is one in which a driver responds to a failure in
such a way that it is known to be inappropriate.
For example, a driver may not clear interrupts
within a control register after a given fault. In
these situations, it is thought that the driver will
cause a system failure either immediately, or
shortly thereafter.

The process of writing a test begins by using
data sheets and any other hardware documen-
tation that specifies where the hardware can
fail. Once hardware failures are understood, a
test writer can create fault scenarios in which
the hardware could fail during its normal op-
eration. These scenarios are then translated
to state machine form in which the state of
the hardware is tracked, and at various points
a decision can be made to inject a fault be-
tween state transitions. Once failure scenarios
are translated to a state machine form the test
writer can, compile the test and load the test
into the FI engine before the system driver is
loaded.

Figure 2: “State Machine Capabilities” illus-
trates the services that a state machine engine

provides and the types of information that a
test writer must have to track the state of hard-
ware, inject faults, and emulate hardware fault
behavior.

HW
Specs

Fault
Scenarios

State Machine

I/O Data
Manipulation

Fault
Injection

Transition
Logic

Common Driver Interface
(CDI)

Where & When based on
Code Segment results

What and When to
Inject a Fault

Figure 2: State Machine Capabilities

Figure 2 also illustrates the three main compo-
nents of the state machine, I/O Data Manipu-
lation, Transition Logic and Fault Injection ca-
pabilities. I/O Data Manipulation consists of
passing the CDI input parameters to the FI en-
gine and allowing the engine to use the val-
ues to determine state and to manipulate the
values, i.e. the hooks. Transition Logic con-
sists of a method for executing code associated
with a state and being able to specify which
state to transition to. This could also be con-
sidered execution flow control. The Fault In-
jection piece defines the method in which the
test writer specifies exactly when I/O Data is
to be manipulated and how the FI engine will
respond for subsequent calls to the CDI.

When all of these things are used properly, a
software engineer can track the state of a hard-
ware device. This allows them to specify ex-
actly when to inject a fault and how to behave
once the fault is injected.

Ottawa Linux Symposium 2002 151

4 Fault Injection (FI) Prototype

The prototype consists of a system driver, state
machine compiler, and an FI engine driver.
The core technology described in this paper
is the state analysis component of the FI en-
gine. It is responsible for the state tracking and
fault injection capabilities. Figure 1: “Major
Software Components” outlines the relation-
ship between all of these components which
are described in the following sections.

4.1 System Driver

The System Driver (illustrated in Figure 3)
is built using the CDI to access hardware re-
sources. The main advantage is that this
method gives the engine access to all the pos-
sible input and output parameters of the trans-
action. As such, a test engineer can make de-
cisions and modify any of the data that gets
transmitted between the CDI and hardware. In
general, execution control is passed to the en-
gine after a read transaction and before a write
transaction such that the FIE can decide what
to do with the data that will be returned to the
driver or written to hardware.

System Driver

Device Driver

CDI Macros

Operating System
Driver Interface

FIE Specific
Data

Driver
Instance Data

FI Engine

Connect /
Disconnect

I/O Transactions

CDI IOCTL Extensions

Inter-driver Communications

Direct Call
Interface

Figure 3: System Driver Block Diagram

The process for initiating fault injection test-
ing involves a dynamic connection sequence.
When a system driver is loaded the driver ini-
tiates a connection sequence by calling kernel
routines that return a handle to the FI Engine
driver. Once the handle is known, the sys-
tem driver initiates driver to driver IOCTL calls
through the kernel to the FI Engine. The first
call to the FI Engine sends a request to con-
nect. The FI Engine grants this request and re-
turns a handle to a data structure representing
instance data for that connection. The instance
handle contains the address of the FI Engine
entry point function. The CDI uses the entry
point address to call directly into the FI Engine.

When a system driver is unloaded, a disconnect
sequence is initiated through the same driver
to driver IOCTL interface. At which time the
FI Engine will perform cleanup on any state
machine configuration data associated with the
connection.

4.2 Fault Injection Engine

Operating System
IOCTL Interface

Configuration
Interface

Inter-Driver
Communications

FI Engine

Direct Calling Interface

I/O Transactions

Common Driver
Interface (CDI)

System
Driver

Configuration Data

State
Table(s)

State
Table(s)

State
Table(s)

Connection
Data

State
Analysis

FI

F
I E

ntry P
oint

Figure 4: Fault Injection Engine Block Dia-
gram

The FI Engine is illustrated in Figure 4: “Fault
Injection Engine Block Diagram.” The various
blocks within the diagram represent key inter-
nal components. Lines are drawn to show the
component’s inter-relationships. Arrows have

Ottawa Linux Symposium 2002 152

also been added to hint at data flow. The sys-
tem driver connects through special macros of
the CDI and is intercepted by the Inter-Driver
Communications (IDC) component. The IDC
creates data structures and initializes internal
subsystems. The Configuration Interface pro-
vides an application with the ability to load
a state machine table dynamically. The state
analysis component is called directly by the
CDI once the connection sequence completes.

NOTE: the actual I/O access will occur in the
system driver, not the engine. The engine only
modifies the data before or after the actual I/O.

Figure 5: “CDI Hooks to FI Engine Flow Di-
agram” illustrates the flow of execution with
respect to the CDI hooks and the FI Engine. It
starts with a driver making use of a CDI Macro.
Typically an I/O transaction involves either a
read or a write. Thus the concept is fairly sim-
ple. You inject a fault into a driver by modify-
ing values returned by the read transaction to
trick the driver into thinking that a status regis-
ter contains an error value. You can also inject
a fault into a driver by modifying data from a
write transaction before the data is transmitted
through the I/O interface.

Once the FI Engine receives execution con-
trol, it begins traversing the state table, execut-
ing code segments that are related to the cur-
rent state of the hardware. On entry to the en-
gine, the state machine determines where it left
off the last time the engine was called. When
a driver first connects, the starting state will
be the very first state of the state table. The
state machine parses the state table entry for
the code segment and then executes code as-
sociated with that code segment. The return
value of the code segment is then used to deter-
mine which state should be traversed to. This
will continue until the ExitStateMachine code
segment is executed. This is a special piece of
code that allows a test writer to specify where

Read
Transaction

CDI Macro

Write
Transaction

Perform
I/O Read

Perform
I/O Write

Call FI
Engine

Call FI
Engine

FI
Enabled

FI
Enabled

Return

no

yes

no

yes

A

A

Figure 5: CDI Hooks to FI Engine Flow Dia-
gram

FI Engine

Re-enter
State Tbl

Execute
Code Segment

Exit State
Macine

� �
Return
State

Return

while loop

consumed

produced

A

Figure 6: FI Engine Flow Diagram

Ottawa Linux Symposium 2002 153

the state machine will continue the next time it
is called and exits the FI Engine to allow the
driver to continue running.

4.3 FI Compiler

The compiler (Figure 7: FI Compiler Com-
ponent Diagram) produces a binary output file
that is loaded into the engine with a command
line tool. The compiled file is translated to a
state table and stored for retrieval when the de-
vice driver makes a connection to the FI En-
gine.

Operating System
IOCTL Interface

Configuration
Interface

IDC

FI Engine

Configuration Data

State
Table(s)

State
Table(s)

State
Table(s)

Connection
Data

SM

State Machine
Test

Code Segment
Definition

State Machine
Compiler

output.bin

State Machine Compiler

Figure 7: FI Compiler Component Diagram

Input for the compiler consists of a state ma-
chine test file and a code segment defini-
tion file. The state machine test file contains
“source” text that is translated to binary form
by the state machine compiler. The code seg-
ment definition file is created from the code
segment definition data structure mentioned in
the next section. The code segment defini-
tion file is created as part of the build process.
When a test is compiled the code segment def-
inition file is used to validate the input param-
eters in the test being compiled.

4.4 State Machine

The overview section of this paper made claims
that this prototype proves the feasibility of

creating reproducible test results, portability
across driver revisions, and simple augmenta-
tion of the state machine. The first portion of
this section is dedicated to explaining why it
can do these things and the remainder gives in-
sight into how it can do them.

The state machine is central to the repro-
ducibility of test results consistently across
software revisions. It does this by allowing a
test developer to track the state of the hardware
and specify the exact moments in which a fault
will be injected. By tracking hardware state,
the test developer does not have to tie the test to
the implementation of the driver, only the im-
plementation of the hardware. Thus, as long as
the hardware fault scenarios don’t change, nei-
ther does the test, for any revision of the driver.

The state machine is designed to be augmented
as test requirements and driver design dictate
the need for change. There are three support-
ing components to the state machine, the state
machine switch statement, the state table, and
the code segment definition structure. These
will be described a bit more, shortly. A change
to the machine is a change only to each of these
three items.

The state analysis component of the FI Engine
(Figure 4) contains the state machine. The state
machine is responsible for traversing a list of
states within a state table. At each state transi-
tion, a code segment is executed, which can be
considered analogous to a CPU executing an
instruction. Code segments are simple, small
code fragments that do not depend on one an-
other to complete execution. However, they do
have a mechanism for passing data to between
states. For the prototype, this was done through
a special Reverse Polish Notation (RPN) based
stack.

The state machine is a while(1) loop with a big
switch statement inside. Code segments are the
case statements with the associated code to be

Ottawa Linux Symposium 2002 154

executed on a transition into the state. Each
state table entry contains a list of states to tran-
sition to, based on the return value from the
code segment. As illustrated in the Figure 8:
“Sample State Table Linkage,” the next state
list is an array where the next state is deter-
mined by using the return value as the index to
the array. The next state is pointed to by the
contents of the value indexed in the array. The
code sample at the end of this section illustrates
this process. The end result is very low over-
head between executing code segments.

State Entry

State Entry

State Entry

State Entry

State Entry

Next
State

Input
Data

Next
State

IsPioR

#1
Next
State

Input
Data

Next
State

ExitSM

#4

Next
State

Input
Data

Next
State

OrDta

#2
Next
State

Input
Data

Next
State

ExitSM

#5

Next
State

Input
Data

Next
State

LogW

#3

Figure 8: Sample State Table Linkage

Figure 8 also shows a sample diagram repre-
senting the contents of a state table and how
the flow is controlled. The first field is the
code segment tag; in this case there are four
code segments, IsPioRead, OrData, LogWarn-
ing and ExitStateMachine. These would be
used by the test engineer to create a state ma-
chine test.

In order to extend the state machine, a data
structure that defines the code segments is cre-
ated. Each table entry contains the following
information:

String: The reserved word for the code seg-
ment.

Number of Inputs: Number of data parame-
ters required for input.

Number of Returns: Number of possible re-
turn values.

This structure is shared between the state ma-
chine and the compiler. The compiler uses
it in the form of a file (saved to disk by the
build process) called the code segment defi-
nition. The compiler can load the structure
to validate the syntax of the test source code,
created by the test developer. The state ma-
chine engine uses the code segment definition
structure to traverse the state table and access
data input parameters. A typical code seg-
ment definition would look like the following:
Reserved Word Inputs Returns
"PioRead", 0 2
"OrData", 1 1
"LogWarning", 0 1
"ExitMachine", 1 1

The following is an example of the state ma-
chine implementation referenced in Figure 8,
and its associated code segments. See Ap-
pendix B for a complete, functional state ma-
chine example.

Ottawa Linux Symposium 2002 155

FIE_EntryPoint(InstanceHandle *handle) {
StateTableEntry *this_state = handle->CurrentStTblEntry;
CdiParameters *cdi_param = handle->CdiParam;
BOOL exit_flag = FALSE;

while (exit_flag == FALSE) {
switch(this_state->CodeSegment) {

case CODE_SEG_IsPioRead:
cs_return = 0; /* FALSE */
if (cdi_param->Transaction == CDI_PIO_READ) {

cs_return = 1; /* TRUE */
}

break;
case CODE_SEG_AndData:

cs_return = 0; /* only 1 return */
cdi_param &= this_state->StateData;

break;
case CODE_SEG_LogWarning:

cs_return = 0; /* only 1 return */
WriteLog("Warning Violation...");

break;

case CODE_SEG_LogViolation:
cs_return = 0; /* only 1 return */
WriteLog("Hardening Violation...");

break;

case CODE_SEG_ExitStateMachine:
cs_return = 0; /* only 1 return */
/* This code segment’s data item contains a pointer

* to the state to execute on the next entry to the
* state machine.
*/

handle->CurrentStTblEntry = this_state->StateData;
exit_flag = TRUE;

break;
default: { /* invalid code segment */ };

}
/* Set the next code segment to be executed based on the

* return value of the current code segment. This is just
* an array of pointers to state table entries.

this_state->CodeSegment = this_state->NextState[cs_return];
} /* end while */

}

Ottawa Linux Symposium 2002 156

5 Summary

The prototype fault injection harness proved
that it is possible to create a state machine
language and that it is possible to track the
state of hardware from initialization all the way
through the normal execution cycles of a driver.

Tracking the state of hardware is critical to
making decisions about when to inject a fault.
It is also what allows test results to be repeat-
able and allows a test to be portable across
driver revisions.

Keep in mind that even though this paper fo-
cuses on drivers, any software component can
make use of the principles.

6 Acknowledgments

Special thanks to my fellow co-workers for
their contribution to this effort: Donald Long,
Daniel Vanhoozier, Kimberly Davis, Ryan
Kummet, Susan Foster, Victoria Genovker,
Grace Hawley, and Lori Matassa.

References

[Intel] Lori MatassaDevice Driver
Hardening and ManageabilityIntel
Corporation.
http://developer.intel.com/

(2001)

7 Appendix A - Sample Test

This is a sample state machine test file. The
text below describes three major aspects of
the system driver under test, normal execution
flow, a special IOCTL interface and controlled
hardening violations.

A sample driver was designed to illustrate con-
cepts and prove the feasibility of a state ma-
chine language. The LCD device is a simple
serial port device that plugs into COM1. The
sample driver was written to interface to the
LCD device. Any programming of the hard-
ware occurs with the serial controller.

The compiled state machine test is loaded into
the FI engine prior to loading the LCD driver.
When the LCD driver is loaded it makes a con-
nection to the FI Engine. From the moment the
driver successfully connects, the state machine
is monitoring programmed I/O.

Once initialization completes (successfully)
the normal operation of the driver can be-
gin. An application running in the background
sends constant messages to the driver through
the read/write operating system interface as a
character mode driver. The state machine test
is designed to inject a fault into the write status
register every 1000 character writes to the dis-
play. When the driver detects a failure it flashes
an error message to the display, re-initializes
the device and continues to accept character
messages from the background application.

There are some special flags that can be set to
demonstrate different aspects of fault injection.
The LCD driver has a custom IOCTL interface
to allow an application to do three things, re-
initialize the driver, set the Warning Violation
code path and set the Hardening Violation code
path. The background application has the abil-
ity to utilize these features on demand.

Figure 9: “Flow Diagram for the Sample
(LCD) Driver” illustrates the various code
paths that can be exercised depending on the
run-time switches controlled by the driver’s
custom IOCTL interface. There are three
demonstrations from this, fault injection during
driver initialization, hardening warnings, and
hardening violations.

Ottawa Linux Symposium 2002 157

Initialize
Driver

Idle (wait
for write)

inject Fault #1:
Fail init every other
time.

Write Data
(wait when idle)

Hardening Warning:
(out of sequence
register access)

Config
Registers

Read
Status

Recover
On Error

inject Fault #2:
Fault every 1000

writes to the display
Hardening Violation:
(improper register
access)

Figure 9: Flow Diagram for the Sample (LCD)
Driver

There is a run-time switch within the initializa-
tion sequence that forces the driver to execute a
warning violation when initialization sequence
is repeated. The state machine will detect an
out of sequence register violation and write a
string to the log file. To demonstrate the abil-
ity to inject faults during initialization, the state
machine is also designed to inject a fault ev-
ery other time the background application re-
initializes the LCD driver.

The final demonstration is to inject a fault dur-
ing the character write process and force the
driver to inappropriately recover from the fail-
ure; this is documented as a hardening viola-
tion. The driver simply fails to clear the display
after detecting a failure and the state machine
can detect the absence of that action.

The state machine definition (below) file is
fairly complicated to read, but the fact that it
can do what it’s supposed to, is a major mile-
stone to prove the capabilities of this method of
injecting faults and detecting violations. The
code segment definitions for the sample ma-

chine below, are not defined in this document.
The intent is to provide a reference to a work-
ing state table and the driver model specified in
previous pages.

Ottawa Linux Symposium 2002 158

Comments are permitted in a state definition file if they are
preceded by a ’\#’.
#
The syntax of this state machine test file is as follows
(in BNF notation):
#
<state> := STATE <state_name> <cs_name> [<data>...] [<result>...];
<cs_name> := <alpha_num>
<state_name> := <alpha_num>
<result> := <state_name>
<data> := <integer>

##
#---
Initialization
#---
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stSetTraceLevel SetTrace 0
stPushFmFiCnt; STATE stPushFmFiCnt StkPush 0
stInitFmFiCnt; STATE stInitFmFiCnt StkPopStore 1
stPushLcFiCnt;

STATE stPushLcFiCnt StkPush 0 stInitLcFiCnt;
STATE stInitLcFiCnt StkPopStore 2 stDlabSPend;

#---
Wait for the DLAB bit to be set
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stDlabSPend CheckTransaction 1 stDlabSNot

stChkDlabSAddr;
STATE stDlabSNot ExitStateMachine 0 stDlabSPend;
STATE stChkDlabSAddr CheckAddress 0x3FB stDlabSNot

stChkDlabSBit;
STATE stChkDlabSBit PushTransData 0 stPushDlabSMask;
STATE stPushDlabSMask StkPush 0x80 stDlabSAnd;
STATE stDlabSAnd DataAnd 0 stDlabSPushCmp;
STATE stDlabSPushCmp StkPush 0x80 stDlabSCompare;
STATE stDlabSCompare CompareEq 0 stDlabSNot

stGotoDLsbPend1;
STATE stGotoDLsbPend1 ExitStateMachine 0 stSetDLsbPend1;

#---
Wait for the Divisor LSB to be set first
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stSetDLsbPend1 CheckTransaction 1 stGotoDLsbPend1

stChkDivLsbAddr1;
STATE stChkDivLsbAddr1 CheckAddress 0x3F8 stChkDivMsbAddr2

stGotoDMsbPend1;
STATE stGotoDMsbPend1 ExitStateMachine 0 stSetDMsbPend1;

Ottawa Linux Symposium 2002 159

#---
Wait for the Divisor MSB to be set second
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stSetDMsbPend1 CheckTransaction 1 stGotoDMsbPend1

stChkDivMsbAddr1;
STATE stChkDivMsbAddr1 CheckAddress 0x3F9 stGotoDMsbPend1

stGotoDlabUPend;
STATE stGotoDlabUPend ExitStateMachine 0 stDlabUPend;

#---
Wait for the Divisor MSB to be set first
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stChkDivMsbAddr2 CheckAddress 0x3F9 stGotoDLsbPend1

stPrtDivSetWarn;
STATE stPrtDivSetWarn LogWarning 0 stGotoDLsbPend2;
STATE stGotoDLsbPend2 ExitStateMachine 0 stSetDivLsbPend2;

#---
Wait for the Divisor LSB to be set second
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stSetDivLsbPend2 CheckTransaction 1 stGotoDLsbPend2

stChkDivLsbAddr2;
STATE stChkDivLsbAddr2 CheckAddress 0x3F8 stGotoDLsbPend2

stGotoDlabUPend;

#---
Wait for the DLAB bit to be unset
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stDlabUPend CheckTransaction 1 stDlabUNot

stChkDlabUAddr;
STATE stDlabUNot ExitStateMachine 0 stDlabUPend;
STATE stChkDlabUAddr CheckAddress 0x3FB stDlabUNot

stChkDlabUBit;
STATE stChkDlabUBit PushTransData 0 stPushDlabUMask;
STATE stPushDlabUMask StkPush 0x80 stDlabUAnd;
STATE stDlabUAnd DataAnd 0 stPushDlabUCmp;
STATE stPushDlabUCmp StkPush 0 stDlabUCompare;
STATE stDlabUCompare CompareEq 0 stDlabUNot

stGotoSetLcPend;
STATE stGotoSetLcPend ExitStateMachine 0 stSetLcPend;

#---
Wait for set of the line control data
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States

Ottawa Linux Symposium 2002 160

#---------------------#-------------------#---------#-------------------
STATE stSetLcPend CheckTransaction 1 stNotSetLc

stChkLcAddr;
STATE stNotSetLc ExitStateMachine 0 stSetLcPend;
STATE stChkLcAddr CheckAddress 0x3FB stNotSetLc

stChkLcFip;

#---
Fault injection point. Inject a line control data fault at every ’X’
interval.
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stChkLcFip IncStore 2 stPushLcFiReg;
STATE stPushLcFiReg StkPushStore 2 stPushLcFiCmp;
STATE stPushLcFiCmp StkPush 2 stCompLcFi;
STATE stCompLcFi CompareEq 2 stGotoWritePend

stSetLcError;
STATE stSetLcError PushTransData 0 stPushLcErrData;
STATE stPushLcErrData StkPush 0xFC stGetLcTransData;
STATE stGetLcTransData DataAnd 0 stSetLcTransData;
STATE stSetLcTransData PopTransData 0 stPushLcFi0Cnt;
STATE stPushLcFi0Cnt StkPush 0 stResetLcFiCnt;
STATE stResetLcFiCnt StkPopStore 2 stGotoWritePend;

#--
Wait for the write. If the write is text goto the "wait for write
completion section. If the write is the DLAB then go back to the
initalization section.
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stWritePend CheckTransaction 1 stNotWrite

stChkWriteAddr;
STATE stNotWrite ExitStateMachine 0 stWritePend;
STATE stChkWriteAddr CheckAddress 0x3F8 stChkWrtLcAddr

stGotoWrtVerify;
STATE stChkWrtLcAddr CheckAddress 0x3FB stNotWrite

stWrtChkDlabSBit;
STATE stWrtChkDlabSBit PushTransData 0 stWrtPshDlabSMask;
STATE stWrtPshDlabSMask StkPush 0x80 stWrtDlabSAnd;
STATE stWrtDlabSAnd DataAnd 0 stWrtDlabSPushCmp;
STATE stWrtDlabSPushCmp StkPush 0x80 stWrtDlabSCompare;
STATE stWrtDlabSCompare CompareEq 0 stNotWrite

stGotoDLsbPend1;
STATE stGotoWrtVerify ExitStateMachine 0 stWrtVerify;

#---
Wait for the write to complete
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stWrtVerify CheckTransaction 0 stNotWrtVerify

stChkWrtVfyAddr;

Ottawa Linux Symposium 2002 161

STATE stNotWrtVerify ExitStateMachine 0 stWrtVerify;
STATE stChkWrtVfyAddr CheckAddress 0x3FD stNotWrtVerify

stPushLsr;

STATE stPushLsr PushTransData 0 stPushXmitMask;
STATE stPushXmitMask StkPush 0x20 stAndXmitStat;
STATE stAndXmitStat DataAnd 0 stPushXmitCmp;
STATE stPushXmitCmp StkPush 0x20 stChkXmitStat;
STATE stChkXmitStat CompareEq 0 stNotWrtVerify

stChkFmFip;

#---
Fault injection point. Inject framing errors at every ’X’ interval.
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stChkFmFip IncStore 1 stPushFmFiReg;
STATE stPushFmFiReg StkPushStore 1 stPushFmFiCmp;
STATE stPushFmFiCmp StkPush 1000 stCompFmFi;
STATE stCompFmFi CompareEq 1000 stChkWrtError

stSetFmError;
STATE stSetFmError PushTransData 0 stPushFmErrData;
STATE stPushFmErrData StkPush 0x08 stGetFmTransData;
STATE stGetFmTransData DataOr 0 stSetFmTransData;
STATE stSetFmTransData PopTransData 0 stPushFmFi0Cnt;
STATE stPushFmFi0Cnt StkPush 0 stResetFmFiCnt;
STATE stResetFmFiCnt StkPopStore 1 stGotoResetPend;

#---
Check for errors on the write
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stChkWrtError PushTransData 0 stPushWrtFmMask;
STATE stPushWrtFmMask StkPush 0x08 stWrtStatFmAnd;
STATE stWrtStatFmAnd DataAnd 0 stPushCmpFm;
STATE stPushCmpFm StkPush 0x08 stCmpFmError;
STATE stCmpFmError CompareEq 0 stGotoWritePend

stGotoResetPend;
STATE stGotoWritePend ExitStateMachine 0 stWritePend;
STATE stGotoResetPend ExitStateMachine 0 stResetPend;

#---
Wait for the reset
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stResetPend CheckTransaction 1 stNotResetWrite

stChkResetAddr;
STATE stNotResetWrite ExitStateMachine 0 stResetPend;
STATE stChkResetAddr CheckAddress 0x3FD stLogResetErr

stGotoWritePend;
Check what is set?
STATE stLogResetErr LogViolation 0 stChkWriteAddr;

Ottawa Linux Symposium 2002 162

##

8 Appendix B - Sample State Machine Implementation

/*---
* FILE NAME: state_machine.cpp
*
* IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
* By downloading, copying, installing or using the software you agree
* to this license. If you do not agree to this license, do not
* download, install, copy or use the software.
*
* Intel Open Source License
*
* Copyright (c) 2002 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* # Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* # Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* # Neither the name of the Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
* PURPOSE AND NONINFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
--\

/*---
* DESCRIPTION: This program is and example program of how one could
* implement a finite state machine. This has been written
* as and example to be used in a class. The doucmentation
* in the source is limited. It is also assumed that the
* person being taught has a general understanding of

Ottawa Linux Symposium 2002 163

* what a state machine is.
*
* Agruments: [{TRACE [=] {ON|OFF}|?}]
*
* TRACE is used to turn trace of the statemachine on
* or off. The default is off. This will stay set
* for the complete run of the program. Currenlty no
* method is coded to allow trace to be controlled during
* runtime.
*
* This command is not case sensitive.
*
* AUTHOR: Donald W. Long
*
* HISTORY: 1.0 - First Release
---/

#include <iostream.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>

// General defines
#define ProgramVersion "1.0"
#define ProgramVersionDate "10-3-2001"
#define TRUE -1
#define FALSE 0

// These are the code seqment names with the values that they can return
// All sets of code segment return values must start with 0 and go
// up by 1, no holes allowed.
typedef enum {

CS_PrintBanner = 0,
CS_AskForNum1,
CS_AskForNum2,
CS_AskForFunc,
CS_Add,
CS_Sub,
CS_Times,
CS_Divide,
CS_OutPutResults,
CS_Exit,
CS_BadInput

} CodeSeqmentTF;

// Misc Defines
#define CS_PrintBanner_OK 0

#define CS_AskForNum1_OK 0
#define CS_AskForNum1_BAD 1
#define CS_AskForNum1_Exit 2

#define CS_AskForNum2_OK 0
#define CS_AskForNum2_BAD 1

Ottawa Linux Symposium 2002 164

#define CS_AskForNum2_Exit 2

#define CS_AskForFunc_Add 0
#define CS_AskForFunc_Sub 1
#define CS_AskForFunc_Times 2
#define CS_AskForFunc_Divide 3
#define CS_AskForFunc_Exit 4
#define CS_AskForFunc_Unknown 5

#define CS_Add_OK 0

#define CS_Sub_OK 0

#define CS_Times_OK 0

#define CS_Divide_OK 0

#define CS_OutPutResults_OK 0

#define CS_Exit_OK 0

#define CS_BadInput_OK 0

// This table is used to output the text name of the code segement
// and its values if trace is turned on.
// Format: <Num Values> <code segment name> <Names of values,
// occurs for <Num Values>>
// The Value string names are in the order they are defined
// (i.e., 0, 1, 2, ...)
//
// At the end of each code segment value list a -1 must occur.
// At the end of the table another -1 must occur.
//
static char CodeSeqmentNames[] = {

1, ’P’, ’r’, ’i’, ’n’, ’t’, ’B’, ’a’, ’n’, ’n’, ’e’, ’r’, 0,
’P’, ’r’, ’i’, ’n’, ’t’, ’B’, ’a’, ’n’, ’n’, ’e’, ’r’,
’_’, ’O’, ’K’, 0,

-1,
3, ’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’N’, ’u’, ’m’, ’1’, 0,

’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’N’, ’u’, ’m’, ’1’,
’_’, ’O’, ’K’, 0,

’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’N’, ’u’, ’m’, ’1’,
’_’, ’B’, ’A’, ’D’, 0,

’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’N’, ’u’, ’m’, ’1’,
’_’, ’E’, ’x’, ’i’, ’t’, 0,

-1,
3, ’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’N’, ’u’, ’m’, ’2’, 0,

’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’N’, ’u’, ’m’, ’2’,
’_’, ’O’, ’K’, 0,

’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’N’, ’u’, ’m’, ’2’,
’_’, ’B’, ’A’, ’D’, 0,

’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’N’, ’u’, ’m’, ’2’,
’_’, ’E’, ’x’, ’i’, ’t’, 0,

-1,

Ottawa Linux Symposium 2002 165

6, ’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’F’, ’u’, ’n’, ’c’, 0,
’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’F’, ’u’, ’n’, ’c’,

’_’, ’A’, ’d’, ’d’, 0,
’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’F’, ’u’, ’n’, ’c’,

’_’, ’S’, ’u’, ’b’, 0,
’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’F’, ’u’, ’n’, ’c’,

’_’, ’T’, ’i’, ’m’, ’e’, ’s’, 0,
’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’F’, ’u’, ’n’, ’c’,

’_’, ’D’, ’i’, ’v’, ’i’, ’d’, ’e’, 0,
’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’F’, ’u’, ’n’, ’c’,

’_’, ’E’, ’x’, ’i’, ’t’, 0,
’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’F’, ’u’, ’n’, ’c’,

’_’, ’U’, ’n’, ’k’, ’n’, ’o’, ’w’, ’n’, 0,
-1,
1, ’A’, ’d’, ’d’, 0,

’A’, ’d’, ’d’, ’_’, ’O’, ’K’, 0,
-1,

1, ’S’, ’u’, ’b’, 0,
’S’, ’u’, ’b’, ’_’, ’O’, ’K’, 0,

-1,
1, ’T’, ’i’, ’m’, ’e’, ’s’, 0,

’T’, ’i’, ’m’, ’e’, ’s’, ’_’, ’O’, ’K’, 0,
-1,
1, ’D’, ’i’, ’v’, ’i’, ’d’, ’e’, 0,

’D’, ’i’, ’v’, ’i’, ’d’, ’e’, ’_’, ’O’, ’K’, 0,
-1,
1, ’O’, ’u’, ’t’, ’P’, ’u’, ’t’, ’R’, ’e’, ’s’, ’u’,

’l’, ’t’, ’s’, 0,
’O’, ’u’, ’t’, ’P’, ’u’, ’t’, ’R’, ’e’, ’s’, ’u’,

’l’, ’t’, ’s’, ’_’, ’O’, ’K’, 0,
-1,
1, ’E’, ’x’, ’i’, ’t’, 0,

’E’, ’x’, ’i’, ’t’, ’_’, ’O’, ’K’, 0,
-1,
1, ’B’, ’a’, ’d’, ’I’, ’n’, ’p’, ’u’, ’t’, 0,

’B’, ’a’, ’d’, ’I’, ’n’, ’p’, ’u’, ’t’, ’_’, ’O’, ’K’, 0,
-1,
-1

};

// This gives us the names of the states we will be using.
// It should be noted that this order must also be followed
// in the StateTable.
typedef enum {

ST_Start = 0,
ST_GetNum1 = 1,
ST_GetNum2 = 2,
ST_GetFunc = 3,
ST_Add = 4,
ST_Sub = 5,
ST_Times = 6,
ST_Divide = 7,
ST_OutPutR = 8,
ST_Exit = 9,

Ottawa Linux Symposium 2002 166

ST_Num1Bad = 10,
ST_Num2Bad = 11,
ST_FuncBad = 12

} States_TF;

int *StateTablePtr = 0; // This is the location in the state table
// we are at and the state table.

#define StateTableNumElements 8 // If you add the ability to have more
// values you must increase this
// by that number.

// Format: <State> <Code Segment> <state for val1> <state for val2>
// <state for val3> <state for val4>
// <state for val5> <state for val6>
//
// If the value is not used then set to -1.
//
// The order of the states must match the order of the states
// defined in StateTF.
static int StateTable[] = {

ST_Start, CS_PrintBanner, ST_GetNum1, -1, -1, -1,
-1, -1,

ST_GetNum1, CS_AskForNum1, ST_GetNum2, ST_Num1Bad, ST_Exit, -1,
-1, -1,

ST_GetNum2, CS_AskForNum2, ST_GetFunc, ST_Num2Bad, ST_Exit, -1,
-1, -1,

ST_GetFunc, CS_AskForFunc, ST_Add, ST_Sub, ST_Times, ST_Divide,
ST_Exit, ST_FuncBad,

ST_Add, CS_Add, ST_OutPutR, -1, -1, -1,
-1, -1,

ST_Sub, CS_Sub, ST_OutPutR, -1, -1, -1,
-1, -1,

ST_Times, CS_Times, ST_OutPutR, -1, -1, -1,
-1, -1,

ST_Divide, CS_Divide, ST_OutPutR, -1, -1, -1,
-1, -1,

ST_OutPutR, CS_OutPutResults, ST_GetNum1, -1, -1, -1,
-1, -1,

ST_Exit, CS_Exit, ST_Exit, -1, -1, -1,
-1, -1,

ST_Num1Bad, CS_BadInput, ST_GetNum1, -1, -1, -1,
-1, -1,

ST_Num2Bad, CS_BadInput, ST_GetNum2, -1, -1, -1,
-1, -1,

ST_FuncBad, CS_BadInput, ST_GetFunc, -1, -1, -1,
-1, -1

};

// State names, format is <name><null> Order must match the order
// of the state values (see StateTF).
// Last byte is -1 to show end of table.

static char StateNames[] = {
’S’, ’t’, ’a’, ’r’, ’t’, 0,

Ottawa Linux Symposium 2002 167

’G’, ’e’, ’t’, ’N’, ’u’, ’m’, ’1’, 0,
’G’, ’e’, ’t’, ’N’, ’u’, ’m’, ’2’, 0,
’G’, ’e’, ’t’, ’F’, ’u’, ’n’, ’c’, 0,
’A’, ’d’, ’d’, 0,
’S’, ’u’, ’b’, 0,
’T’, ’i’, ’m’, ’e’, ’s’, 0,
’D’, ’i’, ’v’, ’i’, ’d’, ’e’, 0,
’O’, ’u’, ’t’, ’P’, ’u’, ’t’, ’R’, 0,
’E’, ’x’, ’i’, ’t’, 0,
’N’, ’u’, ’m’, ’1’, ’B’, ’a’, ’d’, 0,
’N’, ’u’, ’m’, ’2’, ’B’, ’a’, ’d’, 0,
’F’, ’u’, ’n’, ’c’, ’B’, ’a’, ’d’, 0,
-1

};

// General flags for the program
int Trace = FALSE; // if not 0 then we will trace the statemachine

// Function prototypes
int Init(int argc, char *argv[]);
int PrintTrace(int *StateTableEntry, char *CodeSeqmentNames,

char *StateNames, int CodeSegmentValue);
int ConvertToNum(char *InputData, double *Result);
char *StripSpaces(char *Line);
void ToUpper(char *Data);

/*
** main
*
* FILENAME: D:\Projects\SampleStateMachine\samplestatemachine.cpp
*
* PARAMETERS: argc - number of argments passed to the program
* argv - address list of arguments.
*
* DESCRIPTION: main entry point for program
* RETURNS: 0 - Program terminates OK
* 1 - Program had an internal error
* 2 - Invalid argument passed to program
*/

int main(int argc, char* argv[])
{

int CodeSegmentValue=-1; // Code segment value returned from
// switch statement

double Num1=0; // Contains the last value inputed
// for CS_AskForNum1

double Num2=0; // Contains the last value inputed
// for CS_AskForNum2

double FuncResult=0; // Results of the operation requested.
char InputData[100]; // String to store the input data into

// for all cin operations.
char *ptr; // General pointer.

// Init the program
if (!Init(argc, argv)) {

Ottawa Linux Symposium 2002 168

cerr << endl << "**** Invalid arguments passed ****" << endl <<
"SampleStateMachine [{TRACE [=] {ON|OFF}|?}]" << endl << endl;

return(2);
}

// Main loop for program
StateTablePtr=StateTable;
while (TRUE) {

switch (StateTablePtr[1]) {
case CS_PrintBanner:

cout << "Test StateMachine (" << ProgramVersion << "-" <<
ProgramVersionDate << ") ** TRACE = ";

if (Trace==TRUE) {
cout << "ON";

} else {
cout << "OFF";

}
cout << endl << endl;
CodeSegmentValue=CS_PrintBanner_OK;
break;

case CS_AskForNum1:
cout << endl << "Please enter the first number or ’exit’? ";
cin >> InputData;

ptr = StripSpaces(InputData);
ToUpper(ptr);

// Process the line
if (!strcmp(ptr, "EXIT")) {

CodeSegmentValue=CS_AskForNum1_Exit;
} else {

if (ConvertToNum(ptr, &Num1)) {
CodeSegmentValue=CS_AskForNum1_OK;

} else {
CodeSegmentValue=CS_AskForNum1_BAD;

}
}
break;

case CS_AskForNum2:
cout << endl << "Please enter the second number or ’exit’? ";
cin >> InputData;

ptr = StripSpaces(InputData);
ToUpper(ptr);

// Process the line
if (!strcmp(ptr, "EXIT")) {

CodeSegmentValue=CS_AskForNum2_Exit;
} else {

if (ConvertToNum(ptr, &Num2)) {
CodeSegmentValue=CS_AskForNum2_OK;

} else {
CodeSegmentValue=CS_AskForNum2_BAD;

}
}

Ottawa Linux Symposium 2002 169

break;
case CS_AskForFunc:

cout << endl << "Please enter the function to perform" << endl <<
" Add" << endl <<
" Sub[tract]" << endl <<
" Times" << endl <<
" Div[ide]" << endl <<
" Exit" << endl <<
"? ";

cin >> InputData;
ptr = StripSpaces(InputData);
ToUpper(ptr);
if (!strcmp(ptr, "ADD")) {

CodeSegmentValue=CS_AskForFunc_Add;
} else if (!strcmp(ptr, "SUB") || !strcmp(ptr, "SUBTRACT")) {

CodeSegmentValue=CS_AskForFunc_Sub;
} else if (!strcmp(ptr, "TIMES")) {

CodeSegmentValue=CS_AskForFunc_Times;
} else if (!strcmp(ptr, "DIV") || !strcmp(ptr, "DIVIDE")) {

CodeSegmentValue=CS_AskForFunc_Divide;
} else if (!strcmp(ptr, "EXIT")) {

CodeSegmentValue=CS_AskForFunc_Exit;
} else {

CodeSegmentValue=CS_AskForFunc_Unknown;
}
break;

case CS_Add:
FuncResult=Num1+Num2;
CodeSegmentValue=CS_Add_OK;
break;

case CS_Sub:
FuncResult=Num1-Num2;
CodeSegmentValue=CS_Sub_OK;
break;

case CS_Times:
FuncResult=Num1*Num2;
CodeSegmentValue=CS_Times_OK;
break;

case CS_Divide:
FuncResult=Num1/Num2;
CodeSegmentValue=CS_Divide_OK;
break;

case CS_OutPutResults:
cout << endl << "Your results are " << FuncResult << endl << endl;
CodeSegmentValue=CS_OutPutResults_OK;
break;

case CS_Exit:
CodeSegmentValue=CS_Exit_OK;
return(0);

case CS_BadInput:
CodeSegmentValue=CS_BadInput_OK;
cout << "Input is not valid - " << InputData << endl;
break;

default:

Ottawa Linux Symposium 2002 170

cerr << endl <<
"***" << endl <<
"***" << endl <<
"** INTERNAL ERROR **" << endl <<
"** The Code Segment Does not exist **" << endl <<
"** Either state table is bad, code segment not added, **" << endl <<
"** or logic error in moving thru state table **" << endl <<
"***" << endl <<
"***" << endl
<< endl;

return(1);
}
if (Trace==TRUE) {

if (!PrintTrace(StateTablePtr, CodeSeqmentNames,
StateNames, CodeSegmentValue)) {
return(1);

}
}
StateTablePtr=&(StateTable[(StateTablePtr[CodeSegmentValue+2])

* StateTableNumElements]);
}

}

/*
** Init
*
* FILENAME: D:\Projects\SampleStateMachine\samplestatemachine.cpp
*
* PARAMETERS: argc - number argument passed
* argv - Address array to arguments
*
* DESCRIPTION: This will parse out the program arguments. If
* any errors will exit with a value of 2.
*
* RETURNS: 0 - Agruments invalid
* 1 - Agruments processed
*
*/

int Init(int argc, char *argv[])
{

char *mode;
char *ptr;

if (argc>1) {
if (argc<5 && argc >2) {

if (argc==4) {
mode=argv[3];
ptr=StripSpaces(argv[2]);
if (strcmp(ptr, "=")) {

return(0);
}

} else {
mode=argv[2];

Ottawa Linux Symposium 2002 171

}
ptr=StripSpaces(argv[1]);
ToUpper(ptr);
if (!strcmp(ptr, "TRACE")) {

mode=StripSpaces(mode);
ToUpper(mode);
if (!strcmp(mode, "ON")) {

Trace=TRUE;
} else if (!strcmp(mode, "OFF")) {

Trace=FALSE;
} else {

return(0);
}

} else {
return(0);

}
} else {

if (argc==2) {
if (!strcmp(argv[1], "?")) {

cout << endl << "SampleStateMachine [{TRACE [=] {ON|OFF}|?}]"
<< endl << endl;

exit(0);
} else {

return(0);
}

} else {
return(0);

}
}

}
return(-1);

}

/*
** PrintTrace
*
* FILENAME: D:\Projects\SampleStateMachine\samplestatemachine.cpp
*
* PARAMETERS:
* StateTableEntry - Pointer to the current state table location
* that is being processed
* CodeSegmentNames - Pointer to the table that contains all the
* code segment names and they code segment values
* StateNames - Pointer to the table that contains the State Names.
* CodeSegmentValue - The value that was returned from the last code
* segment that was executed for the current state.
*
* DESCRIPTION:
* This will take the current state information (after execution) and
* output in text what has occured and the new state that will occur.
*
* The output goes to cerr and is in the following format
* <CurState>(val) - <CodeSegment>(val) - <Codesegment value>(val) ->
* <NewState>(val)<eol>

Ottawa Linux Symposium 2002 172

* RETURNS:
*/

int PrintTrace(int *StateTableEntry, char *CodeSeqmentNames,
char *StateNames, int CodeSegmentValue)

{
int CurState;
int NewState;
int CodeSegment;
char *CurStateName;
char *NewStateName;
char *CodeSegmentName;
char *CodeSegmentValName;
int NumCodeSegments;
int i;
int ii;

// Get the items from the state table entry.
CurState = StateTableEntry[0];
CodeSegment = StateTableEntry[1];
NewState = StateTableEntry[CodeSegmentValue+2];

// Get the current state name.
for (CurStateName=StateNames, i = 0;

i<CurState && CurStateName[0]!=-1; i++) {
for (; *CurStateName!=0; CurStateName++);
CurStateName++;

}
if (*CurStateName==-1) {

cerr << endl <<
"***" << endl <<
"***" << endl <<
"** INTERNAL ERROR **" << endl <<
"** Current State Not In State Name Table **" << endl <<
"** State table is bad or State Name Table **" << endl <<
"***" << endl <<
"***" << endl << endl;

return(0);
}

// Get the new state name.
for (NewStateName=StateNames, i = 0;

i<NewState && NewStateName[0]!=-1; i++) {
for (; *NewStateName!=0; NewStateName++);
NewStateName++;

}
if (*NewStateName==-1) {

cerr << endl <<
"***" << endl <<
"***" << endl <<
"** INTERNAL ERROR **" << endl <<
"** New State Not In State Name Table **" << endl <<
"** State table is bad or State Name Table **" << endl <<
"***" << endl <<

Ottawa Linux Symposium 2002 173

"***" << endl << endl;
return(0);

}

// Get the codesegment name.
for (CodeSegmentName=CodeSeqmentNames, i=0;

i<CodeSegment && CodeSegmentName[0]!=-1; i++) {
NumCodeSegments=CodeSegmentName[0];
for (; *CodeSegmentName!=0; CodeSegmentName++);
CodeSegmentName++;

// Skip the codesegment return value names.
for (ii=0; ii<NumCodeSegments && CodeSegmentName[0]!=-1; ii++) {

for (; *CodeSegmentName!=0; CodeSegmentName++);
CodeSegmentName++;

}
if (ii!=NumCodeSegments && CodeSegmentName[0]!=-1) {

cerr << endl <<
"**" << endl <<
"**" << endl <<
"** INTERNAL ERROR **" << endl <<
"** Code Segment Vak Not in Code Segment Table **" << endl <<
"** Code Segment is bad or Code Segment Table **" << endl <<
"**" << endl <<
"**" << endl << endl;

return(0);
}
CodeSegmentName++; // Skip the -1 at the end of the

// codesegment values.
}
if (*CodeSegmentName==-1) {

cerr << endl <<
"***" << endl <<

"***" << endl <<
"** INTERNAL ERROR **" << endl <<
"** Code Segment Not in Code Segment Table **" << endl <<
"** Code Segment is bad or Code Segment Table **" << endl <<
"***" << endl <<
"***" << endl << endl;

return(0);
}

// Setup for getting the codesegment value name.
NumCodeSegments=CodeSegmentName[0];
CodeSegmentName++;
for (CodeSegmentValName=CodeSegmentName; *CodeSegmentValName!=0;

CodeSegmentValName++);
CodeSegmentValName++;

// Get the code segment value name
for (i=0; i<CodeSegmentValue && CodeSegmentValName[0]!=-1; i++) {

for (; *CodeSegmentValName!=0; CodeSegmentValName++);
CodeSegmentValName++;

}

Ottawa Linux Symposium 2002 174

if (CodeSegmentName[0]==-1) {
cerr << endl <<

"**" << endl <<
"**" << endl <<
"** INTERNAL ERROR **" << endl <<
"** Code Segment Vak Not in Code Segment Table **" << endl <<
"** Code Segment is bad or Code Segment Table **" << endl <<
"**" << endl <<
"**" << endl << endl;

return(0);
}

// Output format is <CurState>(val) - <CodeSegment>(val) -
<Codesegment value>(val) -> <NewState>(val)

cerr << CurStateName << "(" << CurState << ") - " <<
CodeSegmentName << "(" << CodeSegment << ") - " <<
CodeSegmentValName << "(" << CodeSegmentValue << ") -> " <<
NewStateName << "(" << NewState << ")" << endl;

return(-1);
}

/*
** ConvertToNum
*
* FILENAME: D:\Projects\SampleStateMachine\samplestatemachine.cpp
*
* PARAMETERS: InputData - String that is to be converted to a number
* Result - Address to a double to put the results in
*
* DESCRIPTION: This function will take an ascii string and convert it to
* a double. This function assumes all spaces have been
* removed from the start of the string and the end.
*
* RETURNS: -1 - Converted ok
* 0 - Invalid data in InputData (not a number)
*
*/

int ConvertToNum(char *InputData, double *Result)
{

char *ptr;

// Make sure all charactors are valid.
for (ptr=InputData; *ptr!=0; ptr++) {

if (!isdigit(*ptr)) {
if (*ptr==’.’) { // Floating Point Number.

for (ptr++; *ptr!=0; ptr++) {
if (!isdigit(*ptr)) {

return(0);
}

}
break; // Leave the for loop so we can do the atof function.

} else {
return(0);

Ottawa Linux Symposium 2002 175

}
}

}
*Result=atof(InputData);
return(-1);

}

/*
** StripSpaces
*
* FILENAME: D:\Projects\SampleStateMachine\samplestatemachine.cpp
*
* PARAMETERS: Line - The line to remove spaces
*
* DESCRIPTION: This will remove all the spaces at the start and end
* of Line.
*
* RETURNS: Address of first charactor in Line that is not a space
*
*/

char *StripSpaces(char *Line)
{

char *stptr;
char *ptr;

// Strip off all spaces
for (stptr=Line; *stptr == ’ ’ && *stptr != 0; stptr++);
for (ptr=stptr; *ptr != ’ ’ && *ptr != 0; ptr++);
*ptr=0;
return(stptr);

}

/*
** ToUpper
*
* FILENAME: D:\Projects\SampleStateMachine\samplestatemachine.cpp
*
* PARAMETERS: Data - Data to convert to upper case
*
* DESCRIPTION: This function will convert a staring to upper case
*
* RETURNS:
*
*/

void ToUpper(char *Data)
{

char *ptr;

for (ptr=Data; *ptr!=0; ptr++) {
*ptr=toupper(*ptr);

}
}

Advanced Boot Scripts

Richard Gooch
EMC Corporation

rgooch@atnf.csiro.au
http://www.atnf.csiro.au/∼rgooch/linux/boot-scripts/

Abstract

This paper describes the design and imple-
mentation of a dependency-based scheme for
system boot scripts. This scheme preserves
the modularity of SysV-style boot scripts but
does not suffer from it’s limitations (such as
a complicated directory tree populated with
symlinks, and the need for global dependency
knowledge).

The dependency-based scheme simplifies the
creation and integration of boot scripts by re-
quiring only knowledge of direct dependencies
(i.e. local rather than global knowledge). De-
pendency management is performed bysim-
pleinit(8), which may execute boot scripts in
parallel, when those scripts have no cross de-
pendencies.

This paper seeks to expose this new scheme to
a wide audience, including disribution main-
tainers, with the hope that more widespread
adoption follows.

1 Introduction

I propose a new mechanism for booting user-
space on Unix-like systems. This scheme is a
significant departure from existing boot mech-
anisms, and is a response to their respective
limitations. The two main existing schemes are
the so-called “BSD” and “SysV” styles. Each
have their disadvantages, discussed below.

1.1 BSD-style

1.1.1 Mechanism

In this scheme, booting is controlled by one of
a very few number of boot scripts. Often, there
is a master boot script (typically/etc/rc)
which orchestrates the whole boot procedure.
This scheme is fairly easy to understand, as it
has only a small number of scripts to read and
the order in which things are started up is quite
clear from the master boot script. It is fast, sim-
ple, and efficient.

1.1.2 Limitations

Where this scheme fails is in its scalability. If
a 3rd-party package needs to have an initiali-
sation script run during the boot procedure, it
needs toedit one of the existing boot scripts.
Such editing is dangerous, as boot scripts are
fragile at the best of times. A simple mistake
by the installer can lead to an unbootable sys-
tem.

1.2 SysV-style

1.2.1 Mechanism

This scheme places a number of mini-
scripts in a master directory (typically
/etc/rc.d/init.d/) which collectively

Ottawa Linux Symposium 2002 177

can boot most of the system. Each of these
mini-scripts starts and stops one “service.”
This is quite neat and modular. A master boot
script is used to orchestrate the boot process,
which does some “special” setup (i.e. anything
which was considered too difficult to put into
a mini-script), and then proceeds to run each
of the mini-scriptsin another directory. The
order is based on shell wild-card expansion
rules.

The “other directory” is populated with sym-
bolic links back into/etc/rc.d/init.d/
(where the scripts are kept). Each script usu-
ally has two links to it. One starts with “S” and
the other with “K”. The “S*” scripts are called
when booting up the system, the “K*” scripts
are called when shutting down the system. The
desired ordering is achieved by using numbers
after the “S” and “K” in the link names.

So a link with name “S10” will run before
“S15”, which in turn runs before “S20”. It
is the responsibility of the system integrator
to name these links such that services are
started and stopped in the correct order. A
3rd-party software installer can “simply” place
their startup script in/etc/rc.d/init.d/
and then create a symbolic link to the script in
the “other directory.” The installer has to pick
a name that is not already taken, and has to de-
termine the number to use (which depends on
how far into the boot procedure the script must
be run).

The author of the system boot scripts must
therefore allocate numbers with sufficient gaps
between them to allow for later insertions.
Typically, the numbers 10, 20, 30, 40, 50, 60,
70 and so on are chosen. This reminds me of
when I was a youngster programming BASIC
on my Apple][. Every line had to be given
a number, and you had to be careful to leave
“space” for later insertions. The SysV number-
ing isn’t quite so restrictive, as it is possible to

append an arbitrary string to the number, which
effectively increases the number space. Typi-
cally, the name of the script is appended, such
as10inetd and10named. Thus, it is possi-
ble to “group” scripts so that the order between
groups is well-defined, while ordering within a
group is unknown (or knowable but not impor-
tant).

The SysV booting scheme also supports the
concept of “runlevels.” What this means is
that the system may be booted “all the way”
(by convention, this is runlevel 5) by default,
but may also be booted only part of the way.
The most common purpose is to allow the sys-
tem to be booted “single-user” (i.e. main-
tenance/repair mode), where only a handful
of services are started. The runlevel scheme
is supported by splitting the symlinks in the
“other directory” into a number of directo-
ries, each directory corresponding to a run-
level. These directories are typically named:

/etc/rc.d/rc0.d/
/etc/rc.d/rc1.d/
/etc/rc.d/rc2.d/
/etc/rc.d/rc3.d/
/etc/rc.d/rc4.d/
/etc/rc.d/rc5.d/

/etc/rc.d/rc6.d/.

The master boot script will start all scripts
in the runlevel directory corresponding to the
desired runlevel. Thus, the system can be
booted to runlevel 1 by running the scripts in
/etc/rc.d/rc1.d/ (this is often “single-
user” mode). Then, perhaps after some main-
tenance work the system can be booted all the
way by switching to runlevel 5 by stopping ser-
vices for runlevel 1 and starting the scripts in
/etc/rc.d/rc5.d/ . Similarly, the system
can be taken from a higher runlevel to a lower
one by stopping services.

These boot scripts, in the tradition of SysV, can

Ottawa Linux Symposium 2002 178

do anything. They are flexible and scalable and
are designed to run large systems.

1.2.2 Limitations

A significant disadvantage of this scheme is its
complexity. A simple measure of its complex-
ity is the quantity of text describing it com-
pared to that required for describing the BSD-
style scripts. Due to this complexity, it is often
difficult to see how the various scripts fit to-
gether and determine the execution sequence.

This intricate web of scripts, directories and
symbolic links is difficult to construct and diffi-
cult to administer. Even an experienced system
administrator can be confused by this scheme
when first exposed to it. Novice administrators
may be expected to be quite perplexed. With
the growing popularity of Linux, the vast ma-
jority of Linux users are not experienced sys-
tem administrators, but must still administer
their systems. The SysV scheme does not cater
to their needs.

While the SysV scheme is more scalable than
the BSD scheme, there remains a problem for
3rd-party boot scripts: which symlink name
should be chosen? Usually the script is started
in runlevel 6, because by that time “most” ser-
vices are available. The simplest solution is to
pick a random high number, which “should”
work.

Finally, the use of numerical runlevels is far
from intuitive. While old-guard SysV admin-
istrators may feel the runlevel definitions are
simple to learn, the reality is the numbers con-
vey no meaning. Certainly novice system ad-
ministrators (the bulk of the Linux population
now) will just scratch their collective heads and
say, “Ah well, I guess that’s just Unix.”

2 An Alternative

As indicated, each existing scheme has advan-
tages and disadvantages. The use of mini-
scripts provides scalability, and thus this aspect
of the SysV scheme should be preserved. What
is required is a mechanism that starts mini-
scripts in an ordered fashion yet is easy to un-
derstand and does not suffer from name-space
or number-space limitations.

The proposed solution is simple yet powerful.
There isno master script which orchestrates
everything. Instead, all scripts are executed in
parallel. Ordered sequencing is obtained by al-
lowing each script to declare which services it
needs available (i.e. what it depends on) in or-
der to successfully complete. Even the master
script found in SysV-style booting schemes is
eliminated.

Whenever a script declares that it needs an-
other, it is suspended (blocked) until the re-
quired service is available or is determined to
be unavailable. This simple mechanism en-
forces strict sequencing with precisely the level
of granularity desired.

Placing dependency information inside each
script has the following advantages:

• it is immediately clear what other services
a script depends on

• the information is localised, requiring no
global orchestration by the system inte-
grator

• 3rd-party scripts can fine-tune their de-
pendencies

• 3rd-party script installers need not be
aware of the global sequencing details.

A beneficial side-effect of executing scripts in
parallel is that some services will be started in

Ottawa Linux Symposium 2002 179

parallel, once the common services they de-
pend on are available. This can reduce the time
taken to boot the system.1

3 Implementation

The init(8) programme is responsible for ex-
ecuting the boot scripts and orchestrating the
correct sequencing. To accomplish this, I
modified thesimpleinit(8) programme from
theutil-linux package to support dependency-
based boot sequencing. I wrote theinitctl(8)
programme which is used by scripts to declare
their dependencies, and a set of boot scripts us-
ing this new mechanism. These boot scripts
may be used as a guide for writing another set,
or may be used directly in a production system.

The mini scripts are kept in a directory and
init(8) runsall of them, in random order. Or-
dering of the mini scripts is controlled by the
scripts themselves. Each script runs any other
scripts it depends on, using theneed(8)pro-
gramme (an alias ofinitctl(8)) which ensures
that a script is only run once. It doesn’t matter
which orderinit(8) starts running the scripts,
asneed(8)ensures scripts wait as required.

3rd-party scripts need only useneed(8)to en-
sure services they require are running. This
eliminates the problem of deciding where to
place the script in the sequence.

The changes tosimpleinit(8) and the new
initctl(8) have been incorporated into theutil-
linux package.

3.1 Implementation details

By default, simpleinit(8) will run /etc/rc
as its startup script. The modified version al-
lows the system administrator (either at the

1consideration must be given to the effect this may
have on disc head seek times, which could eliminate
gains due to parallelism

boot prompt or in/etc/inittab) to specify
an alternative script to run. If the script speci-
fied is in fact a directory, all the scripts in that
directory are run, in random order.

In the new scheme,init(8) is configured to run
all mini startup scripts in/sbin/init.d/ .
Each script starts/stops one service (i.e. print-
ing, file-system checks, NFS mounting and so
on). Take the example of the NFS export script,
which starts the daemonsrpc.mountd(8) and
rpc.nfsd(8), but must wait until the RPC
portmapper is running before starting the NFS
daemons. The sample script below demon-
strates this:

#! /bin/sh
/sbin/init.d/nfs-export

case "$1" in
start)

need portmap || exit 1
rpc.mountd
rpd.nfsd
;;

stop)
killall rpc.nfsd && \

killall rpc.mountd
;;

esac
End

Theneed(8)programme is used to run a script,
and wait for its completion. If the programme
has not been run before,need(8)will run it.
If it has already run,need(8) does nothing.
The exit code indicates whether the service (the
portmapper in this case) started successfully
or not. Since the portmapper is required, the
script tests the exit code fromneed(8)and fails
if it is unavailable for any reason.

Ottawa Linux Symposium 2002 180

3.1.1 Single-user and runlevels

For single-user mode,init(8) can be config-
ured to run a specific script (or directory). This
script can provide a simple or arbitrarily com-
plex single-user mode, at the discretion of the
designer of a set of boot scripts.

Different runlevels are supported in a simi-
lar fashion. Whatever argument is passed to
init(8) at the command line (boot prompt), it
is appended to a configurable prefix and to-
gether they specify the script (or directory) to
run. Thus, you can pass in "single", "3", "6" or
"multi" and all that is required is the appropi-
ately named script or directory.

There are two ways in which traditional run-
levels can be supported. One is that an appro-
priate directory is created with symlinks back
into /sbin/init.d/ . This approach may
be used when a rapid implementation of run-
levels is desired. A more elegant solution is
to have a script for each runlevel. An example
script is shown below:

#! /bin/sh
/sbin/init.d/runlevel.3

case "$1" in
start)

need runlevel.2 || exit 1
need portmap || exit 1
mount -vat nfs
;;

stop)
umount -vat nfs
;;

esac
End

In this example, the distinction between run-
levels 2 and 3 is that runlevel 3 will addition-
ally mount remote file-systems. Thus, runlevel
2 is required as is the portmapper.

3.1.2 The initctl(8) implementation

Originally, I had intended to put most of the in-
telligence intoinitctl(8) and haveinit(8) only
maintain the database of scripts. This approach
was quickly discarded, since it would require
reliable, full-duplex inter-process communica-
tion (IPC) services. Under Linux, these may
be available as loadable modules, and thus may
not be available at the timeinit(8) starts. The
only IPC facilities that may be relied on are
named pipes (FIFOs) and Unix signals. These
are not suited to parallel, full-duplex commu-
nications.

The approach I adopted was to place the re-
sponsibility for script starting and stopping, as
well as database management, with theinit(8)
programme, and have a simple control inter-
face. By limiting the amount of informa-
tion that is sent frominit(8) to initctl(8) to a
simple available/not-available/failed status, the
need for a second FIFO (for each instance of
initctl(8)) is avoided, and Unix signals may be
used instead.

The initctl(8) control interface is a trivial pro-
gramme which simply writes service requests
to the control FIFO and waits for a suc-
cess/failure signal.

Because the dependency table forinit(8) -
started processes is kept ininit(8) , it makes
partial and complete rollbacks (switching be-
tween runlevels and orderly shutdowns) eas-
ier to implement. Sinceinit(8) never dies, and
doesn’t crash (if it does, the system will hang),
it is quite safe to maintain the database in-
side the virtual memory space ofinit(8) . Also,
since the database is quite small, there is no
significant resource consumption.

Ottawa Linux Symposium 2002 181

3.2 Optimisations

A simple optimisation which can reduce boot-
ing time is the pre-fetching of all the script
files, which can reduce the number of disc head
seeks. Without this optimisation, the disc head
may have to travel back and forth between the
script files, the daemons they start and their
configuration files. Assuming the script files
are close to each other on the disc media, a
small number of seeks will suffice for pre-
fetching the script files. This optimisation has
been implemented, by reading the scripts in
file-system order into a dummy buffer.

3.3 Runlevels and rollback

Becauseinit(8) maintains a table of which boot
scripts have been run and which have failed (if
any), and sinceinit(8) runs for the lifetime of
the booted system, it is ideally suited to man-
aging orderly shutdown of the system. Fur-
ther, since at any timeneed(8)may be used
to run another boot script, with full depen-
dency checking, theninit(8) may also be used
to switch between runlevels.

An orderly shutdown is as simple as rolling
back the entire table. The algorithm is trivial:
obtain the last entry in the table and run the
appropriate stop script (which is then removed
from the table). The process is repeated until
the table is empty. All services will then have
been stopped in the reverse order in which they
were started.

Increasing runlevel is also quite simple: just
run the desired runlevel script. Thus go-
ing from runlevel 2 to 3 involves running
runlevel.3 under the dependency manage-
ment scheme.

Going from runlevel 3 to 2 is slightly
more complicated, but not much. Again,
the system needs to be rolled back, stop-

ping each script/service in reverse order.
As each is stopped, its entry is removed
from the dependency table. The process is
stopped atrunlevel.2 (without stopping
runlevel.2 itself).

This scheme works becauserunlevel.3 is
added to the dependency tableafter it regis-
ters new dependencies (because it’s added to
the list once it completes). So once the sys-
tem has rolled back torunlevel.2 , we can
be sure that all the servicesrunlevel.3 has
started have been stopped, plus all the services
it depended on,but not the services runlevel 2
depended on, or runlevel 2 itself.

For this switching between runlevels to work,
the burden is placed on the runlevel scripts, not
init(8) , which is an important point, because it
provides maximum flexibility in the construc-
tion of boot scripts and keepsinit(8) simple.
The same rollback mechanism required for or-
derly shutdown may be used to switch run-
levels. No extra logic is required.

3.4 Multiple providers and provide(8)

Sometimes, there may be multiple service
providers for the same generic service. For
example, you might havesendmail(8) and
qmail(8) installed on your system, and each
has a boot script associated with it. Each one
provides themta (Mail Transport Agent) ser-
vice.

In this case, only one of these scripts should
be started. It might not matter which one
is started, or perhaps each script may check
some system-specific configuration to deter-
mine whether or not it should start the service.
In either case, all scripts providing the generic
service should be run, but only one should start
the service.

The solution to this is theprovide(8) pro-
gramme. It tellsinit(8) that the calling pro-

Ottawa Linux Symposium 2002 182

gramme/script is able to provide the generic
service. init(8) then makes sure that only one
provider will actually provide this service. An
example script follows:

#! /bin/sh
/sbin/init.d/sendmail

case "$1" in
start)

if [! -f \
/etc/mail/sendmail.cf];

then exit 2
fi
provide mta || exit 2
need portmap
/usr/sbin/sendmail -bd -q15m
;;

stop)
killall sendmail
;;

esac
End

Here, the script first checks to see if its config-
uration file /etc/mail/sendmail.cf is
available. If not, the script exits with a “not
available” status code. Then, the script regis-
ters its intention to provide themta service. If
given permission, it proceeds to start the ser-
vice, otherwise it exits.

4 Future Work

I’ve considered keeping a full dependency his-
tory inside simpleinit(8) (right now it only
keeps track of the currently depended-on ser-
vice for each script). This would allow any
service to be stopped and all services which
depend on it to be stopped (dependent services
would be stopped first, of course). This would
be more flexible than either runlevels or roll-
back. In addition, a stopped service could still
be recorded in the database and thus restarted

with all the services that depended on it also
being restarted. It is not clear whether these
features would yield sufficient benefit to justify
the implementation effort.

5 Acknowledgements

This work is the result of an evening discussion
session between Patrick Jordan2 and myself.
The basic concept of a dependency-based boot-
ing scheme, and the semantics of theneed(8)
programme, were established during that ses-
sion. I thank Patrick for his enthusiasm for this
project and his willingness to try the new, ex-
perimental boot scripts.

The implementation of the multiple providers
feature (discussed in section 3.4) was added
as a result of discussions with Wichert Akker-
man (then Debian Project leader, email:
wichert@cistron.nl), where the needs ot De-
bian were raised.

A similar (although less complete)
dependency-based booting scheme has been
independently developed by David Parsons for
his Mastodon Linux3. Thanks to Larry McVoy
for pointing this out.

Except where otherwise noted, all work is my
own.

2http://www.ariel.com.au/∼patrick/
3http://www.pell.portland.or.us/∼orc/Mastodon/

Porting Drivers to HP ZX1

Grant Grundler
Linux Development Lab

Hewlett Packard
Cupertino, CA, USA, 95014

grundler@cup.hp.com

Abstract

“Porting” doesn’t accurately describe how one
gets a Linux driver to run on different archi-
tectures. If a driver doesn’t “just work,” gener-
ally it’s a matter of figuring out which wrong
assumptions about the HW (or OS) are embed-
ded in the driver. The goal of this talk is to
describe theHP ZX1 IO subsystem and some
of the wrong assumptions I’ve found in 2.4.17
kernel drivers.

A Block Diagram of the ZX1 IO subsystem is
quite similar to current PA-RISC systems. In
contrast to Intel Itanium boxes, neither sup-
ports legacy x86 IO space. For booting,EFI
drivers (ugh, DOS is back) are required and
IA32 Expansion ROMs are ignored.Platform
Servicesmust be used for DMA mapping, in-
terrupts, PCI device discovery. I’ll discuss
how those services are different between HP’s
ZX1 platform and my (weak) understanding of
IA32. Fortunately, use of these services is the
same between both architectures.

I was surprised by which drivers did notJust
Work (e.g. tulip, acenic) and will talk about
why they didn’t. Primarily, the timing of CPU
interaction with IO devices is different. ZX1
IO subsystem is also less tolerant of driver
“quirks”—things that are wrong but other plat-
forms don’t puke on. Lastly, I’ll explain what
an MCA is and how it’s useful for debugging

IO driver problems.

1 HP ZX1 IO Subsystem

The HP ZX1 chip set doesn’t have many sur-
prises to folks who’ve worked on RISC sys-
tems. Other architectures including PA-RISC,
Alpha, and SPARC have similar block dia-
grams. The main parts of HP’s implementation
are theSystem Bus Adapter(SBA) andLower
Bus Adapter(LBA).

From a very high level, most IO subsystems
aren’t that different since PCI bus behaviors
are defined by the various PCI specifications.
IO Interrupts (IRQ Line), IO Port, and MMIO
functionality provided have the same seman-
tics as on IA32. This is good since it makes
it possible to write (mostly) portable drivers.

The SBA provides an IO MMU, memory con-
troller, and interconnect between theropes
bus andMcKinley bus. The IO MMU de-
sign is based on the implementation used in
PA-RISC workstations and low end servers.
Two significant differences is how 64-bit DMA
addressing is supported and cache coherency
model. Other less obvious differences are
greater bandwidth of both the McKinley bus
and ropes bus.

The LBA is the PCI Host bus adapter and
also contains the IO SAPIC. Unlike its

Ottawa Linux Symposium 2002 184

Figure 1: HP ZX1 architecture

PA-RISC predecessor, this LBA supports
PCI-X (133MHz, 64-bit). The IO SAPIC
was also used in PA-RISC platforms. I’m
still amazed that 80% of the code is the
same between the IA64 and PA-RISC im-
plementations. Because of NDAs with
Intel, both implementations were developed
completely independently inside HP and
published on the same day (Feb 3, 2000) when
the IA64 source tree was published. (See
http://lists.parisc-linux.org
/hypermail/parisc-linux-cvs
/2860.html).

This type of architecture has some clear per-
formance advantages over legacy North/South
bridge topology in IA32 systems and also in-
troduces some new issues. The performance
advantage is more raw IO bandwidth between
IO, memory, and CPU which exceeds the sin-
gle PCI bus model by orders of magnitude.
Some obvious problems are ordering of trans-
actions (e.g. IRQ vs. DMA), DMA latency,
and PIO latency.

2 DMA Mapping

Use of PCI DMA mapping services is required
for several reasons:

• Address Translation: The primary pur-
pose is to provide a device view of mem-
ory for DMA.

• 32-bit DMA: IO MMU provides 32-bit
devices that ability to DMA into memory
which lives above 4GB address bound-
ary. This provides at least 3x better per-
formance than SW for block IO.

• Portability: The old interface,
virt_to_bus() , could only support
systems w/o IOMMU or the IOMMU
could map all of host memory statically.
HP ZX1 IOMMU can only map 1GB at
a time. That’s not as bad as it sounds
since only 32-bit PCI devices are required
to use the IO MMU. 64-bit PCI devices
(capable of DAC) can bypass the IO
MMU.

3 Interrupts

request_irq() works the same as before.
What’s really different from IA32 is the num-
ber and type of IRQs available. IA64 defines
256 vectors vs the woefully inadequate 15 in
legacy IA32. The following sections describe
some of the high level behaviors of IO SAPIC
and implementations.

3.1 Message Signalled Interrupts

As far as I can tell, no one is using this. At
least not directly. The IO SAPIC translates the
line based IRQ into a transaction on the “up-
stream” bus. The Local SAPIC in the CPU is
the target of this transaction and is identified
by its EID. The data portion of the transaction

Ottawa Linux Symposium 2002 185

identifies which interrupt vector is being deliv-
ered.

System Firmware assigns EIDs and initializes
the Local SAPICs. The IO SAPIC driver reads
the Interrupt Routing Table from ACPI. This
table describes how each of the 4 IRQPins
from each PCI device or slot is routed to a
particular IO SAPIC IRQ Line. When a de-
vice driver registers its interrupt handler via
request_irq() , the IO SAPIC driver pro-
grams the IRTE (an internal IO SAPIC regis-
ter) for the IRQ input line.

Note that Foster CPU is the first IA32 CPU to
use IO xAPIC (˜= SAPIC) and Local xAPIC.
Support for IO xAPIC was only recently added
to i386 arch in order to properly distribute
IRQs across CPUs. All architectures with IO
xAPICs (PA-RISC, IA64, IA32) direct inter-
rupts at specific CPUs. None use XTPR trans-
actions to enable the HW to redirect interrupts
to a “lower priority” CPU. For IA64 and IA32,
this is by design to preserve driver state in the
CPU cache associated with a given PCI in-
terface card. PA-RISC has no Local SAPIC
or XTPR support and consumes the interrupt
transaction directly.

So why talk about MSI? There’s several good
reasons for devices to use MSI:

• Interrupt Code Path: It allows the driver
interrupt to be directly called from the trap
handler—no traversing lists or lookup ta-
bles. Typically though, a layer of indirec-
tion is only needed if the HW can’t gen-
erate an EOI to the IO SAPIC or the IRQ
Line is shared.

• Exclusive Vector: The driver can avoid
shared PCI IRQ line and the the result-
ing shared vector. IO SAPIC implemen-
tations to date typically only have 7 IRQ
lines—not really enough if the PCI bus
hosts multiple devices/slots.

• DMA ordering: Normally, when the IRQ
is a line, it bypasses the normal DMA
data path. Thus race conditions exist
where a DMA might not reach memory
before the IRQ is delivered and acted
upon. For PCs and the like this isn’t a
problem since all the IO paths are short.

For larger systems, this can be a prob-
lem. When the interrupt is a transaction
on the bus, PCI ordering rules prevent it
from bypassing any inbound DMA trans-
action. Thus, when the interrupt finally
reaches the CPU, one can be certain all
DMA has reached memory as well and
not stuck in any coalescing buffers be-
tween the IO device and the memory it
was writing to. Thus one doesn’t need any
additional magic to guarantee the in-flight
DMA is coherent with CPU caches.

• Target multiple CPUs: This is wish list.
Given the right services, a smart device
can target transaction completions at dif-
ferent CPUs by generating interrupt trans-
actions for specific Local SAPICs. The
goal is to service the interrupt on the same
CPU that initiated the transaction. Trade-
offs between driver D-cache footprint and
interrupt latency would help determine
applications for this. Clustering folks I’ve
talked were looking at this but didn’t pro-
totype anything to test it out.

3.2 More than 256 Interrupts?

Large systems (32 CPU and up) can end up
using more than 256 vectors and exhaust the
Interrupt Vector Table. One example is cc-
Numa machines where one really doesn’t want
to (or can’t) deliver interrupts across the fabric.
Linux can gracefully work around this issue by
defining IRQ Regions. For IA64, each region
could represent a different Interrupt Vector Ta-
ble. PA-RISC uses IRQ regions for every level

Ottawa Linux Symposium 2002 186

of the interrupt handling that has to decode a
bit mask or handle an array of IRQs.

The ACPI Interrupt Routing Tables may not
need to collude if arch specific code can cor-
rectly direct interrupt transactions generated by
IO SAPIC to the targeted CPU. I’m not famil-
iar with details of ccNUMA support but know
it has been done.

4 Posted vs Non-Posted Writes

Nearly all linux drivers started out usingIO
Port address space since ISA/EISA was the
standard when linux was born. On IA32, spe-
cial instructions (yes, most of you know this
already) exist to access this alternative address
space.

What’s key here is IO Port space also has dif-
ferent semantics. One similarity is reads and
writes to either IO Port or MMIO space do
not interact with CPU Cache. A subtle differ-
ence is writes to IO Port space areNon-Post-
able. This meansthe CPU stalls waiting for
the transaction to complete.

4.1 IO Port space sucks

IO Port space has several serious issues:

• ISA Aliasing: Most of IO port address
space isn’t available because of ISA com-
patibility where to many ISA devices only
support 10 (or more) address lines and
alias everything above that.

• Legacy IO: serial, timers, fd, parallel and
a host of other devices occupy de-facto
standard addresses in IO port space.

• More Registers: Many new devices re-
quire more register space. Either more
mail boxes or on-board RAM. Just isn’t
room for a 4k or bigger shared RAM in

IO port space. Maybe for single devices,
but I’ve been told that’s not useful when 4
or more cards need to be installed in the
system.

• Device Discovery: For devices which
don’t have legacy addresses assigned,
they had to poke around in IO port space
to discovery where their devices where.
Fortunately with PCI, that’s no longer
necessary though some drivers still do that
for ISA compatibility.

Combined, all of these issues have encouraged
nearly all PCI devices to move to MMIO space
regardless of the Non-Post-able semantics.

4.2 Memory Mapped IO is better

Since PCI has become a standard, many PCI
devices support both IO Port space and MMIO
address space to provide compatibility and a
transition for drivers to use MMIO space. And
that transition has been taking place. In imple-
menting this transition, many driver writers as-
sume MMIO is the same as IO port space and
there’s just more of it.That’s wrong.

MMIO space isPost-able. The CPU writes the
data and just continues doing other work. The
CPU may not even wait for the transaction to
hit theCentral Bus(aka Front Side Bus) before
continuing. This is good. It means a burst of
writes are exactly that.

4.3 MMIO is harder to get Right

Evengood driver writers get MMIO space us-
age wrong.

This is from acenic, a “mature” driver. But here
is an example of this wrong assumption:

writel(local, ®s->LocalCtrl);

Ottawa Linux Symposium 2002 187

udelay(ACE_LONG_DELAY);
mb();
local |= EEPROM_CLK_OUT;
writel(local, ®s->LocalCtrl);

The problem is the CPU starts executing the
udelay() before the data reaches the device.
Thewritel() s are timing sensitive. And the
mb() is orthogonal to the udelay(). Switch-
ing the order around shouldn’t change things.
The fix is add a readl() after the first
writel() . PCI transaction ordering rules re-
quire the write get pushed to the device before
the read. Since the CPU has to wait for the
read return, the write is effectively flushed. We
don’t care what the read returns in this case.

In all fairness, Jes Sorensen caught what was
going on right away and accepted my patch. I
added 35 readl() calls. He did gripe about my
formatting. That’s OK. That’s Jes and it’s his
driver.

Dave Miller was a slightly harder sell for a
patch to tg3. Jeff Garzik caught on right away
and provided Dave with the explanation that I
somehow didn’t.

http://linux.bkbits.net:8080

/linux-2.4/cset@1.383.17.6

?nav=index.html|ChangeSet@-4w|

tg3 driver got 3 more reads for similar issues.
One was a slightly different case and worth
noting:

tw32(RX_CPU_BASE + CPU_STATE,
0xffffffff);

tw32(RX_CPU_BASE + CPU_MODE,
0x00000000);

+
+ /* Flush posted writes. */
+ tr32(RX_CPU_BASE + CPU_MODE);

return 0;

Code after the return was expecting the

CPU_MODEto have been cleared already. I got
lazy and stopped trying to figure out what.

4.4 CPU v.s. IO Timing Trend

The speed of the CPU is getting much faster
than the IO path is. HP likes high bandwidth
bridges that favor bandwidth over MMIO ac-
cess. Thus while a problem may not be visible
on a 2GHz Pentium, it will show up on on 800
or 1GHz HP ZX1 system. And probably on
other systems from SGI, SUN or IBM.

In the case of current HP ZX1 platforms, the
System Bus Adapter(aka SBA) andLower Bus
Adapter (aka LBA, PCI-X Controller) both
have FIFOs to queue data in both directions.
The fact the a MMIO transaction has to cross
3 busses to get to a device (Central, internal,
PCI) is a good hint that timing is going to be
longer than on systems with only one or two
busses.

One example of different timing was exposed
in the tulip driver where it resets thePhy
(DP83840A or LXT971D). No issue exists
with this code using the same 100BT cards on
400 MHz PA-RISC. The issue showed up oc-
casionally on 550MHz PA-RISC and consis-
tently on faster HP ZX1 platforms. HP 100BT
products needed the patch that appears in Fig-
ure 4.4.

Though this works, I want to be clear the patch
is wrong. I discovered this worked and sub-
mitted the patch before I found and read the
respective product data sheets. The right fix is
to poll the phy after thereset_sequence
until an “in-reset” bit clears. Then one should
wait about 500 microseconds before sending
the init_sequence .

Ottawa Linux Symposium 2002 188

Figure 2: Incorrect patch for HP 100BT products

diff -u -p -r1.2 media.c
--- drivers/net/tulip/media.c 25 Jan 2002 20:14:57 -0000 1.2
+++ drivers/net/tulip/media.c 25 Mar 2002 19:57:19 -0000
@@ -284,6 +284,10 @@ void tulip_select_media(struct net_devic

for (i = 0; i < init_length; i++)
outl(init_sequence[i], ioaddr + CSR12);

}
+
+ (void) inl(ioaddr + CSR6); /* flush CSR12 writes */
+ udelay(500); /* Give MII time to recover */
+

tmp_info = get_u16(&misc_info[1]);
if (tmp_info)

tp->advertising[phy_num] = tmp_info | 1;

4.5 MMIO Reads are expensive

The last time I measured the cost of an MMIO
read on a 400MHz PA-8500 system, I got
something around 500-600 CPU cycles. The
same measurement on an 800 MHz HP ZX1
system was around 900-1000 CPU cycles. PCI
bus traces from a 450MHz PII system sug-
gested the MMIO read time was in the same
ball park.
Conclusion:MMIO reads are expensive.

For an example of MMIO read avoidance, see

http://cvs.parisc-linux.org
/linux/arch/parisc/kernel
/sba_iommu.c?rev=1.66

and search forDELAYED_RESOURCE_CNT.
This code only works because MMIO writes
arePost-able.

4.6 Soft Fail v.s. Hard Fail

The first time we tried the bcm5700 driver it
came up and started talking on the LAN. I was
impressed until I tried toifconfig eth0 down
the NIC. The system MCA’d. Using MCA
state dump, I was able to determine the address
which failed to respond was a register on the
BCM5701 chip.

After tracing through lots of code, we finally
figured out what was happening. The bcm5700
driver was resetting the card twice during the
close(2) . And the bcm5700 chip wasn’t be-
ing re-enabled on the PCI bus after the second
reset. The MCA occurs after theclose(2)
when a request for statistics tries to read data
from the now defunct BCM5701 chip. Bad
driver. Don’t do that. HP implementsHard
Fail in its chipsets. HP engineers decided it’s
better to crash a server if it’s known the drivers
do not properly handle failed reads (return -1
typically).

The Intel Itanium systems don’t crash running
the bcm5700. I gather tradional PCs imple-

Ottawa Linux Symposium 2002 189

mentSoft Fail since it seems to be OK to get
garbage back from failed MMIO reads. I sus-
pect it’s because the problem will look like a
SW problem (which it is) and not a HW prob-
lem. I.e. the HW vendor doesn’t have to take
the support call and doesn’t look worse than its
competitors.

AFAIK, LBA supports this mode of operation
as well but can only be enabled by modifying
kernel source. I like using HW to expose SW
problems. I don’t expect this to change.

5 BIOS vs EFI drivers

Some drivers (e.g. VGA, megaraid) depend
on expansion BIOS to initialize and fire up the
card before the linux driver sees it. The pre-
vious Itanium platform EFI emulates x86 and
supports the x86 BIOSs. For better or worse,
HP decided to drive the migration to EFI at
the risk of backwards compatibility. In order
to work on HP ZX1 systems, an EFI “driver”
must be provided to do the same thing. To
date, all the IO card vendors that supply HP
have committed to providing such a driver and
I know they are delivering or have delivered.

6 iDebugging IO driver crash

You wrote a driver and tried it on an HP ZX1
box. It crashed. Welcome to hell . . . just
kidding. Like PA-RISC systems, IA64 plat-
forms provide a crash state under several cir-
cumstances. MCA and INIT are two of those
circumstances that are interesting for devel-
opers. For the PA-RISC literate, MCA and
INIT roughly equate toHPMC and TOC re-
spectively.

6.1 Intro to errdump MCA

MCAs will occur anytime an error signal is
broadcast on the McKinley bus. For driver
problems, this is typically a CPU read time
out. CPU read timeouts occur when a deref-
erenced MMIO address don’t return before a
timer in the CPU expires. Since MMIO writes
arePosted, normally thevictim is a MMIO read
even if a MMIO write caused the error.

Two cases can cause this: either the PCI de-
vice stopped responding (e.g. firmware died,
chip locked up, MMIO BAR disabled) or a
DMA was attempted to an invalid address. The
former cases can typically be debugged with
printk and knowing which address caused the
dump.

One can view the MCA dump witherrdump
MCAcommand at the EFI shell. Once the MCA
data is captured and saved, it’s usually a good
idea toerrdump clear . IA-64 Linux will
print this dump on the next boot. That’s ˜1000
lines of output in a less friendly format. And
make sure to save the matching System.map in
order to look up symbols. When loading kernel
modules, squirrel away the dynamically linked
symbols too.

Here is what some of the fields mean:

• IIP is the current Instruction Pointer
when the system noticed the error.

• XIP is the IIP of the most recent trap or
interrupt occurred.

• Requestor ID is the ID of the origina-
tor of a transaction.

• Responder ID is the ID of the device
that responded with data

• Target ID is IO address we are trying
to reach.

Ottawa Linux Symposium 2002 190

6.2 Intro to errdump INIT

An INIT is used like an NMI. It resets the ma-
chine and saves the current state. HP ZX1 plat-
forms have a small blue button in the back of
the box label which can be used to generate an
INIT. Like an MCA, similar data gets stored.

To be honest, I’ve never used an INIT and only
know of it. Problems I tend to chase are MCAs
and not lockups.

7 Acknowledgements

I’ve learned a lot from folks in the HPUX com-
munity when I worked on it and continue to
learn from them. I dare not name names for
fear of retribution.

And for the past two years, I’ve been learning
new things from (in no particular order): Lam-
ont “NMU” Jones, Ryan Bradetich, Matthew
Wilcox, Martin Petersen, Paul Bame, Bdale
Garbee, Jes Sorensen, Dave Miller, and a host
of other Open Source kernel and application
hackers.

More information about IA64-linux can be
found at:

http://www.linuxia64.org/
http://www.hp.com/

Reverse engineering an advanced filesystem

Christoph Hellwig
LST e.V.
hch@lst.de

http://verein.lst.de/˜hch/

Abstract

TheVxFSfilesystem from VERITAS is an ex-
ample of a UNIX filesystem that not only of-
fers a broad range of advanced functionality,
such as extent based allocation, intent logging,
snapshoting, but also has on-disk formats with
various differences between the versions and
ports.

FreeVxFSis a freely available implementation
of the VxFS filesystem format for Linux, im-
plemented only by looking at the very rarely
available public documentation and reverse en-
gineering the SCO UnixWare version of the
commercially available VXFS driver.

1 Introduction

Today’s operating systems feature a wide vary
of commercially available advanced filesys-
tems. Only for a small number of such filesys-
tems (for examples IBM’sJFS2 family or
SGI’s XFS) does a freely available Linux ker-
nel implementation exist.

Linux contributors already have implemented
support for many simpler proprietary filesys-
tems likeFAT or EFS, but the there are only
few independent implementations of complex
filesystem designs such as Microsoft’sNTFS.

The VERITAS Filesystem (VxFS) originated
from a joint-venture of VERITAS and the Unix

System Laboratories (USL) in the early 90’s of
the last century to develop an advanced filesys-
tem for System V Release 4 Unix (SVR4),
featuring capabilities such as read-ahead log-
ging (commonly called journaling) and copy-
on-write snapshots at the filesystem level. To-
day it has been ported to a great number of
Unix derivatives such as Sunsoft Solaris, Se-
quent (IBM) Dynix/ptx, Hewlet-Packard HP-
UX, or Caldera OpenUnix; and non-Unix plat-
forms like Microsoft Windows 2000.

VxFS is a proprietary VERITAS product and
delivered in source or binary form to paying
customers. There is, on the other hand, no pub-
lic documentation of the on-disk format used
by VxFS, which makes implementations other
then VERITAS’ difficult to implement. There
is need to access VxFS-formated disks from
Linux for various reasons, like migration from
obsolete Unix platforms or access to foreign
files for development. (In the author’s case this
was the Linux-ABI binary emulation frame-
work).

In the first Quarter 2002, VERITAS announced
the commercial availability of the VERITAS
Foundation Suite for Linux, featuring a port
of their VxFS-implementation. Being tied to
obsolete versions of the Red Hat kernel pack-
age and priced in 4-digit US-dollar range, it is
not an option for most possible FreeVxFS uses,
though.

Ottawa Linux Symposium 2002 192

2 Legal Background

When implementing a non-trivial piece of soft-
ware that inter-operates with another software
you either need a written specification of the
interface, or you need to look at the other soft-
ware, using helper tools such as disassemblers;
this is calledreverse engineering. In the VxFS
case there is no proper documentation of the
filesystem’s layout as stored on disk soreverse
engineeringis the only available choice. In the
European Union reverse engineering of soft-
ware products is handled by the Directive on
Software Copyright Protection from 14 May
1991. In Article 6 (Decompilation) it states the
following:

The authorization of the
rightholder shall not be required
where reproduction of the code
and translation of its form within
the meaning of Article 4 (a) and
(b) are indispensable to obtain the
information necessary to achieve the
interoperability of an independently
created computer program with
other programs, provided that the
following conditions are met:...

As the creation of a Linux driver for a propri-
etary filesystem matches the terms of interop-
erability used in this EU law exactly, we are
explicitly allowed to examine an existing, li-
censed installation of VxFS to gain informa-
tion for implementing a free replacement for
Linux.

Another interesting legal problem came up
when the released driver was merged into
the official Linux kernel tree, as VERITAS
claimed the use of “vxfs” as driver name was
threatening their Trademark. The driver name
was changed to freevxfs to avoid further legal
problems.

3 Getting Started

Structure is more important than code—this
golden programming rule is even more impor-
tant when trying to archive format compatibil-
ity with an existing software.

To implement an independent driver for a
filesystem layout, one needs to know every sin-
gle structure that is written on disk in detail to
archive full compatibility. On the other hand
the inner workings of the drivers might be com-
pletely different, especially if they were written
for different environments (e.g. operating sys-
tems in this case).

Thus the first step to produce a free VERITAS
filesystem driver for Linux was to create a full
description of the disk layout that is not di-
rectly derived from the original code. As start-
ing point I used the public available documen-
tation of UNIX vendors shipping VxFS with
their products, but the results were discourag-
ing, there were only two documentation sets
that contain non trivial information about the
VxFS disk on-disk format: first the VxFS Sys-
tem Administrator’s [AdmGuide] has a chap-
ter titled “VxFS disk layout” which contains
a very high-level documentation of the basic
format elements; second the inode_vxfs (4)
[Inode] and fs_vxfs (4) [Fs] on HP-UX contain
a description of many fields of the VxFS su-
perblock and inode, but neither document de-
fines even one element of the VxFS structure
completely.

To get a suitable description despite this lack
of human readable-format description, reverse
engineering techniques had to be applied.
There are three major reverse engineering pro-
cedures in the context of software: disassem-
bly, use of symbolic debugging information,
and protocol snooping. For the development
of FreeVxFS, only the first two were used, as
protocol snooping of block storage devices re-

Ottawa Linux Symposium 2002 193

quires special and only rarely available hard-
ware (with hardware-emulators like Bochs this
is in the process of becoming easier).

4 Symbolic Debugging

Any modern C compiler has a mode to include
information about the source-level representa-
tion with a binary program to allow high-level
debugging with tools like GNU gdb.

VERITAS’ VxFS product does not contain any
program with such debug information, but it
contains C headers files to allow access to its
structures from custom programs.

Technically these files could be directly used
by a free implementation of VxFS to use its
definition similar to free programs using other
system headers on proprietary operating sys-
tems. The problem with this approach is that
it requires the compilation of the driver to hap-
pen only on systems with licensed installations
of VERITAS’ filesystem product, thus disal-
lowing a free operating system to be used as
development host.

So instead of directly using the header files,
the structural information is extracted from
the them using the aforementioned debugging
methods to create a set of new and entirely free
headers that define the VxFS on-disk format.
The program that pulls in the headers is very
simple, as it needs to have no functionality at
all—it exists only to allow debugging informa-
tion to be generated.

#include <sys/types.h>
#include <sys/time.h>

/* fix compilation with gcc */
#define uint8_t __junk

#include <sys/fs/vx_machdep.h>
#include <sys/fs/vx_gemini.h>

#include <sys/fs/vx_param.h>
#include <sys/fs/vx_layout.h>

main()
{
}

Once compiled with debugging options en-
abled (e.g.gcc -g), we have a binary suit-
able for attacking with a debugger such as gdb.
This process is time-consuming as the names
of the different record types have to be guessed
from the previously mentioned public docu-
mentation and often one of the custom types
embeds a number of other such types. In ad-
dition all scalar types are shown in form of
C language basic types by gdb and all type-
def information is lost. To allow a portable
format description that can also be used (e.g.
on computers with 64-bit wide longwords) all
occurrences of types that have different sizes
on different Linux ports must be replaced with
proper, explicitly sized types. The follow-
ing example gdb session shows the definition
of the on-disk inode used by VxFS (struct
vx_dinode):

(gdb) ptype struct vx_dinode
type = struct vx_dinode {

struct vx_icommon di_ic;
}
(gdb) ptype struct vx_icommon
type = struct vx_icommon {

long int ic_mode;
long int ic_nlink;
long int ic_uid;
long int ic_gid;
vxhyper_t ic_size;
struct timeval ic_atime;
struct timeval ic_mtime;
struct timeval ic_ctime;
char ic_aflags;
char ic_orgtype;
u_short ic_eopflags;
long int ic_eopdata;
union vx_ftarea ic_ftarea;
long int ic_blocks;
long int ic_gen;

Ottawa Linux Symposium 2002 194

vxhyper_t ic_vversion;
union vx_org ic_org;
long int ic_iattrino;

}
(gdb)

The symbolic debugging information was the
most useful resource during the FreeVxFS de-
velopment.

5 Disassembly

The author has examined most of the
UnixWare VxFS binary driver module with
various disassemblers.

The simplest form of disassembly can be pro-
duced by the programobjdump from the
GNU binutils package. Its output for trivial vn-
ode operations appears in Figure 1.

Commercially available disassemblers like
DataRescue’s IDA Pro (the windows version
runs under Linux/wine) offer additional fea-
tures such as the naming of data types or addi-
tional symbol resolving that should not be dis-
cussed further here.

Although this uncovered a number of inter-
esting facts like the exorbitant stack usage
in VERITAS’s driver, the disassembly of the
UnixWare VxFS driver did not uncover a no-
table amount of information useful for the
current publicly available read-only FreeVxFS
versions. On the other hand, the slowly pro-
gressing development of write support would
be impossible without the use of disassembly,
mostly because a number of bitmap operations
in the block/inode allocators is not documented
in any other way than the program itself.

6 Implementation

As already mentioned previously, FreeVxFS
targets the Linux kernel from version 2.4 up-

wards. There are various reasons for this
choice:

• Linux is the free operating system with
the biggest overall user count. The 2.4
kernel was the upcoming stable release
when the development was started.

• The Linux kernel allows runtime load-
ing of independently developed filesys-
tem modules. This allowed the early
FreeVxFS development to happen with-
out ties to the direct kernel development
and with very short turnaround times.

• All recent Linux kernels feature a rich set
of generic routines that can be used in
filesystem code. Starting with the 2.4 ker-
nel most of the data I/O path is handled by
such generic code, thus letting filesystem
developers concentrate on difficult aspects
of their particular filesystem implementa-
tion.

The early FreeVxFS development was done as
a project separate from the main Linux ker-
nel tree and supported different kernel versions
with the same codebase. Starting with the 2.4.6
prereleases it merged into the official Linux
kernel tree and is maintained as part of it.

Like most filesystem drivers, FreeVxFS de-
velopment was done incrementally in the
beginning—that means support for the dif-
ferent parts of the on-disk format was im-
plemented after the previous one was im-
plemented, component-tested, and considered
functional. A feature of the VxFS layout (actu-
ally only in the > v1 disk layout, but FreeVxFS
doesn’t support the historic VxFS v1 filesys-
tems anyway) made this traditional approach
impossible very early. The issue is that most
of the metadata describing a filesystem is not
directly stored in the superblock but in data

Ottawa Linux Symposium 2002 195

blocks pointed to by regular inodes—this in-
cludes the inode table itself! (This is found
by its containing extent to avoid endless recur-
sion.)

To get past this point, a huge amount of code
(almost half of the FreeVxFS implementation)
had to be implemented at once, without pre-
vious testing of individual components. Of
course this led to a number of very hard-to-
debug problems and accounted for more than
two-thirds of the development time.

7 Work in Progress and Future
Plans

During the last month the FreeVxFS driver in
the main kernel tree was steadily improved by
bugfixes reported and/or fixed by the users. In
addition support for different VxFS variants
(block size, superblock locations) was added to
support a broader range of target systems.

Ongoing major short-term development in-
cludes support for byte-swapping in the filesys-
tem driver, allowing access to filesystems that
were created on computers using a different
byteorder than the accessing system (a feature
VERITAS’ driver is still lacking!) and a proper
way to handle VxFS filesystems for HP-UX
that have various small differences in the lay-
out of important layout elements (e.g. the in-
ode).

The most important long-term development
project is to implement support for writing to
VxFS filesystems. This feature is already func-
tional in early stages, but fragments the filesys-
tems so badly that it is of no practical use.

References

[AdmGuide] VxFS System Administrator’s
GuideVERITAS Inc.

http://ou800doc.caldera.com
/ODM_FSadmin
/CONTENTS.html .

[Inode] inode (vxfs) - format of a VxFS inode
Hewlett-Packard Company.
http://devresource.hp.com
/STK/man/11.00
/inode_vxfs_4.html , (1997).

[Fs] fs (vxfs) - fs format of VxFS file system
volumeHewlett-Packard Company.
http://devresource.hp.com
/STK/man/11.00
/fs_vxfs_4.html , (1997).

Ottawa Linux Symposium 2002 196

Figure 1: Disassembly viaobjdump

0000000000075ba0 <vx_open>:
75ba0: 8b 54 24 04 mov 0x4(%esp,1),%edx
75ba4: 57 push %edi
75ba5: 33 ff xor %edi,%edi
75ba7: 56 push %esi
75ba8: 8b 02 mov (%edx),%eax
75baa: 8b 70 28 mov 0x28(%eax),%esi
75bad: 8b 40 24 mov 0x24(%eax),%eax
75bb0: 83 f8 01 cmp $0x1,%eax
75bb3: 75 57 jne 75c0c <vx_open+0x6c>
75bb5: 8b 86 a4 01 00 00 mov 0x1a4(%esi),%eax
75bbb: 25 00 f0 00 ff and $0xff00f000,%eax
75bc0: 3d 00 90 00 00 cmp $0x9000,%eax
75bc5: 74 3d je 75c04 <vx_open+0x64>
75bc7: 8b 44 24 10 mov 0x10(%esp,1),%eax
75bcb: a9 00 00 08 00 test $0x80000,%eax
75bd0: 75 2a jne 75bfc <vx_open+0x5c>
75bd2: 6a 01 push $0x1
75bd4: 56 push %esi
75bd5: e8 fc ff ff ff call 75bd6 <vx_open+0x36>
75bda: 83 c4 08 add $0x8,%esp
75bdd: 8b 46 5c mov 0x5c(%esi),%eax
75be0: 85 c0 test %eax,%eax
75be2: 75 0a jne 75bee <vx_open+0x4e>
75be4: 8b 46 58 mov 0x58(%esi),%eax
75be7: 3d ff ff ff 7f cmp $0x7fffffff,%eax
75bec: 76 05 jbe 75bf3 <vx_open+0x53>
75bee: bf 4f 00 00 00 mov $0x4f,%edi
75bf3: 56 push %esi
75bf4: e8 fc ff ff ff call 75bf5 <vx_open+0x55>
75bf9: 83 c4 04 add $0x4,%esp
75bfc: 8b c7 mov %edi,%eax
75bfe: 5e pop %esi
75bff: 5f pop %edi
75c00: c3 ret
75c01: 83 c7 00 add $0x0,%edi
75c04: bf 59 00 00 00 mov $0x59,%edi
75c09: eb f1 jmp 75bfc <vx_open+0x5c>
75c0b: 90 nop
75c0c: 5e pop %esi
75c0d: 5f pop %edi
75c0e: 33 c0 xor %eax,%eax
75c10: c3 ret
75c11: 83 c7 00 add $0x0,%edi
75c14: 81 ff 00 00 00 00 cmp $0x0,%edi
75c1a: 81 ff 00 00 00 00 cmp $0x0,%edi

BitKeeper for Kernel Developers

Val Henson
val@nmt.edu

Jeff Garzik
jgarzik@mandrakesoft.com

Abstract

BitKeeper1 is a revolutionary new distributed
source control management suite which is ideal
for Linux kernel development. BitKeeper pro-
vides tools which automate and simplify many
common kernel development tasks. In this pa-
per, we describe basic BitKeeper concepts and
operations, BitKeeper solutions for common
kernel development problems, and a work-
flow for interacting with other Linux develop-
ers using BitKeeper. We also discuss some of
BitKeeper’s shortcomings and what is being
done to correct them. We conclude that Bit-
Keeper can dramatically improve the efficiency
of Linux kernel developers.

1 Introduction

A new source control system is available - why
should Linux kernel developers care? Because
this particular source control system was de-
signed from the ground up to solve exactly
the problems inherent in Linux kernel devel-
opment. Kernel developers need to manage
thousands of files, live and work all over the
world, often have limited bandwidth and con-
nectivity, and frequently merge large numbers
of changes. Older source control systems were
designed for a development model where most
developers worked in the same physical build-
ing and had 24-hour access to a central reposi-
tory over high bandwidth local networks. The
developers, rarely numbering more than 100

1BitKeeper is a trademark of BitMover, Inc.

per project, normally checked in changes di-
rectly to the central repository, and could eas-
ily communicate with other developers work-
ing on the same part of the code. Unsurpris-
ingly, the source control software written un-
der these assumptions was not very useful for
thousands of loosely connected developers dis-
tributed world-wide.

The BitKeeper distributed source control sys-
tem was designed for, written for, and tested
by Linux kernel developers. Linux kernel de-
velopment provided the perfect test case for
a truly distributed source control system, and
BitKeeper has been and continues to be shaped
by input from kernel developers. As a result,
it is preeminently useful for kernel develop-
ment. The purpose of this paper is to famil-
iarize kernel developers with the most useful
and time saving features of BitKeeper, so that
developers can spend less time on mechani-
cal make-work and more time on development.
After reading this paper, developers new to Bit-
Keeper may consider trying BitKeeper for the
first time, and developers already using Bit-
Keeper may learn a few new tricks.

First, we’ll briefly review basic BitKeeper con-
cepts and operations (experienced BitKeeper
users should skip this section). We’ll then
examine a variety of problems frequently en-
countered during kernel development and show
how BitKeeper solves these problems. Next,
we’ll review the workflow involved in using
BitKeeper for Linux kernel development. Fi-
nally, we’ll discuss some of the shortcomings
of BitKeeper and what is being done to correct

Ottawa Linux Symposium 2002 198

them.

2 Basic BitKeeper Concepts

This section presumes knowledge of basic
source control concepts such as “check in” and
“check out.” We will instead concentrate on the
ways in which BitKeeper is different from tra-
ditional source control systems. Some of the
major differences between the architecture of
traditional source control systems and the ar-
chitecture of BitKeeper exist in order to satisfy
one of its key design requirements: Developers
should be able to commit work locally, without
accessing a remote repository, until the devel-
oper is ready to merge with the remote reposi-
tory. Some other key design goals were repro-
ducibility, data integrity, and performance.

2.1 Running BitKeeper

First, let’s go over the nuts and bolts of using
BitKeeper: How do you get it, and how do you
run it? Download BitKeeper by going to:

http://www.bitkeeper.com

And clicking on “Downloads.” All BitKeeper
commands are of the form “bk <command>”
to avoid namespace clashes. BitKeeper has
built-in help, just run “bk helptool ” (for
the GUI tool) or “bk help ” (for the com-
mand line tool). While BitKeeper has many
useful graphical tools, a developer can work
with BitKeeper using only the command line
tools - BitKeeper does not require a windowing
environment. We also recommend that first-
time users run the demo, which is at:

http://www.bitkeeper.com/Test.html

Figure 1: Parent pointers after cloning.

Figure 2: Parent pointers after changing with
“bk parent ”.

2.2 Clones, parents, and children

A BitKeeper repository is a collection of
source controlled files. To create a working
copy or the equivalent of a CVS sandbox, a
developer “clones” a repository. The word
“clone” was chosen because cloning a reposi-
tory creates an exact copy of the original repos-
itory. All of the information and administra-
tive files in the original repository are included
in the new repository, making it possible to
work in any repository completely indepen-
dent of any other repository. After the clone
is completed, the new repository regards the
original repository as its “parent.” The parent
of a tree can be changed at any time, to any
other related tree, or to no tree at all (see Fig-
ures 1, 2). Because each repository is identi-
cal, any repository can be cloned, and the child
of one repository can also be the parent of an-
other repository (see Figure 3). Note, how-
ever, that despite all the parent-child terminol-
ogy, BitKeeper repositories interact on a peer-

Ottawa Linux Symposium 2002 199

Figure 3: Example BitKeeper repository structure.

to-peer basis, since the relationship between
any two trees can be changed at any time.

2.3 Changesets

In BitKeeper, changes to individual files are
grouped together into changesets. A changeset
is a grouping of one or more deltas to one or
more files representing a single logical change.
Each changeset can contain multiple deltas to
the same file. Each revision to each file in the
changeset is commented, as is the changeset
as a whole. Logically related changes to sep-
arate files can now be explicitly grouped to-
gether. For example, if one bug fix requires
changes to three different files, all three files’
changes can be grouped into one changeset.
Being able to explicitly group changes together
rather than guessing at their relationships (from
last modified date, or location in the same di-
rectory) is very useful. Even more useful is that
each changeset is an automatic synchronization
point, similar to a CVS tag. Users can repro-
duce the exact state of the repository as of the
point that any changeset was committed.

2.4 Push and pull

Changesets are exchanged between reposi-
tories using “bk push ” and “bk pull ”.
(Note that commits modify only the local
repository, and do not affect the parent reposi-
tory.) Push will send changesets from the child
to the parent, and pull will retrieve change-
sets from the parent to the child. Each push
or pull only sends the changesets which are
present in one tree but not in the remote tree
(see Figure 4). A push will only send changes
which are already merged with the changes in
the remote tree, so merging with another tree is
done by first pulling the remote tree’s changes,
merging them in the local tree, and then push-
ing the merged changes back. Push and pull
will by default push to or pull from the parent
of the local tree, but these commands can also
take an argument specifying a different tree to
push to or pull from.

Clones can be thought of as creating a per-
sonal, private, unnamed “branch,” and pulls as
a convenient way of merging with the “trunk”

Ottawa Linux Symposium 2002 200

Figure 4: Example of a push: Initial clone, commit a change, push it back.

Ottawa Linux Symposium 2002 201

without pushing the “branch’s” changes to the
“trunk.” The push-pull model gives developers
control over whether or not local changes are
pushed to other repositories without sacrific-
ing ease of synchronization with other reposi-
tories. CVS users will enjoy the freedom of be-
ing able to commit half-finished changes with-
out breaking the main tree.

2.5 Conflict resolution

Usually, a push or a pull that changes a lo-
cally modified file will be auto-merged by
BitKeeper. In typical use, BitKeeper auto-
merges approximately 95% of conflicts that
would not have been merged by CVS ordiff
and patch . The percentage of successful
merges relative to CVS actually increases with
the number of developers working on the same
repository. BitKeeper improves the auto-merge
rate in two ways. First, each merge is only
done once - CVS remerges from the point
where the trunk and the branch first separated
every time a branch’s changes are pushed back
to the trunk. BitKeeper only needs to merge
the changes since the last changeset shared by
the two repositories. Second, BitKeeper uses a
unique merging algorithm that no other source
control system implements. The improvement
in the success rate of the merge algorithm is
made possible by storing certain kinds of meta-
data for each file that neither CVS nordiff
andpatch can store or generate.

Each pull to a locally modified repository re-
sults in the creation of a changeset, which is
empty if no files needed to be merged (see
Figures 5, 6). Occasionally, a pull will result
in a conflict that can’t be auto-merged. The
BitKeeper command “bk resolve ” offers a
menu of options for each file with conflicts,
ranging from “Use local file” to “Merge us-
ing graphical three-way file merge tool.” Once
all the conflicts are resolved, the changes re-
quired to resolve the conflicts are saved in the

changeset created by the merge, along with
your comments. For developers who don’t
trust auto-merging, “bk pull ” has an option
to disable the auto-merge feature. Each conflict
can then be individually hand-merged or auto-
merged and the results approved before be-
ing committed. We recommend that develop-
ers try BitKeeper’s auto-merge algorithm even
if they have had bad experiences with auto-
merging in the past; the new algorithm is an
immense improvement over all previous algo-
rithms and, in the authors’ experience, always
merges changes correctly.

What we just described is only the most com-
mon kind of conflict, a conflict in the data of
the file itself, or a content conflict. BitKeeper
also resolves conflicts in many other file at-
tributes: permissions, ownership, type, path-
name, and more. Viewing the pathname of a
file as just one more file attribute makes it easy
to move files around within a BitKeeper repos-
itory.

3 Kernel Development Problems
and Solutions

Now that we’ve explained the basic terminol-
ogy, let’s get to the interesting part: real-life
scenarios where BitKeeper makes kernel de-
velopment less painful. All the scenarios de-
scribed were experienced first-hand by the au-
thors while actually engaged in useful kernel
development. They were not artificially con-
structed to show off interesting but useless fea-
tures of BitKeeper but instead are commonly
encountered problems solved by using Bit-
Keeper. Some of the described solutions are
implemented by other source control systems,
but are not easy to do withdiff andpatch ,
the most commonly used tools for working
with the Linux kernel source. We’ll start with
simple scenarios that are relatively easily han-
dled by any source control more complex than

Ottawa Linux Symposium 2002 202

Figure 5: Repositories before merge, shaded changesets were added since clone.

Figure 6: After a pull of A’s changes to B, with A’s changes merged.

Ottawa Linux Symposium 2002 203

diff andpatch , and gradually build up to
more difficult scenarios where more advanced
source control management systems fail.

3.1 Maintaining different trees

Any serious kernel developer will be familiar
with this scenario: You maintain both a stable
kernel and a development kernel. The stable
kernel contains a few bug fixes and some mi-
nor but safe improvements. The development
kernel contains some riskier changes, new fea-
tures that haven’t been tested well yet, half-
written drivers, and lots of debugging state-
ments. Most likely, it also contains all of the
changes in your stable kernel - or it would, if
you always remembered to patch it with your
latest changes to the stable kernel. But your de-
velopment kernel is just different enough that
patch fails to apply your diffs from the stable
kernel cleanly, especially if you have moved a
few files around. When you want to transfer
your development changes into your stable ker-
nel, parts of the patch usually have to be hand-
applied. It’s generally a pain to keep your de-
velopment and stable kernels in sync.

3.1.1 Solution

Clone your development tree from your stable
tree. Whenever you make a change in your sta-
ble tree, run “bk pull ” from your develop-
ment tree. When your development changes
are ready, “bk push ” them to your stable
tree. BitKeeper’s auto-merge algorithm merges
the majority of your changes for you, even
when you’ve changed the location of some of
the files.

This scenario can be generalized to any num-
ber of child repositories, each with their own
child repositories. A developer could have
“really stable,” “stable,” “semi-stable,” “unsta-
ble,” and “broken” trees, or one child for each

Figure 7: Example BitKeeper repository struc-
ture.

set of experimental changes (see Figures 3, 7).
Most developers using BitKeeper have any-
where from 5 to 50 different clones of the
same repository, each for for a different set
of changes. You might be worried about disk
space at this point, but “bk clone ” has an
option to hard-link the files in the new reposi-
tory to the files in the old repository if they are
both on the same filesystem, so only the files
that have actually changed take up any signif-
icant amount of disk space.2 A clone can be
thought of as a branch, except that it is far eas-
ier to create and merge back to the “trunk” than
in most source control systems. Cloning a new
repository is so easy that you’ll find yourself
doing it for the most trivial of purposes.

3.2 Updating to the latest version

You went on vacation for two weeks, and now
you are back and 10 patches are pending for
various kernel trees. Your automatic patch
application script chokes because the naming
convention has changed - again. Plus, one of
the patches on your localftp.kernel.org
mirror was corrupted and won’t be updated
until midnight, local time. You settle down
for a long night of painful hand-application of

2This is only a partial solution, see the discussion of
“lines of development” in the section “BitKeeper Draw-
backs.”

Ottawa Linux Symposium 2002 204

patches.

3.2.1 Solution

“bk pull ” downloads and applies the
changes for you, regardless of what the latest
kernel version was named, Linux 2.3.42, or
Linux 2.4.0-test-pre7-sr71-blackbird-unstable.
Data integrity checking at every step prevents
any part of your tree from getting corrupted.
Your update is even faster because BitKeeper
compresses the information it sends over the
network (it even reports the compression factor
when it uncompresses the data locally).

3.3 Merging after long separation

You’ve decided to concentrate on getting USB
working - really working, some major im-
provements, and you’re not going to have time
to merge with the vanilla kernel every time a
prepatch is released. Two months later, you
look up and realize that you now have 2MB of
diffs between your tree and the mainline. You
apply the patches, run a “find . -name
’*.rej’ ” and write off getting any useful
work done for the next few hours.

3.3.1 Solution

“bk pull ” applies and auto-merges most of
the changes for you. Occasionally, BitKeeper’s
auto-merge algorithm finds conflicts it can’t
resolve. At this point, “bk resolve ” and
the graphical three-way file merge tool turn
what is usually 3 hours of work withpatch ,
find , and your favorite editor into 15 minutes
of point and click. The three-way file merge
tool shows you the local and remote versions of
the file side-by-side, with the differences color
highlighted (see Figure 8). The changeset com-
ments for each version of the file are shown

above each file. The bottom half of the window
shows the partially merged file, and navigation
keys are described in the lower right-hand cor-
ner. When you’ve finished merging one con-
flict, by clicking on the lines from each file
that you want and/or hand-editing in the merge
window, hit the key to jump to the next conflict.
When you’re happy with the merged file, save
the file and go on to the next file with conflicts.
Simpler commands exist for simpler problems,
for example, “Use remote file” simply replaces
the local file with the remote file.

One of the authors recently merged a heavily
modified 2.4.12 kernel tree with a 2.4.16-based
kernel tree usingdiff and patch (no Bit-
Keeper tree was available for the 2.4.16 ver-
sion). It took her approximately three hours.
She routinely merges from a heavily modified
2.4.12 kernel to 2.4.18 in 15 minutes,3 using
BitKeeper. Usingdiff andpatch instead of
BitKeeper wasted several hours that could have
been spent fixing a particulary vexing timer in-
terrupt bug.

3.4 Creating a patch

Another developer asks you for your boot-
loader changes. They’re in a tree with sev-
eral other unrelated projects and a number of
other changes that you don’t want to send to
anyone. You create a patch, hand edit out
the “misc.c˜ ” file that was accidentally in-
cluded, and send it off. A few minutes later,
the other developer emails you back saying that
the kernel no longer boots, but it does print out
a whole lot of debugging information. You re-
member that you forgot to include the changes
to head.S , and you also forgot to remove that
debugging statement triggered by the bug you
fixed in head.S . Several more iterations and
hand-edited patches later, you finally create a
working patch.

3After a bit of practice. The first few merges took
about 30 minutes each.

Ottawa Linux Symposium 2002 205

Figure 8: Merging a conflict with the three-way file merge tool.

Ottawa Linux Symposium 2002 206

3.4.1 Solution

Run “bk revtool ” to find the changeset
with the comment, “Fixed the bootloader
again” and then run “bk export -tpatch
-r1.203 > ../bootloaderpatch ”,
which exports that changeset in unified diff
format. With Bitkeeper, you naturally group
related changes into one changeset with a
descriptive comment. Once you’ve found the
changeset(s) you want, BitKeeper automati-
cally converts them into the patch format you
prefer. The authors frequently have minor
unreleased bugfixes requested by other devel-
opers or customers; with BitKeeper, creating
and sending the proper patch takes seconds.

3.5 Sharing changes

You’d like to see another developer’s changes
to the memory management code, but they’re
not ready to be merged with the main tree. You
send email asking for the patch, but the other
developer has just gone to sleep. You’re in a
different timezone and it’ll be 16 hours before
you get to see the changes. 16 hours later, the
two of you go through the usual “Patch doesn’t
apply” conversation.

3.5.1 Solution

“bk clone ” the other developer’s public Bit-
Keeper repository. Or, if you’re both work-
ing in a clone of the same repository, just “bk
pull <location of tree >” to get the
other developer’s changes. With BitKeeper,
developers don’t even have to be at the com-
puter to share their latest patches, as long as
they have a publicly accessible tree.

This scenario is an example of sideways syn-
chronization, one of the benefits of the peer-to-
peer model (see Figure 9). Changes no longer

Figure 9: Example of sideways synchroniza-
tion.

have to committed to the central repository be-
fore any other developer can pull them. Now,
any clone of the same repository can be merged
with any other clone, regardless of when or
how it was cloned. Sets of changes can be eas-
ily pushed or pulled around a group of related
repositories in ways that are extremely useful
in the day-to-day life of a kernel developer.

3.6 Moving files

You’ve just reorganized the
linux/drivers/ hierarchy, again.
The patch is huge, so you post to the
linux-kernel mailing list with a brief
description of the change, and the eternal
question, “Should I submit the changes to
Linus as a patch or as a script?” The inevitable
debate ensues, you write at least one buggy
script, and Linus eventually gets the changes.
The next prepatch is even bigger than usual,
and armchair kernel hackers complain bitterly
about it for weeks.

3.6.1 Solution

“bk mv” the files to their new locations.
Since BitKeeper really implements renaming
of source controlled files, rather than “abandon
the old file and create a new file,” the result-
ing changeset is tiny and almost no one even
notices it happened. BitKeeper generates a

Ottawa Linux Symposium 2002 207

unique id for each file in the repository at its
creation, and will never confuse one file with
another just because they happen to have the
same pathname. Other developers who pull
this changeset will find that their changes to
the moved files are “magically” merged into
the correct files at their new locations.

3.7 Debugging a patch

You apply the patch for 2.4.18-pre2 and dis-
cover that it’s broken the NFS server. The
patch includes changes to nearly every file in
fs/nfsd/ , and most of the changes appear
to be cosmetic or related to that API change
last week. You wearily page through the diff,
searching for something that actually changes
the behavior of nfsd.

3.7.1 Solution

The changesets you pulled are all nicely com-
mented. You start up “bk revtool ” and
type “nfs” into the “Search” field to search the
check in comments (see Figure 10), or else
you select a file infs/nfsd/ and examine
the most recent changesets affecting that file.
Locating an interesting changeset, you click
on “View ChangeSet” and quickly skim the
beautiful, easy-to-read graphical diffs (see Fig-
ure 11). (While many graphical diff view-
ing tools exist, this graphical tool is integrated
with the changeset viewing tools, which is a
significant advantage when trying to under-
stand related changes.) In a couple of min-
utes, you find a changeset with the comment,
“Back out Trond’s NFS changes, I don’t know
what they’re for.” Since you know Trond is
the NFS maintainer, you’re a little suspicious
of this changeset. To check, you use revtool
to find the previous changeset for that file, and
you discover that it’s a changeset from Trond
with the comment, “Fix bug in NFS serving.”

You quickly run “bk cset -x <rev >” to
exclude the changeset that reverted Trond’s
fix, recompile, and have NFS serving working
again in 5 minutes flat.

3.8 General debugging

You notice a bug in the yellowfin ethernet
driver. It’s a minor bug, and it’s gone unfixed
for quite some time. You try a few different
versions but can’t quickly find the point where
it broke. You type the first of a long series of
printks.

3.8.1 Solution

No one has a solution for all bugs, but
“bk revtool ” makes it easy to investi-
gate the changes to a file and the reasons
for those changes. Using “bk revtool
drivers/net/yellowfin.c ”, you
check the history ofyellowfin.c and find
a few suspicious changesets, most notably one
from Dave with the phrase, “Totally untested”
in the comments. Spending a few minutes with
“bk revtool ” narrows your likely suspects
down to a few lines of code and gives you
some preliminary ideas of what might have
gone wrong. You find that a few endian-ness
bugs were introduced during an API change
several months ago, and repair the bugs.

3.9 Updating a port

No one has used the Gemini port of the Pow-
erPC branch in 6 months. It doesn’t even com-
pile any more. You’re new to the PowerPC
port and don’t know what’s changed in the last
6 months. Some major reorganizations have
occurred, and it looks like someone attempted
to make the required changes for Gemini but
never bothered compiling them. You look at
other ports but each port varies so wildly that

Ottawa Linux Symposium 2002 208

Figure 10: Searching for “nfs” in revtool.

Ottawa Linux Symposium 2002 209

you can’t find any easy examples to follow.
Resigned, you start learning the PowerPC port
from first principles, downloading the occa-
sional 2MB diff and sifting through it for clues.

3.9.1 Solution

Use “bk revtool ” to look at the context of
each change to the Gemini port. After click-
ing on “View ChangeSet” and looking at the
graphical diffs (see Figure 11), the source of
many of the compilation errors quickly be-
comes obvious - a major reorganization of
SMP support 5 months ago, where the offend-
ing code was cut and pasted without chang-
ing the variable names. The changeset that ac-
complished this reorganization gives you many
clues about what you need to do to make the
Gemini port compatible with the new system.
Other bugs become obvious as soon as you
look at the history of the relevant files and their
associated changesets. Changes that weren’t
made for the Gemini were made for other ports,
providing a model for your bug fixes. Some
bugs are more difficult to fix, but in a day or
two, you have repaired 6 months of neglect and
Gemini is booting again.

We’ve shown only a few of the more common
ways in which BitKeeper can easily save sev-
eral hours a day for the active kernel devel-
oper. BitKeeper goes above and beyond merely
archiving old versions of your code, it also pro-
vides a powerful set of tools for understanding
code and working with other developers.

4 BitKeeper Workflow for the
Linux Kernel

Now that you’re using BitKeeper for kernel de-
velopment, how do you merge your changes
with other maintainers and contributors? The
Linux development model does not work if all

developers are allowed to push to one main
repository, which is the only workflow allowed
by most other source control systems. In-
stead, maintainers farther up in the hierarchy
pull changesets from those farther down in the
heirarchy, creating a series of staging reposito-
ries from the lowest levels of development up
to the main repository (see Figure 3 for an ex-
ample with one level of staging). Developers
can also push and pull changesets horizontally
between any two trees, regardless of where the
trees are located in the staging hierarchy. We’ll
describe the kernel development workflow be-
tween a maintainer at the top of the heirarchy
and a maintainer one level down.

4.1 Themes

Often the upstream maintainer will happily ac-
cept one group of changes but reject another
group. Since “bk pull ” will pull all of
the changes that are in the remote tree and
not in the local tree, it’s important to sepa-
rate out your changes into logical “themes.”4

For example, you might have the “network
drivers ” theme, the “vm hacks ” theme,
the “utterly innocuous bug fixes ”
theme, and the “personal hacks ” theme.
Each of these themes has its own tree, and for
convenience, you may merge all of your theme
trees into one local tree. Each of the theme
trees will have as its parent the main Linux tree
(see Figure 12).

Generally, the theme trees will not be merged
directly with each other, but will only be pulled
up into the main tree or down into your work-
ing tree. Each of these trees must have been
originally created by cloning from the main
tree (or a clone of the main tree, or a clone’s
clone, ad infinitum). The upstream maintainer

4Many people consider the requirement of “theme”
trees to be one of BitKeeper’s main drawbacks; see the
section “BitKeeper Drawbacks” for information on up-
coming BitKeeper features to correct this.

Ottawa Linux Symposium 2002 210

Figure 11: Change to fix a compilation error, viewed with BitKeeper’s graphical diff viewer,
running insidebk csettool .

Figure 12: Graph of a typical developer’s theme trees. Changes are pulled in the direction of the
arrows.

Ottawa Linux Symposium 2002 211

can then pull your changes up with “bk pull
<location of your tree >”.

4.2 Comments

It is essential to write clear, descriptive check
in comments. Not only will your comments be
publicly archived for all eternity, but the up-
stream maintainer will want to read your com-
ments before pulling the associated changes
and, once pulled, use the comments to help de-
cide whether or not to accept your changes.
Good comments are also valuable as debug-
ging tools, or as landmarks for navigating
around the tree’s history. If your first at-
tempt at commenting your changes is inade-
quate, you can and should use “bk comment
-C<rev >” to update and improve your com-
ments later.5 As an added bonus, very com-
plete and detailed ChangeLogs are easily gen-
erated from your comments.

4.3 Internet accessible repository

The upstream maintainer will need access to
your repository one way or another. Either give
the maintainer ssh access to a machine with
a clone of your repositories, or set up world
readable repositories by running bkd, the Bit-
Keeper daemon. The bkd can use HTTP ports
and proxies, which allows access to your Bit-
Keeper tree through most firewalls. BitMover
provides free hosting for many BitKeeper
repositories athttp://www.bkbits.net
and already hosts over a hundred per-
sonal Linux kernel repositories, including
the main 2.4 and 2.5 repositories. For
more information on hosting a repository,
see http://www.bitkeeper.com
/Hosted.html . As a last resort, you may

5Comments changed this way don’t propagate; if that
changeset is pulled into another tree, and you change
the comments afterwards, the comments in the other tree
will not be updated, even after a push or pull.

also send your changes through email, using
“bk send ” and “bk receive ”.

4.4 Send a summary of your changes

No maintainer wants to blindly pull a set of
changes. At the very least, you should send
a summary of the changesets in your repos-
itory before asking the upstream maintainer
to pull them. “bk changes -L 2 >&1 >
../pending ” will auto-generate a summary
of all the pending changesets and their com-
ments.

4.5 Keep your repository up to date

While your upstream maintainer can still pull
your changes even if your tree isn’t up to date
with the upstream tree, you are offloading the
work of resolving potential conflicts onto the
upstream maintainer. Just like withdiff and
patch , your changesets are more likely to
be accepted if they merge without conflicts
into the main tree. It’s good practice to run
“bk pull ” and merge any conflicts yourself
before asking the upstream maintainer to pull
your changes. Occasionally, the upstream
maintainer prefers to do the merging, in which
case you should allow the maintainer to pull
and merge your changes. You can also perform
the equivalent of a “bk push ” without first
doing a “bk pull ” by using the command
“bk -u<maintainer’s tree> send
<maintainer’s email address> ”.

Following these recommendations will result
in a smooth flow of patches to the main tree.
As long as you comment well, logically sepa-
rate your changes, and keep your repositories
up to date, getting your submissions accepted
will be easier than ever.

Ottawa Linux Symposium 2002 212

5 BitKeeper Drawbacks

Like all software, BitKeeper is not perfect.
Some commonly requested features are the
ability to subdivide repositories, to tell push
and pull to send only a subset of new changes
instead of all new changes, and to support true
lines of development. The main complaint is
that changes currently have to be pushed or
pulled in an all-or-nothing manner, requiring
the creation of theme repositories in order to
be able to “cherry pick” subsets of changesets.
The “bk clone ” command has an option to
create the new repository by hard linking the
files in the new repository to the files in the
original repository, which saves a lot of space
if the two clones are on the same filesystem.
This is only a partial solution to the problem
of needing different theme trees for the Linux
style of devlopment.

Two new features addressing these problems
are currently being developed for BitKeeper.
The first feature is nested repositories, which
allows any repository or subrepository to con-
tain multiple subrepositories which can be
cloned and checked into separately. The other
new feature is lines of development, or LODs.
This feature allow a single repository to have
more than one “tip” to the tree, allowing two
or more independent lines of development to
coexist in one repository. A developer will
be able to cherry pick changes from one LOD
and pull them into another LOD without also
pulling all the changesets that came before that
changeset.

While BitKeeper is both usable and useful in
its current state, development on it is not stand-
ing still. Frequently requested features are
written and added as quickly as possible. In
the meantime, it is fairly easy to implement
workarounds for unavailable features.

6 Conclusions

BitKeeper can dramatically improve the ef-
ficiency of Linux kernel developers working
both alone and with other kernel develop-
ers. BitKeeper’s tools aid in understanding
code, debugging problems, and merging with
other developers. Common kernel develop-
ment tasks, such as updating your tree and
sending patches, are trivial when using Bit-
Keeper. Most importantly, kernel developers
no longer spend hours on boring tasks which
can and should be automated. One of the au-
thors estimates that she saves between 2 and
5 hours a week (about 4-10% of total work-
ing hours) by using BitKeeper instead ofdiff
andpatch . Developers who integrate a lot of
code from other developers would almost cer-
tainly save even more time than that. Using
BitKeeper will benefit anyone who works with
the Linux kernel source, and will benefit active
kernel developers most of all.

Developers interested in using BitKeeper for
the Linux kernel may find the BitKeeper Linux
kernel development FAQ useful:

http://www.bitkeeper.com
/Documentation.FAQS.Linux.html

Linux Advanced Routing & Traffic Control

Bert Hubert
PowerDNS.COM, bv

bert@powerdns.com, http://ds9a.nl/

Abstract

Linux contains a wildly powerful system for
shaping traffic and distributing it according to
elaborate rules. This paper serves a dual pur-
pose: to explain how to do this as a user and
how to write a scheduler in the kernel.

1 Introduction

In the absence of infinite bandwidth there will
always be a need to hand out capacity accord-
ing to rules. Traditionally this has been a main
reason to add non-IP technology to a network,
like ATM or frame relay. Since IP is steadily
taking over the world, Linux is well placed to
play a role in enabling IP to take over traffic
controlling functions from other technologies.

Traditionally, traffic control has been very dif-
ficult to configure and Linux is no different in
this respect. In addition to this most of the im-
portant bits have not been documented.

About two years ago, the ‘2.4 Advanced Rout-
ing’ HOWTO was started, well before the ad-
vent of Linux 2.4 in order to rectify this situa-
tion. Not hampered by any understanding a lot
was written which was already helpful in con-
figuring traffic control under linux.

By now a set of manpages has been written and
the HOWTO properly explains most things.

2 Theory

As explained, traffic control is not an easy sub-
ject. Its difficulty can be compared to that of
a postal service deciding to offer two kinds of
service—‘fast’ and ‘slow’ where there previ-
ously was only ‘reasonably fast.’ Some kind
of system must be devised to prioritize some
kinds of traffic, but actively slow down others.

Now, the naive view of traffic shaping (“Hey,
just slow the packets down!”) corresponds to
ordering all mail vehicles to lower speed—
which clearly does not solve our problem.

We must be far smarter than that and not re-
sort to wasteful solutions like slowing every-
thing down.

The first thing to realise is that we can only re-
alistically do complicated things withoutgoing
traffic. We have zero control over the rate at
which people send us data. Again, this is like
receiving (physical) mail. People send it to us
and we can only decide not to read it—there is
no way to make it come in any slower.

Furthermore even for outgoing traffic we can
only treat packets that arein a computer we
maintain. A prime example which many peo-
ple encounter is trying to shape traffic going
out to a cable modem which is connected via a
10 megabit ethernet. As this 10 megabit con-
nection is lots faster than the cable modem, the
Linux machine does not own the queue and
hence powerless to prioritize traffic, unless fur-

Ottawa Linux Symposium 2002 214

ther work is undertaken.

So—the theory is like this. Make sure that if
there is a need to prioritize traffic, there is a
queue which can be processed. Because there
is normally only an outgoing queue configure
your traffic control such that the data that needs
to be prioritized is outgoing.

3 Verbiage

As with any complicated subject it is impor-
tant to get the terminology right. I’m much
indebted to Jamal who keeps pointing this out
to me—his persistence is formidable and my
stubbornness only just matches it.

• Queueing Discipline An algorithm that
manages the queue of a device, either in-
coming (ingress) or outgoing (egress).

• Classless qdisc A qdisc with no config-
urable internal subdivisions.

• Classful qdisc A classful qdisc contains
multiple classes. Each of these classes
contains a further qdisc, which may again
be classful, but need not be. Accord-
ing to the strict definition, pfifo_fast *is*
classful, because it contains three bands
which are, in fact, classes. However, from
the user’s configuration perspective, it is
classless as the classes can’t be touched
with the tc tool.

• Classes A classful qdisc may have many
classes, which each are internal to the
qdisc. Each of these classes may contain
a real qdisc.

• Classifier Each classful qdisc needs to de-
termine to which class it needs to send a
packet. This is done using the classifier.

• Filter Classification can be performed us-
ing filters. A filter contains a number of

conditions which if matched, make the fil-
ter match.

• Scheduling A qdisc may, with the help of
a classifier, decide that some packets need
to go out earlier than others. This process
is called Scheduling, and is performed for
example by the pfifo_fast qdisc mentioned
earlier. Scheduling is also called ‘reorder-
ing,’ but this is confusing.

• Shaping The process of delaying packets
before they go out to make traffic confirm
to a configured maximum rate. Shaping is
performed on egress. Colloquially, drop-
ping packets to slow traffic down is also
often called Shaping.

• Policing Delaying or dropping packets in
order to make traffic stay below a config-
ured bandwidth. In Linux, policing can
only drop a packet and not delay it—there
is no ‘ingress queue.’

• Work-Conserving A work-conserving
qdisc always delivers a packet if one is
available. In other words, it never delays
a packet if the network adaptor is ready to
send one (in the case of an egress qdisc).

• non-Work-Conserving Some queues, like
for example the Token Bucket Filter, may
need to hold on to a packet for a certain
time in order to limit the bandwidth. This
means that they sometimes refuse to give
up a packet, even though they have one
available.

Now that we have our terminology straight,
let’s see where all these things are. Figure 1
shows us.

4 Configuration example

This example is short but useful with actual
physical phone modems:

Ottawa Linux Symposium 2002 215

Figure 1: This schematic is due to Jamal as well.

Userspace programs
^
|

+---------------+---+
| Y |
| -------> IP Stack |
	Y	
	Y	
^		
	/ ----------> Forwarding ->	
^ /		
	/ Y	
^ Y /-qdisc1-\		
	Egress /--qdisc2--\	

--->->Ingress Classifier ---qdisc3---- | ->
| Qdisc __qdisc4__/ |
| \-qdiscN_/ |
| |
+---+

tc qdisc add dev ppp0 root \
sfq perturb 10

Ok—what does this do? We’ve configured
ppp0 to have a root queueing discipline called
SFQ, which stands for Stochastic Fairness
Queue. What this means is that the kernel now
assigns each outgoing packet to a ‘bucket’ and
dequeues a packet from each bucket in turn.

This is good for making sure that an outgoing
upload does not interfere with, say, ssh traffic.

To inspect the configuration:

tc -s -d qdisc ls dev ppp0
qdisc sfq 800c: dev ppp0 quantum

1514b limit 128p flows
128/1024 perturb 10sec
Sent 4812 bytes 62 pkts

(dropped 0, overlimits 0)

The number 800c: is the automatically as-
signed handle number, limit means that 128

packets can wait in this queue. There are 1024
hashbuckets available for accounting, of which
128 can be active at a time (no more packets
fit in the queue!) Once every 10 seconds, the
hashes are reconfigured.

5 Available Queueing Disciplines

The Linux kernel comes with many Queueing
Disciplines or qdiscs. Some of there are non-
functional or so underdocumented that they are
not in use. There are also qdiscs that have not
been merged yet.

• pfifo_fast This queue is, as the name
says, First In, First Out, which means that
no packet receives special treatment. At
least, not quite. This queue has 3 so called
‘bands.’ Within each band, FIFO rules ap-
ply. However, as long as there are packets
waiting in band 0, band 1 won’t be pro-
cessed. Same goes for band 1 and band 2.

Ottawa Linux Symposium 2002 216

The kernel honors the so called Type of
Service flag of packets, and takes care to
insert ‘minimum delay’ packets in band 0.

Do not confuse this classless simple qdisc
with the classful PRIO one! Although
they behave similarly, pfifo_fast is class-
less and you cannot add other qdiscs to it
with the tc command.

• Token Bucket Filter

The Token Bucket Filter (TBF) is a simple
qdisc that only passes packets arriving at a
rate which is not exceeding some admin-
istratively set rate, but with the possibility
to allow short bursts in excess of this rate.

TBF is very precise, network- and
processor-friendly. It should be your first
choice if you simply want to slow an in-
terface down!

The TBF implementation consists of a
buffer (bucket), constantly filled by some
virtual pieces of information called to-
kens, at a specific rate (token rate). The
most important parameter of the bucket is
its size, that is the number of tokens it can
store.

Each arriving token collects one incom-
ing data packet from the data queue and
is then deleted from the bucket.

• Stochastic Fairness Queueing

Stochastic Fairness Queueing (SFQ) is a
simple implementation of the fair queue-
ing algorithms family. It’s less accurate
than others, but it also requires less calcu-
lations while being almost perfectly fair.

The key word in SFQ is conversation (or
flow), which mostly corresponds to a TCP
session or a UDP stream. Traffic is di-
vided into a pretty large number of FIFO
queues, one for each conversation. Traffic
is then sent in a round robin fashion, giv-

ing each session the chance to send data
in turn.

This leads to very fair behaviour and
disallows any single conversation from
drowning out the rest. SFQ is called
“Stochastic” because it doesn’t really al-
locate a queue for each session, it has an
algorithm which divides traffic over a lim-
ited number of queues using a hashing al-
gorithm.

Because of the hash, multiple sessions
might end up in the same bucket, which
would halve each session’s chance of
sending a packet, thus halving the effec-
tive speed available. To prevent this sit-
uation from becoming noticeable, SFQ
changes its hashing algorithm quite of-
ten so that any two colliding sessions will
only do so for a small number of seconds.

• Prio The PRIO qdisc doesn’t actually
shape, it only subdivides traffic based on
how you configured your filters. You
can consider the PRIO qdisc a kind of
pfifo_fast on stereoids, whereby each
band is a separate class instead of a simple
FIFO.

When a packet is enqueued to the PRIO
qdisc, a class is chosen based on the fil-
ter commands you gave. By default, three
classes are created. These classes by de-
fault contain pure FIFO qdiscs with no in-
ternal structure, but you can replace these
by any qdisc you have available.

Whenever a packet needs to be dequeued,
class :1 is tried first. Higher classes are
only used if lower bands all did not give
up a packet.

This qdisc is very useful in case you want
to prioritize certain kinds of traffic with-
out using only TOS-flags but using all the
power of the tc filters. It can also contain
more all qdiscs, whereas pfifo_fast is lim-
ited to simple fifo qdiscs.

Ottawa Linux Symposium 2002 217

Because it doesn’t actually shape, the
same warning as for SFQ holds: either use
it only if your physical link is really full
or wrap it inside a classful qdisc that does
shape. The last holds for almost all cable-
modems and DSL devices.

In formal words, the PRIO qdisc is a
Work-Conserving scheduler.

• CBQ CBQ is the most complex qdisc
available, the most hyped, the least un-
derstood, and probably the trickiest one
to get right. This is not because the au-
thors are evil or incompetent, far from it,
it’s just that the CBQ algorithm isn’t all
that precise and doesn’t really match the
way Linux works.

Besides being classful, CBQ is also a
shaper and it is in that aspect that it really
doesn’t work very well. It should work
like this. If you try to shape a 10mbit/s
connection to 1mbit/s, the link should be
idle 90% of the time. If it isn’t, we need to
throttle so that it IS idle 90% of the time.

This is pretty hard to measure, so CBQ in-
stead derives the idle time from the num-
ber of microseconds that elapse between
requests from the hardware layer for more
data. Combined, this can be used to ap-
proximate how full or empty the link is.

This is rather circumspect and doesn’t al-
ways arrive at proper results. For exam-
ple, what if the actual link speed of an
interface that is not really able to trans-
mit the full 100mbit/s of data, perhaps
because of a badly implemented driver?
A PCMCIA network card will also never
achieve 100mbit/s because of the way the
bus is designed—again, how do we calcu-
late the idle time?

It gets even worse if we consider not-
quite-real network devices like PPP over
Ethernet or PPTP over TCP/IP. The ef-
fective bandwidth in that case is probably

determined by the efficiency of pipes to
userspace—which is huge.

People who have done measurements dis-
cover that CBQ is not always very accu-
rate and sometimes completely misses the
mark.

In many circumstances however it works
well. With the documentation provided
here, you should be able to configure it to
work well in most cases.

• Hierarchical Token Bucket (outside of the
kernel) Martin Devera (<devik>) rightly
realised that CBQ is complex and does
not seem optimized for many typical sit-
uations. His Hierarchial approach is well
suited for setups where you have a fixed
amount of bandwidth which you want to
divide for different purposes, giving each
purpose a guaranteed bandwidth, with the
possibility of specifying how much band-
width can be borrowed.

HTB works just like CBQ but does not
resort to idle time calculations to shape.
Instead, it is a classful Token Bucket
Filter—hence the name. It has only a few
parameters, which are well documented
on his site.

As your HTB configuration gets more
complex, your configuration scales well.
With CBQ it is already complex even in
simple cases! HTB is not yet a part of the
standard kernel, but it should soon be!

If you are in a position to patch your ker-
nel, by all means consider HTB.

• bfifo/pfifo These classless queues are even
simpler than pfifo_fast in that they lack
the internal bands—all traffic is really
equal. They have one important benefit
though, they have some statistics. So even
if you don’t need shaping or prioritizing,
you can use this qdisc to determine the
backlog on your interface.

Ottawa Linux Symposium 2002 218

pfifo has a length measured in packets,
bfifo in bytes.

• Clark-Shenker-Zhang algorithm (CSZ)
This is so theoretical that not even Alexey
(the main CBQ author) claims to under-
stand it. From his source:

“David D. Clark, Scott Shenker and Lixia
Zhang Supporting Real-Time Applica-
tions in an Integrated Services Packet Net-
work: Architecture and Mechanism.”

As I understand it, the main idea is to cre-
ate WFQ flows for each guaranteed ser-
vice and to allocate the rest of bandwith to
dummy flow-0. Flow-0 comprises the pre-
dictive services and the best effort traffic;
it is handled by a priority scheduler with
the highest priority band allocated for pre-
dictive services, and the rest—to the best
effort packets.

• DSMARK Dsmark is a queueing disci-
pline that offers the capabilities needed in
Differentiated Services (also called Diff-
Serv or, simply, DS). DiffServ is one of
two actual QoS architectures (the other
one is called Integrated Services) that is
based on a value carried by packets in the
DS field of the IP header.

One of the first solutions in IP designed
to offer some QoS level was the Type
of Service field (TOS byte) in IP header.
By changing that value, we could choose
a high/low level of throughput, delay or
reliability. But this didn’t provide suffi-
cient flexibility to the needs of new ser-
vices (such as real-time applications, in-
teractive applications and others). After
this, new architectures appeared. One of
these was DiffServ which kept TOS bits
and renamed DS field.

• On the ingress All qdiscs discussed so far
are egress qdiscs. Each interface however
can also have an ingress qdisc which is not

used to send packets out to the network
adaptor. Instead, it allows you to apply
tc filters to packets coming in over the in-
terface, regardless of whether they have a
local destination or are to be forwarded.

As the tc filters contain a full Token
Bucket Filter implementation, and are
also able to match on the kernel flow esti-
mator, there is a lot of functionality avail-
able. This effectively allows you to police
incoming traffic, before it even enters the
IP stack.

• Random Early Detection (RED) The nor-
mal behaviour of router queues on the In-
ternet is called tail-drop. Tail-drop works
by queueing up to a certain amount, then
dropping all traffic that ‘spills over.’ This
is very unfair, and also leads to retransmit
synchronisation. When retransmit syn-
chronisation occurs, the sudden burst of
drops from a router that has reached its fill
will cause a delayed burst of retransmits,
which will over fill the congested router
again.

In order to cope with transient conges-
tion on links, backbone routers will often
implement large queues. Unfortunately,
while these queues are good for through-
put, they can substantially increase la-
tency and cause TCP connections to be-
have very bursty during congestion.

These issues with tail-drop are becoming
increasingly troublesome on the Internet
because the use of network unfriendly ap-
plications is increasing. The Linux kernel
offers us RED, short for Random Early
Detect, also called Random Early Drop,
as that is how it works.

RED isn’t a cure-all for this, applica-
tions which inappropriately fail to imple-
ment exponential backoff still get an un-
fair share of the bandwidth, however, with
RED they do not cause as much harm to

Ottawa Linux Symposium 2002 219

the throughput and latency of other con-
nections.

RED statistically drops packets from
flows before it reaches its hard limit. This
causes a congested backbone link to slow
more gracefully, and prevents retransmit
synchronisation. This also helps TCP find
its ‘fair’ speed faster by allowing some
packets to get dropped sooner keeping
queue sizes low and latency under con-
trol. The probability of a packet being
dropped from a particular connection is
proportional to its bandwidth usage rather
than the number of packets it transmits.

RED is a good queue for backbones,
where you can’t afford the complexity of
per-session state tracking needed by fair-
ness queueing.

• Generic Random Early Detection

Not a lot is known about GRED. It looks
like GRED with several internal queues,
whereby the internal queue is chosen
based on the Diffserv tcindex field. Ac-
cording to a slide found here, it contains
the capabilities of Cisco’s ‘Distributed
Weighted RED,’ as well as Dave Clark’s
RIO.

Each virtual queue can have its own Drop
Parameters specified.

“Ask Jamal”

• Weighted Round Robin (WRR) This qdisc
is not included in the standard kernels but
can be downloaded. Currently the qdisc
is only tested with Linux 2.2 kernels, but
it will probably work with 2.4/2.5 kernels
too.

The WRR qdisc distributes bandwidth be-
tween its classes using the weighted round
robin scheme. That is, like the CBQ
qdisc it contains classes into which arbi-
trary qdiscs can be plugged. All classes

which have sufficient demand will get
bandwidth proportional to the weights as-
sociated with the classes. The weights
can be set manually using the tc program.
But they can also be made automatically
decreasing for classes transferring much
data.

The qdisc can be very useful at sites such
as dorms where a lot of unrelated individ-
uals share an Internet connection. A set of
scripts setting up a relevant behavior for
such a site is a central part of the WRR
distribution.

6 Kernel API

Only classless qdiscs are covered here. Writing
a classful qdisc is an advanced topic.

To the kernel, a qdisc looks like Figure 2.

Packets are enqueued by the kernel and imme-
diately after as many packets as possible are
bursted out of the qdisc to the hardware.

• next Pointer in the linked list – leave alone

• cl_ops NULL for a classless qdisc

• id Name of this interface

• priv_size Size of the private data of this
backend

• enqueue Called by the kernel to queue a
new packet for transmission

• dequeue Called to get a packet for the
hardware to send out now

• requeue Called by the kernel to put back a
packet at the head of the queue. The next
call to dequeue will most likely return it.

• drop Called by the kernel to indicate that
a packet should be dropped & freed from
the queue, without returning it

Ottawa Linux Symposium 2002 220

Figure 2: TheQdisc_ops structure
struct Qdisc_ops
{

struct Qdisc_ops *next;
struct Qdisc_class_ops *cl_ops;
char id[IFNAMSIZ];
int priv_size;

int (*enqueue)(struct sk_buff *, struct Qdisc *);
struct sk_buff * (*dequeue)(struct Qdisc *);
int (*requeue)(struct sk_buff *, struct Qdisc *);
int (*drop)(struct Qdisc *);

int (*init)(struct Qdisc *, struct rtattr *arg);
void (*reset)(struct Qdisc *);
void (*destroy)(struct Qdisc *);
int (*change)(struct Qdisc *, struct rtattr *arg);

int (*dump)(struct Qdisc *, struct sk_buff *);
};

• init Called before use

• reset Should purge the queue and reset set-
tings

• destroy Cleanup

• change Accept reconfigured settings over
the Netlink

• dump Report statistics over the Netlink

6.1 How the kernel interacts with the qdisc

enqueue is called from dev_queue_xmit() in
net/core/dev.c:

/* Grab device queue */
spin_lock_bh(&dev->queue_lock);
q = dev->qdisc;
if (q->enqueue) {

int ret = q->enqueue(skb, q);

qdisc_run(dev);

spin_unlock_bh(&dev->queue_lock);
return ret == NET_XMIT_BYPASS ?

NET_XMIT_SUCCESS :
ret;

}

qdisc_run(), which lives in in-
clude/net/pkt_sched.h, is then immediately
called to get the packets out on the wire (or
ether, for that matter):

static inline void
qdisc_run(struct net_device *dev)
{

while (!netif_queue_stopped(dev)
&& qdisc_restart(dev)<0)

/* NOTHING */;
}

Getting nearer to the wire, qdisc_restart() is in
net/sched/sch_generic.c:

int
qdisc_restart(struct net_device *dev)
{

struct Qdisc *q = dev->qdisc;
struct sk_buff *skb;

/* Dequeue packet */
if ((skb = q->dequeue(q)) != NULL)
{

if (spin_trylock(&dev->xmit_lock))
{

Ottawa Linux Symposium 2002 221

/* Remember that the driver
is grabbed by us. */

dev->xmit_lock_owner =
smp_processor_id();

/* And release queue */
spin_unlock(&dev->queue_lock);

if (!netif_queue_stopped(dev))
{

if (netdev_nit)
dev_queue_xmit_nit(skb,

dev);

if (dev->hard_start_xmit(skb,
dev) == 0) {

dev->xmit_lock_owner = -1;
spin_unlock(&dev->xmit_lock);

spin_lock(&dev->queue_lock);
return -1;

}
}
/* code for when the queue

IS stopped */
...

hard_start_xmit(skb,dev) actually moves (or
shakes) the electrons.

6.2 Minimal qdisc

The kernel actually contains a ‘noop’ qdisc
which sees some use in efficiently dropping
packets on the floor. Or as Alexey says it:

/* "NOOP" scheduler:
the best scheduler,
recommended for all
interfaces under all
circumstances. It is
difficult to invent
anything faster or
cheaper. */

However, this is too minimal to serve as an ex-
ample.

We’ll look at the pfifo qdisc which per-
forms simple taildrop aftern packets. Some-
what simplified and commented source of
pfifo_enqueue:

int pfifo_enqueue(struct sk_buff *skb,
struct Qdisc *sch)

{
/* get our private data */
struct fifo_sched_data *q =

(struct
fifo_sched_data *)sch->data;

/* is there room for
another packet */

if (sch->q.qlen <= q->limit) {
/* add it at the tail

end of our q */
__skb_queue_tail(&sch->q, skb);

/* accounting - note that this is
not in the private part */

sch->stats.bytes += skb->len;
sch->stats.packets++;
/* there might be accounting in

q-> too, but not for pfifo */
return 0;

}
/* if we get here, there is no room

and we drop & cleanup */
sch->stats.drops++;

kfree_skb(skb);
/* sorry, no room */
return NET_XMIT_DROP;

}

The dequeue function is simpler:

struct sk_buff
pfifo_dequeue(struct Qdisc sch)

{
return __skb_dequeue(&sch->q);

}

The pfifo queue cannot be configured—it takes
its queuelength from the adapter’s txqueuelen.

Ottawa Linux Symposium 2002 222

References

[LARTC] Linux Advanced Routing &
Traffic Control HOWTO bert hubert.
http://lartc.org/ (2002)

Maintaining the Correctness of the Linux Security
Modules Framework

Trent Jaeger Xiaolan Zhang Antony Edwards
IBM T. J. Watson Research Center

Hawthorne, NY 10532 USA
Email: {jaegert,cxzhang}@us.ibm.com

Abstract

In this paper, we present an approach, sup-
ported by software tools, for maintaining the
correctness of the Linux Security Modules
(LSM) framework (the LSM community is
aiming for inclusion in Linux 2.5). The LSM
framework consists of a set of function call
hooks placed at locations in the Linux kernel
that enable greater control of user-level pro-
cesses’ use of kernel functionality, such as is
necessary to enforce mandatory access control.
However, the placement of LSM hooks within
the kernel means that kernel modifications may
inadvertently introduce security holes. Funda-
mentally, our approach consists of complemen-
tary static and runtime analysis; runtime anal-
ysis determines the authorization requirements
and static analysis verifies these requirements
across the entire kernel source. Initially, the fo-
cus has been on finding and fixing LSM errors,
but now we examine how such an approach
may be used by kernel development commu-
nity to maintain the correctness of the LSM
framework. We find that much of the verifica-
tion process can be automated, regression test-
ing across kernel versions can be made resilient
to several types of changes, such as source line
numbers, but reduction of false positives re-
mains a key issue.

1 Introduction

The Linux Security Modules (LSM) project
aims to provide a generic framework from
which a wide variety of authorization mech-
anisms and policies can be enforced. Such
a framework would enable developers to im-
plement authorization modules of their choos-
ing for the Linux kernel. System administra-
tors can then select the module that best en-
forces their system’s security policy. For exam-
ple, modules that implement mandatory access
control (MAC) policies to enable containment
of compromised system services are under de-
velopment.

The LSM framework is a set of authorization
hooks (i.e., generic function pointers) inserted
into the Linux kernel. These hooks define the
types of authorizations that a module can en-
force and their locations. Placing the hooks in
the kernel itself rather than at the system call
boundary has security and performance advan-
tages. First, placing hooks where the opera-
tions are implemented ensures that the autho-
rized objects are the only ones used. For ex-
ample, system call interposition is susceptible
to time-of-check-to-time-of-use (TOCTTOU)
attacks [2], where another object is swapped
for the authorized object after authorization,
because the kernel does not necessarily use
the object authorized by interposition. Sec-

Ottawa Linux Symposium 2002 224

ond, since the authorizations are at the point of
the operation, there is no need to redundantly
transform system call arguments to kernel ob-
jects.

While placing the authorization hooks in the
kernel can improve security, it is more difficult
to determine whether the hooks mediate and
authorize all controlled operations. The system
call interface is a nice mediation point because
all the kernel’s controlled operations (i.e., oper-
ations that access security-sensitive data)must
eventually go through this interface. Inside
the kernel, there is no obvious analogue for
the system call interface. Any kernel function
can contain accesses to one or more security-
sensitive data structures. Thus, any mediation
interface is at a lower-level of abstraction (e.g.,
inode member access). Also, it is necessary
to link these operations with their access con-
trol policy (e.g., write data) to ensure that the
correct authorizations are made for each con-
trolled operation. If there is a mismatch be-
tween the policy enforced and the controlled
operations that are executed under that policy,
unauthorized operations can be executed. We
believe that manual verification of the correct
authorization of a low-level mediation inter-
face is impractical.

We have examined both static and runtime
analysis techniques for verifying LSM autho-
rization hook placement [6, 20]. Our static
analysis approach identifies kernel variables of
key data types (e.g., inodes, tasks, sockets, etc.)
that are accessed prior to authorization. The
advantage of static analysis is that its com-
plete coverage of execution paths (both data
and control) enables it to find potential errors
more easily. Many successes with static anal-
ysis have been reported recently [7, 11, 16].
The effectiveness of static analysis is limited
by the manual effort required for annotation
and the number of false positives that are gen-

erated1. Also, some tasks are very difficult for
static analysis. However, runtime analysis re-
quires benchmarks that provide sufficient cov-
erage and also creates false positives that must
be managed. Thus far, our experience has been
that runtime analysis provides a useful comple-
ment for static analysis, so both types of anal-
yses need to be performed to obtain effective
verification.

While our initial results have been positive2,
ultimately, we believe that it is necessary that
such analysis become part of the kernel de-
velopment process to really maintain the ef-
fectiveness of the LSM framework. As the
Linux kernel is modified, the LSM authoriza-
tion hooks may become misplaced. That is,
some security-sensitive operations that were
previously executed only after authorization
may now become accessible without proper au-
thorization. Since the subtleties of authoriza-
tion may be non-trivial, the kernel developers
need a tool that enables them to verify that the
authorization hooks protect the system as they
did before or identify the cases that need ex-
amination. Further, kernel developers need a
way of communicating changes that need to be
examined by the LSM community.

In this paper, we outline the analysis capabil-
ities of our static and runtime tools and de-
scribe how they are used together to perform
LSM verification. We do not provide a detailed
discussion of the analysis tools, so interested
readers are directed elsewhere for that infor-
mation [6, 20]. We would also like to make
such tools available and practical for the ker-
nel development community, so we examine
how effectively the analysis steps can be au-
tomated and what issues the users of the analy-

1Static analysis is overly conservative because some
impossible paths are considered which can lead to some
false positives.

2Five LSM authorization hooks have been added or
revised due to the results of our analysis tools.

Ottawa Linux Symposium 2002 225

sis tools must resolve in order to complete the
analysis. We find that much of the verification
process can be automated, regression testing
across kernel versions can be made resilient to
minor changes, such as source line numbers,
but reduction of false positives remains a key
issue. While the analysis tools are not yet avail-
able as open source, we are working to obtain
such approval.

The remainder of the paper is structured as fol-
lows. In Section 2, we review the goals and sta-
tus of the LSM project. In Section 3, we define
the general hook placement problem. In Sec-
tion 4, we review the static and runtime anal-
ysis verification approaches. In Section 5, we
outline how LSM verification experts use the
static and runtime analysis tools in a comple-
mentary fashion to perform a complete LSM
verification. In Section 6, we examine how the
analysis tools can be made practical for use by
the kernel development community. In Sec-
tion 7, we conclude and describe future work.

2 Linux Security Modules

The Linux Security Modules (LSM) frame-
work is being developed to address insuffi-
ciencies in traditional UNIX security. Histor-
ically, UNIX operating systems provide a sin-
gle authorization mechanism and policy model
for controlling file system access. This ap-
proach has been found to be lacking for a va-
riety of reasons, and these inadequacies have
been exacerbated by emerging technologies.
First, the UNIX policy model lacks the ex-
pressive power necessary for some security re-
quirements. UNIX file mode bits enable con-
trol of file accesses based on three types of re-
lationships that the subject may have with the
file: file owner, file group owner, and others.
Some reasonable access control combinations
cannot be expressed using this approach, so ex-
tension have been created (e.g., access control

lists (ACL)). Second, the UNIX access con-
trol model provides discretionary access con-
trol (DAC) whereby the owner of the objects
controls the distribution of access. Thus, users
can accidentally give away rights that they did
not intend, and the all-powerful userroot, as
which a wide variety of diverse programs run,
can change access control policy in the system
arbitrarily. Third, with the advent of new pro-
gramming paradigms, such as mobile code, the
UNIX assumption that every one of the users’
processes should always have all of the users’
rights became flawed [3], and it was found that
the UNIX access control model was too lim-
ited to enable the necessary level of flexibil-
ity [10, 1, 9]. Fourth, controlling access to a
variety of other objects besides files was also
found to be necessary, and, in some cases, re-
stricting the relationships that objects may en-
ter is necessary [17]. For example, the ability
to mount one file system on another is a con-
trolled operation on the establishment of that
relationship between the two file systems.

Initially, the authorization mechanisms pro-
posed to address these limitations were in-
serted at the user-system boundary (e.g., by
wrapping system calls [1] or callbacks [9]). By
not integrating the authorization mechanisms
within the kernel, the authorization mechanism
lacks the kernel state at the time that the oper-
ation is performed. Attacks have been found
that can take advantage of the interval between
the time of the authorization and the time at
which the operation is invoked [2]. Further,
the performance of the system is degraded be-
cause the kernel state must be computed twice
if the authorization mechanism is placed at the
system call interface. Recent research work on
improving the UNIX authorization mechanism
in Linux has focused on inserting hooks to
the authorization mechanism in the kernel di-
rectly [4, 13, 14, 15, 18]. However, the variety
of authorization hook placements and styles re-
sulted in ad hoc modifications to the Linux ker-

Ottawa Linux Symposium 2002 226

nel.

Another major advancement has been the sep-
aration between the authorization mechanism
and the policy model used. The work on
DTOS and Flask security architectures demon-
strated how the authorization policy server can
be separated from the authorization mecha-
nism [12, 17]. Thus, a variety of access control
policies can be supported. In particular, a va-
riety of mandatory access control (MAC) poli-
cies can be explored. An advantage of MAC
policies is that provable containment of overt
process actions is possible, so protection of the
TCB and key applications can be implemented.
Various flavors of MAC policy models have
been examined, but no one approach has been
shown to be superior. The design of effective
policy models and policies themselves remains
an open research issue.

The LSM project includes several of the par-
ties working on independent Linux kernel au-
thorization mechanisms, in particular Security-
Enhanced Linux (SELinux) and Immunix Sub-
Domain, to create a generic framework for call-
ing authorization modules from within the ker-
nel. Motivation to unite these mechanisms
came when Linus Torvalds outlined his goals
for such a framework [19]. Linus stated that
he wants authorization to be implemented by
a module accessible via generic hooks. The
hope that an acceptable authorization frame-
work would be integrated with the mainline
Linux kernel has resulted in a comprehensive
LSM implementation.

As of Linux 2.4.16, LSM consists of 216 au-
thorization hooks inserted in the kernel that can
call 153 distinct authorization functions de-
fined by the authorization modules (i.e., load-
able kernel modules). The authorization hooks
enable authorization of a wide variety of op-
erations, including operations on files, inodes,
sockets, IPC messages, IPC message queues,

semaphores, tasks, modules, skbuffs, devices,
and various global kernel variables. Authoriza-
tion modules for SELinux, SubDomain, and
OpenWALL have been built for LSM, so LSM
is capable of enforcing MAC policies already.

3 General Hook Placement Prob-
lems

3.1 Concepts

We identify the following key concepts in the
construction of an authorization framework:

• Authorization Hooks: These are the au-
thorization checks in the system (e.g., the
LSM-patched Linux kernel).

• Policy Operations: These are the oper-
ations for which authorization policy is
defined in the authorization hooks. Be-
cause we would like to identify code that
is representative of the policy operation,
they are practically defined as the first
controlled operation (see below) requiring
this policy.

• Security-sensitive Operations: These
are the operations that impact the security
of the system.

• Controlled Operations: A subset of
security-sensitive operations that mediate
access to all other security-sensitive oper-
ations. These operations define amedia-
tion interface.

The definition of these concepts is made clear
by a comparison between system call media-
tion and the in-kernel mediation used by LSM
shown in Figure 1. When authorization hooks
are placed at the system call interface, the pol-
icy operations (e.g., the conceptual operation

Ottawa Linux Symposium 2002 227

S SSS S S

H: Authorization Hook
P: Policy Operation
C: Controlled
 Operation
S: Security-sensitive
 Operation

Syscall Trap

Kernel

...

User

System Call Approach LSM Approach

...

......

C C

H

P/C

P

H

Figure 1:Comparison of concepts between system call interposition framework and LSM.

write) and controlled operations (e.g., where
mediation of all file opens for write access oc-
cur at the system callsys_open with the ac-
cess flagWRONLY) are effectively the same.
This is because policy is specified at the sys-
tem call interface, and the system call inter-
face also provides complete mediation. The
security-sensitive operations in both cases are
the data accesses made to security-relevant ker-
nel data, such as files, inodes, mappings, and
pages.

When authorization hooks are inserted in the
kernel, the level of complete mediation is the
kernel source code, so the policy operations
and controlled operations are no longer nec-
essarily the same. For example, rather than
verifying file open for write access at the sys-
tem call interface, the LSM authorizations for
directory (exec), link (follow link), and ulti-
mately, the file open are performed at the time
these operations are to be done. This elimi-
nates susceptibility to TOCTTOU attacks [2]
and redundant processing. The kernel source
is complex, however, so it is no longer clear
that all security-sensitive operations are actu-
ally authorized properly before they are run.

Given the breadth and variety of security-
sensitive operations, we would like to iden-
tify a higher-level interface for verifying their
proper LSM authorization. This interface
must mediate all access from the authorization
hooks to the security-sensitive operation. This
interface is referred to as themediation inter-
faceand is defined by a set of controlled oper-
ations.

3.2 Relationships to Verify

Figure 2 shows the relationships between the
concepts.

1. Identify Controlled Operations: Find
the set of operations that define a medi-
ation interface through which all security-
sensitive operations are accessed.

2. Determine Authorization Require-
ments: For each controlled operation,
identify the policy operations that must
be authorized by the LSM hooks.

3. Verify Complete Authorization: For
each controlled operation, verify that
the policy operations (i.e., authorization

Ottawa Linux Symposium 2002 228

requirements) are authorized by LSM
hooks.

4. Verify Hook Placement Clarity: Pol-
icy operations should be easily identifi-
able from their authorization hooks. Oth-
erwise, even trivial changes to the source
may render the hook inoperable.

The basic idea is that we identify the con-
trolled operations and their authorization re-
quirements, then we verify that the authoriza-
tion hooks mediate those controlled operations
properly. This verifies, that the LSM hook
placement is correct with respect to this set
of controlled operations and authorization re-
quirements. When the mediation interface is
shown to be correct, it verifies LSM hook
placement with respect to all security-sensitive
operations. These tasks are complex, so it is
obvious that automated tools are necessary.

Controlled Operation

Security-sensitive Operation

Mediates

Mediates

1

2

3

4

Authorization Hook

Predicts

Policy Operation

Comprises

Figure 2: Relationships between the authorization
concepts. The verification problems are to: (1) iden-
tify controlled operations; (2) determine authorization
requirements; (3) verify complete authorization; and (4)
verify hook placement clarity.

In addition, we found that additional auto-
mated support is necessary to identify the con-
trolled operations and their authorization re-
quirements. First, manual identification of the

controlled operations is a tedious task. We
must develop an approach by which controlled
operations can be selected from the set of
security-sensitive operations. Once this ap-
proach has been determined automated tech-
niques are needed to extracted these operations
from the kernel source. Second, because the
controlled operations are at a lower level than
the policy operations, we need to determine the
policy operations (i.e., authorization require-
ments) for a controlled operation. Since we
expect a large number of controlled operations,
it is necessary to develop an approach to sim-
plify the means for identifying their authoriza-
tion requirements.

Lastly, to ensure maintainability of the autho-
rization hooks we can verify that the policy op-
erations can be easily determined from the au-
thorization hook locations. This work is has
been done, but in interest of focus it is outside
the scope of this paper. This is work is pre-
sented elsewhere [6].

3.3 Related Work

We are not aware of any tools that perform any
of the tasks outlined above. While static analy-
sis has had some promising results lately [7,
11, 16], the problems upon which they have
been applied have been different and narrower
in scope (e.g., buffer overflow detection). We
believe that static analysis tools will eventually
provide some important improvements in the
verifications described above, but some analy-
ses will be easier to do with runtime tools (e.g.,
due to reduced specification for comprehensive
tests).

4 Solution Background

In this section, we review the approaches we
devised for using static and runtime analysis
to verify the placement of LSM authorization

Ottawa Linux Symposium 2002 229

hooks.

4.1 CQUAL Static Analysis

We use the CQUAL type-based static analy-
sis tool as the basis for our static analysis [8].
CQUAL supports user-definedtype qualifiers
that are used in the same way as the standard C
type qualifiers such asconst . We define two
type qualifiers,checked and unchecked .
The idea is that a variable with aunchecked
qualifier cannot be used when a variable with a
checked qualifier is expected. This simulates
the need to authorize variables before they are
used in controlled operations.

The following code segment demonstrates the
type of violation we want to detect. Function
func_a expects achecked file pointer as its
parameter, but the parameter passed is of type
unchecked file pointer.

void func_a(struct file
*checked filp);

void func_b(void)
{

struct file * unchecked filp;
...
func_a(filp);
...

}

As input to CQUAL, we define type rela-
tions between thechecked andunchecked
type qualifiers that represent the requirement
that a checked type cannot be used when
an unchecked is expected. Using its infer-
ence rules, CQUAL performsqualifier infer-
enceto detect violations against these type re-
lations. These violations are calledtype errors.
CQUAL reports both the variables involved in
the type errors and the shortest paths to type
error creation for these variables. For a more
detailed description of CQUAL, please refer to
the original paper on CQUAL [8].

In order to do this analysis, CQUAL requires
that the target source be annotated with the type
qualifiers. This is an arduous and error-prone
task for a program like the Linux kernel, so we
use GCC analysis to automate the annotation
process. There are three GCC analyses we per-
form to prepare the source code for CQUAL
processing.

1. All controlled object must be initialized to
unchecked .

2. All function parameters that are used in
a controlled operation must be marked as
checked .

3. Authorizations must upgrade the autho-
rized object’s qualified type tochecked .

In order to ensure that static analysis is sound
(i.e., no type errors are missed by the analy-
sis), we perform some additional GCC analy-
ses. For example, we verify no reassignments
of variables and check for intra-procedural type
errors. These analyses are sometimes primi-
tive, but they have limited the amount of man-
ual work required sufficiently. We are work-
ing with the CQUAL community and others to
improve the effectiveness of static analysis for
this purpose. For a more detailed description
of our static analysis, see our paper [20].

With our static analysis, we have identified
some LSM vulnerabilities in Linux 2.4.9, but
since the runtime analysis tool was done first
we have found only one new, exploitable vul-
nerability. It has since been fixed in later ver-
sions of LSM [5]. Figure 3 shows the vulnera-
bility.

The code fragment demonstrates a time-of-
check-to-time-of-use [2] (TOCTTOU) vulner-
ability. In this case, thefilp variable is au-
thorized insys_fcntl . However, a new ver-
sion offilp is extracted from the file descrip-
tor and used in the functionfcntl_getlk .

Ottawa Linux Symposium 2002 230

Since a user process can modify its mapping
between its file descriptors and the files they
reference this error is exploitable.

4.2 Vali Runtime Analysis

We have developed a tool, called Vali3, for
collecting key kernel runtime events (Vali run-
time) and analyzing this runtime data (Vali
analysis) to determine whether LSM authoriza-
tion hooks are correctly placed [6]. The key
insight of the Vali analysis is that most of the
LSM authorization hooks are correctly placed,
so it is anomalies in the authorization results
that enables us to identify errors. Using this
approach, we have found 5 significant anoma-
lies in LSM authorization hook placement, 4 of
which have been identified as bugs and fixed.

Vali consists of kernel instrumentation tools,
kernel data collection modules, and data anal-
ysis tools. The kernel instrumentation tools
build a Linux kernel for which kernel events
(e.g., system calls and interrupts), function en-
try/exits, LSM authorizations, and controlled
operations can be logged by the data collection
modules. We use the same kind of GCC analy-
sis as we did for the static analysis to find con-
trolled operations in the kernel. Other events
are easily instrumented through GCC instru-
mentation (functions), breakpoints on entry ad-
dresses (kernel events), and the LSM autho-
rization hooks themselves (authorizations).

Loadable kernel modules for each type of in-
strumentation collect these events. The main
problem with data collection is not the perfor-
mance overhead, but the data collection band-
width. The performance overhead of instru-
mentation is only about 10%, and since the
analysis kernel is not a production kernel this
is quite acceptable. However, the rate at which
data is generated can exceed the disk through-

3Vali is the Norse God of Justice and the first four
letters in “Validate.”

/* from fs/fcntl.c */
long sys_fcntl(unsigned int fd,

unsigned int cmd,
unsigned long arg)

{
struct file * filp;
...
filp = fget(fd);
...
err = security_ops->file_ops

->fcntl(filp, cmd, arg);
...
err = do_fcntl(fd, cmd, arg,

filp);
...

}
static long
do_fcntl(unsigned int fd,

unsigned int cmd,
unsigned long arg,
struct file * filp) {

...
switch(cmd){

...
case F_SETLK:

err = fcntl_setlk(fd, ...);
...

}
...

}
/* from fs/locks.c */
fcntl_getlk(fd, ...) {

struct file * filp;
...
filp = fget(fd);
/* operate on filp */
...

}

Figure 3: Code path from Linux 2.4.9 contain-
ing an exploitable type error.

Ottawa Linux Symposium 2002 231

open for read access

1 = (+,id_type,CONTEXT)

(+,di_cfm_eax,sys_open)

(+,co_ecx,RDONLY)

2 (D,1) = (+,ALL,0,0)

open for read-write

1 = (+,id_type,CONTEXT)

(+,di_cfm_eax,sys_open)

(+,co_ecx,RDWR)

2 (D,1) = (+,ALL,0,0)

Figure 4: Filtering rules for open system call
(sys_open) with read and read-write access
flags. The (D,1) means that the rule should
use only the records that have matched this rule
number in the second argument. There is also a
negation counterpart (N,x) where the specified
records are excluded.

put rate, so we enable event filtering. Cur-
rently, this is simply collecting 1 out ofn
events wheren can be tuned. Ultimately, we
would like to be able to control the types of
events collected to ensure that rarer events are
not missed.

The logged data identifies the objects used in
controlled operations and the authorizations
made upon those objects. While different ob-
ject instances are used in different system call
instances, objects referenced by the same vari-
able (i.e., used in the same controlled opera-
tions) should normally have the same autho-
rizations. This is not entirely true as some sys-
tem calls (e.g.,open , ioctl , etc.) may imply
different authorizations based on the flags that
are sent. Therefore, we have defined a simple
filtering language to identify the kernel events
that should have the same authorizations for
all objects (see Figure 4 for examples). Per
filter, all objects should have the same autho-
rizations. Therefore, we can identify anoma-
lous cases that do not have the expected autho-
rizations, and these cases are often errors. Be-

cause the filters enable focusing on a small set
of operations, we have had more success find-
ing problems using the runtime analysis than
the static analysis. We have found errors rang-
ing from missing authorizations for an obscure
system callgetgroups16 to a missing au-
thorization for resetting the fowner of a file us-
ing one of the flag variants offcntl (see Fig-
ure 5).

The runtime analysis also does something that
the static analysis does not: it identifies the ex-
pected authorizations for an object in a system
call. Cases that are consistent identify a be-
lief in the set of authorizations that are required
on an object. These authorization requirements
can be used as input to the static analysis tool
which can then be used to verify the correct
authorizations, not just the existence of an au-
thorization. While most of the controlled oper-
ations require just one authorization, the error
in the fcntl case above was in the lack of a
second authorization to check the permission
to set the owner.

5 LSM Community Analysis Ap-
proach

As might be gathered by the previous section,
we find that the two analysis approaches are
quite complementary. In this section, we out-
line the approach intended for use by LSM ver-
ification experts to verify LSM authorization
hook placement using our analysis tools. We
discuss how the kernel development commu-
nity might use the analysis tools to maintain
LSM correctness in the following section.

Verification of LSM authorization hook place-
ment involves the following steps:

1. Checked/Unchecked Static Analysis:
We first apply our static analysis approach
to find variables for which no authoriza-

Ottawa Linux Symposium 2002 232

/* from fs/fcntl.c */
static long
do_fcntl(unsigned int fd,

unsigned int cmd,
unsigned long arg,
struct file * filp) {

...
switch(cmd){

...
case F_SETOWN:

/* set fowner is authorized
for filp */

err = LSM->file_ops->set_fowner(
filp);

...
filp->f_owner.pid = arg;
...

case F_SETLEASE:
err = fcntl_setlease(fd, filp,

arg);
...

}
...

}
/* from fs/locks.c */
fcntl_setlease(unsigned int fd,

struct file *filp,
long arg) {

struct file_lock *my_before;
...
if (my_before != NULL) {

error = lease_modify(my_before,
arg, fd, filp);

...
}
lease_modify(struct file_lock

**before,
int arg, int fd,
struct file *filp) {

...
if (arg == F_UNLCK) {

/* ERROR: could set active
fowner to 0 */

filp->f_owner.pid = 0;
...

}
...
}

Figure 5: Code path from Linux 2.4.16 con-
taining an exploitable error for the system call
fcntl(fd, F_SETLEASE, F_UNLCK)
whereby thepid of an active lock can be set to 0.

tions are performed. Since there are a
significant number (̃30 for the VFS layer
alone for2̃50 controlled variables) of type
errors, these must be further classified to
eliminate all those that are known not to
be a real error.

2. Runtime Analysis for Authorization
Requirements: Using benchmarks that
cover as much of the kernel source as pos-
sible plus potential exploits derived for
testing the remaining static analysis type
errors, perform the runtime analysis to
derive the kernel authorization require-
ments.

3. Static Analysis Using the Authorization
Requirements: More complete coverage
of the kernel is possible using static anal-
ysis, so repeat the static analysis using the
authorization requirements.

4. Runtime Verification Using All Ex-
ploits: Repeat the runtime analysis using
any newly derived exploits from the sec-
ond static analysis.

5.1 Checked/Unchecked Analysis

In the first step, the static analysis is applied to
the kernel source, and some number of type er-
rors are identified by CQUAL. We have fully
automated this process, but the problem of ex-
amining type errors and determining whether
they are exploitable must ultimately be done by
an expert. The type error rate (type errors per
variable of a controlled data type) varies from
subsystem to subsystem, but it is 12% for the
VFS layer (higher than usual) in Linux 2.4.9.
Therefore, we have 30 variables in the VFS
layer that are not explicitly authorized before
they are used in a controlled operation.

Many of these type errors are not exploitable
errors, however. In the VFS layer, these type

Ottawa Linux Symposium 2002 233

errors come in three kinds: (1) use in initial-
ization or other “safe” functions; (2) extraction
of inodes from checked dentries; and (3) un-
known type errors. The first two kinds of er-
rors are not exploitable errors, so we need to
change our analysis to prevent them from be-
ing generated. In the first case, we can rela-
bel these functions, so they no longer require a
checked variable. Since some functions are
not obviously “safe,” so there is some possibil-
ity for error here. When these functions are
modified, some re-evaluation is necessary to
maintain is status. In the second case, we need
to change CQUAL to infer achecked vari-
able if it comes from achecked field, and no
user process can modify this relationship. For
example, if we check a dentry then later extract
the inode from this dentry, the LSM hooks be-
lieve that the inode is authorized also. This is
because the dentry inode relationship is fixed
(i.e., not modifiable by user processes). For sit-
uations of this type, we can infer the variable
is checked . CQUAL does not support this
kind of reasoning, but we are working with the
CQUAL community to do this.

For other type errors, we need to find other
means to distinguish whether they are real er-
rors or not. For many of these cases, we de-
velop exploit programs to try to find vulnera-
bilities with respect to the LSM authorizations.
At present, this is a manual process, but we
would like to automate some aspects of this
process based on the nature of the type error.
Ultimately, some degree of manual effort will
always be required in processing type errors.

5.2 Authorization Requirements Generation

Second, we then perform the runtime analysis
given the benchmark and exploit programs to
discover vulnerabilities, identify anomalies in
authorizations, and determine the authorization
requirements of the controlled operations. The
exploit programs identify vulnerabilities auto-

matically, so we do not detail them further here
(see the detailed static analysis paper [20] for
the program that exploits the vulnerability in
Figure 3). We discuss anomaly identification
and the determination of authorization require-
ments here.

The Vali runtime analysis identifies the autho-
rizations that are made on each object in a ker-
nel event (i.e., system call with the same ex-
pected authorizations). Any variations in the
authorizations signal either a miss definition
a kernel event (i.e., the authorizations really
change when we did not expect) or an anomaly
in authorization. Recall that kernel events are
defined by filter rules. Since writing these rules
depends on deep knowledge of the kernel and
LSM authorization, we expect that the LSM
verification experts will write such filter rules
to correctly generate anomalies. For example,
we defined rules for open read-only and read-
write cases in Figure 4.

An authorization anomaly is a case where
an authorization only occurs in some of the
cases of the kernel event. In Figure 5, the
set_owner authorization was missing even
though the inode fieldf_owner was accessed
in a fcntl system call. While different flags
to fcntl may result in different authoriza-
tions, we found that because the same fields
were accessed with different authorizations,
there could be a potential problem. Thus, this
error was found in trying to write an appropri-
ate filter for the different variants offcntl in-
vocations. A complete discussion of the differ-
ent types of anomalies and their use in the clas-
sification of kernel events is provided in our
runtime analysis paper [6].

Once the filters are written, they can be used by
the Vali analysis tool to generate the object au-
thorizations and any anomalous authorizations.
In general, an object’s authorizations may vary
depending on the operations performed (i.e.,

Ottawa Linux Symposium 2002 234

DFN d 0 0 384 -1
DFN d 0 0 384 1
DFN d 0 0 400 -1
...
SFN(ALWAYS) d 0 0xc

Figure 6: Vali analysis output aggregating all
inode and file operations with the same autho-
rization. The DFN fields indicate: (1) “d” is
datatype-insensitive, meaning all operations on
the datatype have the same requirements; (2)
first 0 is aggregate id; (3) second 0 is the class
id for “inode”; (4) next number is the member
id accessed; (5) last is the access type code.

field and access type) and the functions in
which the operations are performed. The Vali
analysis tool aggregates the common autho-
rizations first by operation type, if their autho-
rizations are always the same, then by func-
tion. That is, we hope that all operations in an
event have the same authorizations. If not, then
other operation attributes are used to aggregate
when the authorizations are the same for op-
erations with the same attribute value. We use
operation datatype, object, member access, and
access+function as the aggregation attributes.
Figure 6 shows a datatype aggregation for in-
odes in theread system call (files are also ag-
gregated). Figure 7 shows that authorizations
may vary depending on the member access or
the function in which the access is performed .
The aggregation attributes are totally-ordered,
so we try to aggregate at the attribute that yields
the largest aggregate.

Maximizing aggregation also has the positive
outcome that it reduces the number of regres-
sion differences. For example, if a controlled
operation has the same authorization require-
ments regardless of the function in which it is
run, then moving or adding the operation to a
new function does not signal a regression dif-
ference.

DFN f 0 0 320 -1
SFN(ALWAYS) f 0 0x37

DFN f 1 0 1152 1
SFN(ALWAYS) f 1 0x13

DFN i 0 0 1216 1 ext2_lookup
...
SFN(ALWAYS) i 0 0x1a

DFN i 1 0 1216 -1 find_inode
SFN(ALWAYS) i 1 0x37

Figure 7: Vali analysis output showing
four groups offunction-insensitive(“f”) and
function-internals-sensitive(“i”) operations
for stat64. Function-insensitive accesses have
the same authorizations regardless of the func-
tion in which the dangerous operation appears.
Function-internals-insensitive operations have
different authorizations as accesses to member
1216 in the two functionsext2_lookup and
find_inode identify.

When all anomalies have been resolved, then
the output defines the authorization require-
ments for the controlled operations in the ker-
nel events in which they are run. Of course,
some authorizations could be missing entirely
for all runs, but we expect that the aggregated
requirements will make it possible to verify
this with reasonable effort.

5.3 Static Analysis Using Requirements

The authorization requirements found using
the Vali runtime analysis can be used as input
to the CQUAL static analysis. Three changes
must be made to use the authorization require-
ments:

1. Authorizations must result in variables of
a qualified type of the authorization made.

2. Functions annotations must be changed to

Ottawa Linux Symposium 2002 235

expect parameters of qualified types de-
pending on the authorizations expected.

3. A type qualifier lattice must be built that
represents the legal relationships between
type qualifiers.

In the first case, we must now change
unchecked variables to a qualified type
commensurate with the authorization (e.g.,
read_authorized). Given that a variable
can have multiple authorizations that depends
on the kernel’s control flow, such annotation it-
self is a subject of static analysis. CQUAL does
not help with annotation (i.e., it is an input to
CQUAL), so we must devise another technique
for proper annotation. Fortunately, objects al-
most always have only one check, and no more
than three, so this problem is handled manually
at present.

The Vali authorization requirements for con-
trolled operations generated from the Vali run-
time analysis are used to identify the type qual-
ifier requirements of functions. Figure 8 dis-
plays the output data from Vali used as input
to this process. Variables are identified by their
line number, data type, member access, and ac-
cess type. While this is not completely unam-
biguous, it is sufficient for the kernel currently
and we can identify ambiguities that cannot be
resolved automatically. The SFNs identified
as ALWAYS indicate the authorization require-
ments to be enforced on this variable.

Since multiple kernel events may use the same
functions, the type qualifiers are, in general,
the OR of these cases. This is represented us-
ing CQUAL’s type qualifier lattice [8]. Since
CQUAL’s granularity is a function, code within
a function that is called only when different au-
thorization requirements are expected will not
necessarily be handled properly by CQUAL.
An example of this islease_modify in Fig-
ure 5 where the authorization forset_owner

DFN(namei.c, 207)(OT_INODE, 1152, -1)
SFN(ALWAYS): SCN_INODE_PERMISSION_EXEC
SFN(ALWAYS): SCN_INODE_PERMISSION_WRITE
SFN(ALWAYS): SCN_INODE_UNLINK_DIR
SFN(NEVER): SCN_INODE_UNLINK_FILE
SFN(NEVER): SCN_INODE_DELETE

Figure 8: Vali runtime output for the authoriza-
tion requirements for a controlled operation in
the unlink system call. The DFN indicates
the line number, variable type, operation, and
access which can be used to identify the vari-
able in most cases. The ALWAYS SFNs indi-
cate the authorization requirements.

is only necessary if(arg == F_UNLCK) .
Where a combination of authorizations to a
function are of the formA ∨ (A ∧ B) where
A andB are authorization types, then we may
need to manually annotate the code whereA ∧
B is required. We can do this by creating a
dummy function call that requiresA ∧ B. Ul-
timately, better intra-procedural analysis is re-
quired to find blocks of code within functions
that require different authorizations, however,
because such manual annotation limits regres-
sion testing (see Section 6.1).

5.4 Further Exploit Verification

Any exploit programs derived from the second
static analysis are added to the Vali runtime
analysis benchmarks, and runtime analysis is
rerun. Since these programs are mainly look-
ing for vulnerabilities, rather than anomalies,
the output will be largely unchanged from step
2.

6 Kernel Community Approach

As the kernel evolves, the placement of the
LSM authorization hooks may be invalidated.
Since the kernel development community at
large will modify the kernel, we need an ap-

Ottawa Linux Symposium 2002 236

proach in which the kernel modifications can
proceed while maintaining the verification sta-
tus of the LSM authorization hooks. Clearly,
the kernel development community will not be
inclined to perform the verification process of
the LSM community as described above. How-
ever, it is possible for the kernel development
community to leverage this work to maintain
LSM verification.

Basically, we envision that kernel developer’s
task in maintaining the LSM authorization
hook verification will involve regression test-
ing on the static and runtime analyses. As part
of an extended kernel build, the static analysis
process can be run as in step 3 of the LSM com-
munity process above. The type errors gen-
erated above can be compared to the existing
classifications to verify that no new type errors
or type error paths are created.

Since some unresolved type errors are likely to
remain for a while, it is ultimately necessary to
perform runtime regression testing. While this
task requires more work because the new ker-
nel must be run, much, if not all, of this task
can also be automated. In this case, the goal of
the kernel development community is to iden-
tify any new anomalies or new authorization
requirements (e.g., if a new object is added)
to the LSM community. As described below,
the Vali runtime analysis tool can identify such
differences automatically.

6.1 Static Regression Testing

Since the GCC annotation process, CQUAL
analysis, and output classification can be per-
formed automatically, static LSM regression
testing can be integrated as an extension to the
automated build process. We first describe the
tasks that are necessary to automate static anal-
ysis as part of the build process. While the
analysis will generate the output automatically,
some situations arise in manual analysis is cur-

rently required. We list these cases and exam-
ine their implications.

The build process for static analysis consists of
the following steps:

• GCC analysis: Our extended GCC com-
piler must be used to build the kernel. The
compiler creates a log of controlled op-
erations, controlled variable declarations,
and LSM authorization hooks. The fol-
lowing Makefile modifications are neces-
sary:

CC = $(CROSS_COMPILE)/\
$(VALI_GCC)/gcc \

--param ae-analyses=8243

The parameterae-analyses indicates
the types of information that our extended
GCC compiler gathers.

• Perl annotation: Perl scripts have been
written to pre-process the GCC analysis
output into a form that is then used by
a second set of Perl scripts to automati-
cally annotate the Linux source code with
CQUAL type qualifiers.

The GCC analysis generates output for
each controlled operation, such as seen in
Figure 9.

The first set of Perl scripts processes such
output into the form:

/usr/src/linux-2.4.9-\
.../fs/attr.c:61 \
inode_setattr *inode

• CQUAL Linux build : CQUAL requires
some pre-processing of the Linux source
code before it can perform the analysis
(e.g., removal of blanks and comments).
The standard GCC compiler can be used
for this step.

Ottawa Linux Symposium 2002 237

DEBUG_ACCESS: controlled operation:
file = /usr/src/linux-2.4.9.../fs/attr.c
current_function = inode_setattr.
function_line = 63.
current_line_number = 66
access_type = write
name = (*inode)
member = i_uid (384)
is_parameter = 1.

DEBUG_ACCESS: controlled operation:
file = /usr/src/linux-2.4.9.../fs/attr.c
current_function = inode_setattr.
function_line = 63.
current_line_number = 68
access_type = write
name = (*inode)
member = i_gid (416)
is_parameter = 1.

Figure 9: The GCC analysis output.

$(CC) $(CFLAGS) -E $< | \
$(CQUALBINDIR)/remblanks >$*.ii

• CQUAL analysis: CQUAL can then be
used to perform the static analysis. The
first step runs the CQUAL analysis. The
second step generates the type error path
information. See Figure 10.

• Authorization requirement annotation :
Vali runtime analysis generates authoriza-
tion requirements per controlled operation
as shown in Figure 8. We are in the pro-
cess of writing Perl scripts to apply these
requirements to the annotation of autho-
rizations specific to the requirements de-
scribed above. We hope to be able to re-
port on this at the symposium.

While we have not done detailed time measure-
ments, we have found that the entire analysis
adds about 10 minutes to the build time. GCC
analysis adds little overhead to the kernel build.
Perl processing takes about 5 minutes for the

kernel. CQUAL analysis takes approximately
another 5 minutes for the kernel.

The current static analysis process verifies that
the LSM authorization hook placement is cor-
rect, but some situations need further, manual
examination. These cases are listed below:

1. Changes to “safe” functions: The GCC
analysis identifies the addition of a new
controlled operation to a function for-
merly classified as “safe,” see Section 5.1.

2. Changes to manually annotated func-
tions: A source comparison detects a
change to a function with any manual
annotation (e.g., the addition of dummy
functions for ORed authorization require-
ments, see Section 5.3).

3. New type error variables: The CQUAL
analysis identifies any new variables that
have type errors.

4. New shortest type error paths: The

Ottawa Linux Symposium 2002 238

$(CQUALBINDIR)/cqual -prelude \
$(CQUALDIR)/config/prelude.i.security -config

$(CQUALDIR)/config/lattice.security attr.ii 2>attr.path

Figure 10: Performing static analysis with CQUAL.

CQUAL analysis identifies any new short-
est type error path for a variable with an
existing type error.

The first two situations are cases where the
dependencies of the analysis have changed,
such that the analysis may no longer be sound.
While we hope to eliminate such dependencies
through further analysis, we expect the analy-
sis will always be subject to some number of
dependencies. In fact, as the analysis becomes
more elaborate, the complexity of dependen-
cies increases, so the current set may prove to
be the best option.

The second two situations are the identification
of a new type error that may indicate a real
vulnerability. In order to reduce the number
of false positives, secondary analyses are nec-
essary to identify them. These analyses may
have dependencies (e.g., that is the cause of
case 1), so the cost of managing the dependen-
cies must be less than the value of removing
the false positives.

While it is not completely clear where the bal-
ance between manual effort on the part of the
kernel developer and LSM community is in this
process, we anticipate the following. Our goal
is that most notifications of case 1 and 2 can
be handled trivially by the kernel development
community and the LSM community can ver-
ify. Errors of case 3 and 4 may also be han-
dled by the development community in many
cases, but again the LSM community may do
deeper verifications and develop classifiers to
eliminate identifiable false positives.

6.2 Runtime Regression Testing

Since we expect that there will always be some
number of type errors for which exploits can
become possible and some tasks that are more
easily or better done by runtime analysis, we
strongly recommend performing the runtime
regression analysis. However, this analysis is
more time-consuming than the static analysis
in two key ways: (1) the instrumented ker-
nel must be built and (2) the runtime analy-
sis benchmarks must be executed on the instru-
mented kernel.

At present, the build process for a Vali-
instrumented kernel, runtime logging modules,
and analysis tools is completed automated.
However, the execution of the analysis is not
automated at present. The main tasks that are
not automated are: (1) the collection of in-
struction pointer locations for kernel entry/exit
points used to identify the kernel events and (2)
the runtime execution. The first task only in-
volves “grepping” the generated object dump
for a few well-known instruction, so it appears
straightfoward to automate this. We are look-
ing into how to automate the runtime data col-
lection using VMware4.

In order to enable regression testing, the Vali
runtime analysis tool generates output that
does not include line number or instruction
pointer information, so that regression can be
done across minor kernel modifications. Fur-
ther, aggregation of controlled operations that
are not function-sensitive enables regression
across kernel modifications regardless of func-

4VMware is a trademark of VMware, Inc.

Ottawa Linux Symposium 2002 239

tions executed in a kernel event.

Figures 6 and 7 give an idea of how the output
from the Vali runtime tool enables regression.
The output shows the controlled operations
with the same authorization requirements. In
cases where the authorization requirements of
controlled operations are sensitive to the func-
tion in which the operation is run, more in-
formation is displayed. In this case, if the
controlled operation is moved from one func-
tion to another, the regression test identifies the
change.

Given aggregation, the following types of
changes between regression tests are possible:

• New controlled operation in an aggre-
gate: An operation has been added, and it
has been classified with an existing aggre-
gate.

• Remove controlled operation from an
aggregate: An operation has been
deleted, so it no longer appears.

• Move controlled operation to another
aggregate: Either an authorization or an
operation has been moved such that a
different set of authorizations are active
when the operation is performed.

• Create a new aggregate: A new set of
authorizations has been created or a new
sensitivity has been triggered such that a
new aggregate of operations and permis-
sions has been created.

The addition and removal of controlled opera-
tions is not a major change if they adhere to the
existing aggregates. However, it is always wise
to verify that the operations are consistent with
the aggregations assigned to them. The move
of operations to other aggregates or the cre-
ation of new aggregates are significant changes
that warrant review.

7 Conclusions and Future Work

In this paper, we outline static and runtime
analysis tools that we have developed to ver-
ify the correctness of LSM authorization hook
placement. These tools have been used to find
five, since fixed, errors in LSM hook place-
ments. We believe that such verification should
not be a one-time process, but rather it should
practical for kernel developers to perform re-
gression testing as the kernel is modified. The
problem is to automate the analysis process
as much as possible and only provide test re-
sults that really require examination by the de-
velopment community, as much as possible.
We demonstrate that static analysis process and
most of the runtime analysis process are au-
tomated already. We also identify the types
of analysis results that the tools will report to
the developers. While it is nice to eliminate as
many false positives as possible, we are limited
by the Halting Problem as to how many can be
removed in general and the means for identi-
fying false positives introduces dependencies
that also must be verified. At present, we
do not eliminate most false positives automati-
cally, but expect that the LSM community will
identify them as such and regression over these
will be sufficient (i.e., as long as few, new false
positives are introduced little effort will be re-
quired to handle them). The generated output
is low-level which enables quick comparison,
but still makes is difficult for developers. Inter-
faces for handling this information are a signif-
icant area of future work.

References

[1] A. Berman, V. Bourassa, and E. Selberg.
TRON: Process-specific file protection
for the UNIX operating system. In
Proceedings of the 1995 USENIX Winter
Technical Conference, pages 165–175,
1995.

Ottawa Linux Symposium 2002 240

[2] M. Bishop and M. Dilger. Checking for
race conditions in file accesses.
Computing Systems, 9(2):131–152, 1996.

[3] N. S. Borenstein. Computational mail as
a network infrastructure for
computer-supported cooperative work.
In Proceedings of the Fourth ACM
CSCW Conference, pages 67–74, 1992.

[4] Wirex Corp. Immunix security
technology. Available at
http://www.immunix.com/Immunix

/index.html .

[5] A Edwards. [PATCH] add lock hook to
prevent race, January 2002. Linux
Security Modules mailing list at
http://mail.wirex.com

/pipermail

/linux-security-module

/2002-January/002570.html .

[6] A. Edwards, T. Jaeger, and X. Zhang.
Verifying authorization hook placement
for the Linux Security Modules
framework. Technical Report 22254,
IBM, December 2001.

[7] D. Engler, B. Chelf, A. Chou, and
S. Hallem. Checking system rules using
system-specific, programmer-written
compiler extensions. InProceedings of
the Fourth Symposium on Operation
System Design and Implementation
(OSDI), October 2000.

[8] J. Foster, M. Fahndrich, and A. Aiken. A
theory of type qualifiers. InACM
SIGPLAN Conference on Programming
Language Design and Implementation
(PLDI ’99), pages 192–203, May 1999.

[9] I. Goldberg, D. Wagner, R. Thomas, and
E. Brewer. A secure environment for
untrusted helper applications. InThe
Sixth USENIX Security Symposium
Proceedings, pages 1–12, 1996.

[10] T. Jaeger and A. Prakash. Support for the
file system security requirements of
computational e-mail systems. In
Proceedings of the 2nd ACM Conference
on Computer and Communications
Security, pages 1–9, 1994.

[11] D. Larochelle and D. Evans. Statically
detecting likely buffer overflow
vulnerabilities. InProceedings of the
10th USENIX Security Symposium,
pages 177–190, 2001.

[12] S. Minear. Providing policy control over
object operations in a Mach-based
system. InProceedings of the Fifth
USENIX Security Symposium, 1995.

[13] NSA. Security-Enhanced Linux
(SELinux). Available at
http://www.nsa.gov/selinux .

[14] LIDS organization. Linux intrusion
detection system. Available at
http://www.lids.org .

[15] A. Ott. Rule set-based access control
(RSBAC) for Linux. Available at
http://www.rsbac.org .

[16] U. Shankar, K. Talwar, J. S. Foster, and
D. Wagner. Detecting format string
vulnerabilities with type qualifiers. In
Proceedings of the 10th USENIX
Security Symposium, pages 201–216,
2001.

[17] R. Spencer, S. Smalley, P. Loscocco,
M. Hibler, and J. Lepreau. The Flask
security architecture: System support for
diverse policies. InProceedings of the
Eighth USENIX Security Symposium,
August 1999.

[18] Argus Systems. Argus PitBull LX.
Available at
http://www.argus-systems.com .

Ottawa Linux Symposium 2002 241

[19] L. Torvalds and C. Cowan. Greetings,
April 2001. Linux Security Modules
mailing list at
mail.wirex.com/pipermail

/linux-security-module

/2001-April/000005.html .

[20] X. Zhang, A. Edwards, and T. Jaeger.
Using CQUAL for static analysis of
authorization hook placement. In
Proceedings of the 11th USENIX
Security Symposium, 2002. To appear.

Buried alive in patches:
6 months of picking up the pieces of the

Linux 2.5 kernel

Dave Jones
SuSE Labs

davej@suse.de, http://www.codemonkey.org.uk

Abstract

When development began on the 2.5 Linux ker-
nel, I volunteered to forward port 2.4 fixes to
2.5, and keep them in sync ready for when Li-
nus was ready to accept them. Additionally, I
collected the small bits Linus frequently over-
looked, and perhaps more importantly, tried to
keep the 2.5-dj tree in a usable, bootable state
even when 2.5 mainline wasn’t.

1 Introduction

With the advent of a new development series
of the Linux kernel, Linus Torvalds typically
hands off the current tree to someone else, who
becomes maintainer of that stable series, and
work on the development branch accelerates,
whilst the stable branch collects fixes and up-
dates rather than new features.

Typically, as focus on the development branch
is in other areas, important fixes continue to
pour into the stable series which are sometimes
not picked up in the development branch until
much later, or sometimes, not at all.

In the past Alan Cox has done sterling work in
picking up the fixes that go into stable series,
and collecting them together in his regularly
released -ac patches. At various points, Alan

would then push known good parts to Linus at
such a time that he is ready for them.

When the 2.4 kernel diverged to the 2.5 devel-
opment branch, there was still a considerable
number of fixes going into 2.4. Alan was busy
with other projects at the time, and so it was
suggested that ‘someone’ should pick up the
bits going into 2.4 and make sure they don’t
get left behind for 2.5.

Without fully thinking through the conse-
quences, I decided to step forward, and got a
lot more than I bargained for, but learned a lot,
and had a lot of fun on the way.

2 The problems

The easy part of the job looks something like
this:

repeat:
$ cd linux-2.5
$ cat ../patch-2.4.18-pre1.diff \

| patch -p1 -F1 --dry-run

(note rejects)

$ vi patch-2.4.18-pre1.diff

(chop out rejects)
until applies

Ottawa Linux Symposium 2002 243

The same process applies whenever Linus re-
leases a new 2.5 kernel.

This is however just a fraction of what the job
entails.

The first thing to be aware of is that a lot of
the fixes going into 2.4 may not be relevant to
what’s happening in 2.5. For example, maybe
the maintainer of relevant code wants things
fixed cleaning in 2.5, whereas a band-aid is ac-
ceptable in 2.4, or maybe large restructuring of
the code is planned for 2.5, so the fix is irrele-
vant. Sometimes development of a driver con-
tinues actively in 2.4 and 2.5, and takes wildly
different directions.

Keeping up-to-date with what every maintainer
is doing with their subsystem is a tricky task
that involves lots of mindreading, guesswork,
and occasionally email to ask, “What exactly
is going on with xxx?”

Another tricky part of the job is making sure
the tree is still in a state where you can test
that what you’ve just merged actually works.
Not easy at times in a development series when
there are bits of core functionality being ripped
apart. Sometimes this results in compromises
(not merging certain parts until they compile),
sometimes getting ahead of mainline (where
fixes appear faster than Linus merges them),
and sometimes by means of adding really ugly
hacks that don’t stand a chance to be accepted
for mainline, but “do the job” for most people
who are more concerned about their own spe-
cific part of the kernel.

Perhaps by far trickiest part of all however
is trying to split things up into Torvalds-size
pieces so that every so often, a resync can oc-
cur to push some of the more obviously cor-
rect, and well-tested bits back to the mainline
tree. As I found my feet with syncing, I tried
various approaches, some of which worked out
better than others.

There are several reasons for the difficulty.

• In the case of merging a 2.4pre to 2.5,
using the above method means I’m left
with a several MB patch which originally
consisted of perhaps dozens of smaller
patches. Whilst some of these are sent to
the Linux kernel mailing list, not all are
visible until they show up in Marcelo’s
tree.

• Maintainer issues. Sometimes it’s not im-
mediately obvious from reading the diff
(or even the code in a before and after
state) why a patch is needed. The main-
tainer however knows (or at least should
know) his/her own code inside out, and
know the precise reasoning behind every
diff going into Marcelo/Linus’ kernel. In
these circumstances, it’s often the best
policy to let them take care of merging
such patches, as they can explain to Li-
nus in much better terms why he needs
to take the patch instead of my guesswork
and hand waving.

• Patch drift. Patches I did manage to pick
up from the kernel mailing list, or were
Cc:’d to me were a little easier, as they
tended to come with good descriptions by
the patch author. The only problem with
these was that over time, the patch would
no longer apply to Linus’ vanilla tree, so
the patch would have to be kept up to
date. With so many patches applied, keep-
ing them all up to date seperately became
harder and harder, especially if several
patches wanted to touch the same files.

• Conflicts. When two or more patches are
touching the same file, what happens next
depends on the level of change in the var-
ious parts. For example, if I had sev-
eral patches touching the tulip network
driver, one fixing an obvious bug, one fix-
ing a spelling mistake, and another adding

Ottawa Linux Symposium 2002 244

a MODULE_LICENSE tag, the latter two
are trivial enough that the patch doesn’t
need splitting.

Where there are two parts to the patch fix-
ing different problems, or perhaps adding
functionality, things get more compli-
cated, and tools such as editdiff become
huge timesavers.

It became apparent very quickly that splitting
up the several MB patches from 2.4 back into
their component parts for each release wasn’t
feasible due to the amount of time it took. Each
time a new Marcelo prepatch appeared, it was
merged wholesale after removal of unneeded
parts. When the periodic resyncs with Linus
then occured, there were in many cases quite a
few trivial patches to the same file, making it
easy to get rid of lots of the smaller parts of my
tree.

3 Patch Rejection

It would be an easy job to simply apply ev-
ery patch that ever gets sent either directly, or
to the kernel mailing list. However things are
never simple, and a number of factors have to
be taken into consideration.

Chances of Linus ever accepting them.
Some patches are just too ugly to live.
Various people sent me patches that Linus
had rejected, in the hope that as it was
coming from me, Linus would somehow
take a different view. Somewhat amused
by this, most of these patches are either
memorable, or discussion with the rele-
vant maintainer is usually enough to get
a “don’t apply” message back. If there’s
no chance of Linus ever taking it, then
keeping patches of this kind in my tree
was deemed pointless.

Controversial patches. A good example of
this case was Eric Raymond’s CML2
patch. A very large patch that touched
the configuration file of every part of the
kernel. It’s hard to imagine a more far-
reaching change. At one point, Linus even
made claims that he had no interest in the
kernel configuration language, and that it
would be probably better maintained out-
side the kernel tree. So this example also
falls into category 1. Had I merged CML2
at any point, this would have made it im-
possible to merge any configuration up-
dates from mainline without first rewrit-
ing them as CML2 rules, which was un-
acceptable. Likewise, any changes made
could not be sent back to mainline.

Orthoganal works. Sometimes patches ap-
pear, and there will be nothing technically
wrong with them, but perhaps the timing
is wrong due to someone else working in
the same area on maybe a larger scale.
An example of this was the i386 sub-
arch patches James Bottomley did, which
unfortunatly clashed with the consider-
able rewrites Randy Dunlap did to i386-
specific drivers such as MTRR.

4 Timeline of events.

4.1 December 2001

At the beginning of December, Linus had put
out 2.5.0, and was concentrating almost solely
on merging Jens Axboe’s block layer rewrite.
At the same time, Marcelo had begun his first
‘real’ patch merging, after having put out the
rush-released 2.4.16. It was noted that these
fixes were not getting merged into 2.5, and
Dave Miller suggested that someone collect
them, and keep them up to date until such a
time that Linus was ready to accept them. I
had been doing this partially at the time for my
own use anyway, so I decided to take it on.

Ottawa Linux Symposium 2002 245

Towards the end of the month, when Linus was
up to 2.5.1pre11, I made my first release of -dj,
which was around a 1MB diff against Linus’
current tree.

4.2 January 2002

In January, Linus had got up to 2.5.2pre, and
Marcelo had accelerated in patch merging as
he got used to his new role. The diffsize be-
tween my tree and Linus’ had started to in-
crease dramatically, and so the first resync of
the trees was planned. After pushing a con-
siderable amount of the more obvious fixes to
Linus, only some of the trickier-to-merge bits
remained, although still a sizable amount.

It was at this time that Linus started break-
ing things dramatically in 2.5. First came the
big kdevt redesign, which broke compilation
of many parts of the kernel. The linux-kernel
mailing list was awash with many fixes for
these compile errors, although it took Linus
some time to get many of them merged.

Another key point of note in January was the
introduction of the new Framebuffer API into
my tree. James Simmons wanted a 2.5 that
stood more chance of being able to compile,
and decided to use my tree as a basis for devel-
opment.

A great supplement to me picking up various
small patches on the Linux kernel mailing list
was Rusty Russell’s trivial patchbot. Patches
sent to the robot get archived, and automati-
cally retransmitted on the sender’s behalf, and
do all kinds of magic like automatically check-
ing that they still apply when a new kernel
appears, and bouncing a “doesn’t apply any
more—please rediff” back to the patch author.
With both Rusty and myself picking up and re-
transmitting these on the patch-author’s behalf,
the “Linus isn’t taking my patches” arguments
for trivial patches all but disappeared.

During pushing bits to Linus, I discovered Tim
Waugh’s patchutils, which is a set of tools
for manipulating diffs. Until this point, when
sending a patch to Linus, I had been doing
pretty much everything in vim, and chopping
out unnecessary parts of the rest of my tree
from the patch. Quite a time-consuming pro-
cess. With patchutils, things got a lot easier as
I could now with a ‘simple’ command line ex-
tract all the related parts of a patch from my
tree. For example,

grepdiff pf_gfp_mask dj1.diff \
| xargs -n1 \
filterdiff dj1.diff -i

would extract all the diffs from my tree that
touch pf_gfp_mask. After doing this, and
deleting the irrelevant hunks of the the diff
from the output, the patch was more or less
ready to go to Linus.

As well as these, Patchutils also includes many
other useful tools that save more time to a
patch-merger than any other tool I’ve yet to
run.

Toward the end of the month, my tree was
around 2MB away from Linus.

4.3 February

At the beginning of February, Linus was up to
2.5.5, and with the block layer taking shape, he
had started merging some other large new fea-
tures. This kernel saw the introduction the x86-
64 port, the ALSA merge, and the first parts of
the new input layer (all of which had been in
-dj for a month).

On the downside, some other things had con-
tinued to break dramatically. Lots more drivers
no longer compiled due to the virt_to_bus
macros being changed in an attempt to get
more portable drivers. I made a compromise

Ottawa Linux Symposium 2002 246

in my tree and wrapped this change in an op-
tion called CONFIG_DEBUG_OBSOLETE.
When not selected, the old behaviour occurred,
and the drivers continued to compile. Crude,
but effective.

Other notable changes this month included the
various IDE cleanups by Martin Dalecki, Vo-
jtech Pavlik, Pavel Machek, and others. As a
result of this work, Andre Hedrick stood down
as 2.5 IDE maintainer.

It became aparent that I hadn’t pushed to Linus
for a while, as by now, my tree was 4MB away
from Linus, with quite a lot of patches pending.
The new framebuffer API work was taking up
a large percentage of this, as was the new input
layer work.

Christoph Hellwig had been regularly looking
through my patches, and with nearly every re-
lease he would spot something really dumb that
I did, like reintroducing calls to a now-dead
API, or CVS $ID: tag damage. (I use CVS and
frequently forget to add files with -ko). These
silly mistakes happened often enough that I de-
cided to write a simple perl script to check for
silly mistakes like this.

Ottawa Linux Symposium 2002 247

#!/usr/bin/perl -w
checkdiff.pl -- 2.5-dj kernel patch checker.
#
I’m stupid.
This script sanity checks diffs before I put them out, so
that hch doesn’t have to remind me I goofed.

use strict;

foreach (@ARGV) {
process ($_) or warn "Couldn’t check file $_: $!";

}

sub process {
my $filename=shift;

open INPUT, $filename or return undef;
my @lines=<INPUT>;
close INPUT;
chomp @lines;

my $linenr=0;

foreach my $line (@lines) {
$linenr++;

if ($line=~/davej/ and $line=~/\$Id:/) {
print "Found davej CVS damage at line $linenr\n$line\n\n";

}

We are adding a line, check its not obsolete.
if ($line=~/^\+/) {

if ($line=~/iorequest_lock/) {
print "Adding code to frob iorequest_lock" .

" at line $linenr\n$line\n\n";
}
if ($line=~/[]MAJOR[(]/) {

print "Adding code to frob MAJOR at line $linenr\n$line\n\n";
}
if ($line=~/get_fast_time/) {

print "Adding get_fast_time at line $linenr\n$line\n\n";
}
if ($line=~/strtok/) {

print "Adding strtok at line $linenr\n$line\n\n";
}
... other rules here ...

}
}
return 1;

}

Cut-down version of the Perl script used for checking patches before uploading to kernel.org

Ottawa Linux Symposium 2002 248

4.4 March

By March, mainline was up to 2.5.7. Proba-
bly the biggest change was the introduction of
Robert Olsen and co’s NAPI work.

In an attempt to get the diff size between my
tree and Linus’ down, I decided to drop the
arch updates for architectures like S390, m68k,
etc. The reasoning behind this was that even
with the updates from my tree, they never com-
piled in 2.5 anyway, due to the lack of other
necessary changes, such as those imposed by
the introduction of Ingo Molnar’s O(1) sched-
uler.

Linus had at this point been using bitkeeper
for a few weeks, and was just starting to get
comfortable with it. Patches seemed to be get-
ting applied at a much more accelerated rate
than previously. I wondered if it could help
out with the merging of my-tree to Linus’, and
played with it for a week or so, often exchang-
ing ideas/queries with Larry McVoy, but ulti-
mately, it didn’t work out for me. The only way
bitkeeper would work for such a large set of
diffs (at the time, up to 7MB away from main-
line) would have been to have many trees for
all the different patches, all combined into one
union tree. There was however a problem with
this. If I go to the extreme of splitting up my
tree into component parts to feed into bitkeeper
trees, I may as well just feed those small bits to
Linus as regular GNU patches.

Linus agreed with this, and this is how we con-
tinued the merging.

I started to fall behind a little in this month
with syncing both from my tree to Linus and
vice versa. Mostly due to me moving house,
and having to make do without life’s essentials
(like ADSL) for a while.

After getting back online, and spending a few
days getting everything back up to date, Linus

went on holiday for a few weeks, with the part-
ing note “Jeff Garzik and Dave Jones will be
taking care of patches whilst I’m gone.” The
following two weeks were mostly quiet fortu-
nately, which gave me great opportunity to split
up patches ready for the largest resync so far.

4.5 April

April began with 2.5.8 still being current. Li-
nus had returned from his holiday, and ‘The
big resyncing’ ensued. With 7.5MB of diff be-
tween his tree and mine, this was no small task,
and not one that would be over any time soon.

I pushed 128 patches to Linus, 493KB worth,
and a further 474KB in 50 patches to Jeff
Garzik (network drivers and the like). 6 hours
later, 126 of the patches I sent direct to Linus
were applied. An hour later, most of what I
sent to Jeff also showed up in Linus’ tree. In a
state of shock, I wondered how I could “shovel
faster.” By the time Linus put out pre1, my tree
was 6MB away from mainline.

pre2 was another few hundred KB (although
mostly fixing wrong merges from pre1).
Whilst splitting up various bits for Linus, and
looking through the patches in my tree, I also
found a lot of other patches that really didn’t
make sense to continue carrying (whitespace
differences, superseded patches, updated CVS
idents, etc.).

A mistake that happened during merging
here was that CONFIG_DEBUG_OBSOLETE
slipped in as a Config.help text. Interest-
ingly, Linus decided to drop what this op-
tion was wrapping in my tree, and make it
unconditional. Whilst having more portable
drivers was an admirable goal, it hadn’t really
prompted any of the maintainers to fix their
drivers, causing more headache than anything
productive.

After this, I spent a week at Linuxworld—i.e.,

Ottawa Linux Symposium 2002 249

where I had hoped to do more patch splitting,
but it didn’t happen due to time constraints.
What did happen was the beginning of more
catch up work. By the time I returned, I had
to resync 2.4.19pre4,pre5,pre6 & 2.5.8pre2 &
pre3 to my tree.

In addition to this, there were now 113 patches
in my inbound queue. At this point it was re-
alised that I couldn’t ‘stop to do a resync’ every
so often, and that syncing a “moving target”
was considered only viable option.

Toward the end of the month, Linus stopped
doing -pre patches, and instead started doing
full releases more often. At the end of the
month, 2.5.11 was current, which featured an-
other large number of merges, including the
beginnings of the new framebuffer code. At
time of writing this paper, resync against 2.5.11
hadn’t been done, but estimated diffsize was
between 4-5MB.

5 Future Plans

At the time of writing, there are over two
months remaining before OLS, during which
much more resyncing will happen, and con-
versely, many more patches are likely to get
applied to my tree. The larger parts of my tree
(the Framebuffer code, new input API, ALSA
OSS updates) are slowly starting to get merged
into mainline. If by some freak opportunity
my tree manages to get down to a reasonable
size again, I’ll take a look at using bitkeeper
for merges once again.

Given a hypothetical perfect world, the plan
is that by the time 2.6 is ready, the -dj series
of kernel patches will become less necessary.
Depending on rates of merging, positions of
moon, and other acts of randomness, it may be
that 2.6-dj patches will become necessary until
fully merged, and some of the more experimen-
tal bits may end up being put back until 2.7.x

opens.

6 Links

http://www.kernel.org/pub/people

/davej/patches/2.5/

Where my -dj patches are to be found.

http://www.codemonkey.org.uk

/Linux-2.5.html

A list of known remaining problems with
current/recent 2.5’s.

http://diary.codemonkey.org.uk/

My online diary where I frequently write
about progress on 2.5

http://cyberelk.net/tim

/patchutils/

Tim Waugh’s patchutils

trivial@rustcorp.com.au

Rusty Russell’s trivial patch robot.

7 Acknowledgments

The work of patch integrator is largely a soli-
tary task, but there are countless people wor-
thy of gratitude, from the many people who
were prepared to download and try out my
-dj patches, especially those who sent feed-
back/reports/patches.

Tim Waugh for patchutils, which made merg-
ing so much easier.

Larry McVoy for making Linus scale despite
the critics.

And finally, Alan Cox for being busy with
other things in December 2001. Without
which, I’d probably have found something
much more boring to have spent the last 6
months hacking.

Documentation/CodingStyle and Beyond

Greg Kroah-Hartman
IBM Linux Technology Center

greg@kroah.com | gregkh@us.ibm.com

Abstract

With more companies starting to write Linux
kernel code, an understanding of what is the
acceptable kernel coding style and conventions
is becoming a necessity. The goal of this
paper is to explain both the written and un-
written Linux kernel programming style. It
explains why a consistent coding style and
rules are a requirement for the kernel. It dis-
cusses the basic kernel style rules as outlined in
Documentation/CodingStyle and ex-
plains the large number of style rules that are
not documented. Each of these rules is docu-
mented with existing code, and why the rule is
considered a “good thing.”

1 Why rules?

Why are there kernel programming style rules
in the first place? Why not just let every au-
thor code in whatever style they want to, and
let everyone live with it? After all, code for-
matting does not affect memory use, execution
speed, or anything else a normal user of the
kernel would see. The reason can be summed
up with this quote from Elliot Soloway and
Kate Ehrlich in 1984[1]

It is not merely a matter of aesthet-
ics that programs should be written
in a particular style. Rather there
is a psychological basis for writ-
ing programs in a conventional man-

ner: programmers have strong expec-
tations that other programmers will
follow these discourse rules. If the
rules are violated, then the utility af-
forded by the expectations that pro-
grammers have built up over time is
effectively nullified.

A number of other studies and research has
proven that if a large body of code is written
in a common style, it directly affects how easy
it is to quickly understand the code, review it,
and revise it.

Since the number of developers that look at the
Linux kernel code is very large, it is in the best
interest for the project to have a consistent style
guideline. This allows the code to be more eas-
ily understood either by someone reading it for
the first time, or by someone revisiting their old
code later. It also allows someone else to more
easily read, understand, and potentially fix and
enhance your code, which is one of the greatest
strengths of open source code.

2 What are the rules?

Now that we have an understanding that there
should be some rules, what are they? Linus
Torvalds and other kernel programmers have
written a short document that details some of
the kernel programming rules. This document
is located in theDocumentation/CodingStyle
file in the kernel source tree. It is required read-
ing for anyone who wants to contribute to the

Ottawa Linux Symposium 2002 251

Linux kernel. Here is a summary of these rules.

2.1 Indentation

All tabs are 8 characters1, and will be the
<TAB> character. This makes it easy to
quickly locate where different blocks of code
start and end. If you find your code is being in-
dented too deeply, with more than three levels
of indentation causing the code to shift off to
the right of the screen, then you should fix the
code. It is a good warning.

2.2 Placing Braces

The original authors of UNIX placed their
braces with the opening brace last on the line,
and the closing brace first on the line, like:

if (x is true) {
we do y

}

Because of this, the kernel shall be written in
this style.

The exception to this rule are functions, which
have the opening brace at the beginning of the
line, like:

int function(int x)

{
body of function

}

Again, this is how Kernighan and Ritchie wrote
their code.

For good examples of the proper indentation
and braces style, look at any of thefs/*.c files,
or anything in thekernel/*.c files. Generally,
most of the kernel is in the proper indenta-

1To fit within a column, some of the examples have
been forced to deviate from this. —OLS Formatting
Team

tion and brace style, but there are some no-
table exceptions. The code infs/devfs/*.cor
drivers/scsi/qla1280.*are good examples of
hownot to do indentation and braces.

There is a script that can be used to run the
indent(1) program in the proper kernel in-
dentation and braces style. It is useful if
you have to convert a large amount of code
to the correct format. This file is located at
scripts/Lindentin the kernel source tree.

2.3 Naming

Your variables and functions should be
declared descriptively and concisely. You
should not use long flowery names like
CommandAllocationGroupSize or
DAC960_V1_EnableMemoryMailboxInterf() ,
but rather, cmd_group_size , or
enable_mem_mailbox() . Your names
need to be descriptive, and easily recognized.
Mixed case names are frowned upon and
encoding the type of the variable or function
in the name (like “Hungarian notation”) is
forbidden.

Global variables should be only used if they are
absolutely necessary. Local variables should
be short and to the point.i andj are valid local
loop variable names, whileloop_counter
is too verbose.tmp is allowed to be used for
any short-lived temporary variable.

Again, good examples of proper names
can be found in fs/*.c. Lots of driver
code has bad variable names, as they
have been ported from other operating
systems. drivers/block/DAC960.* and
drivers/scsi/cpqfc* are examples of how
to not name functions and variables.

Ottawa Linux Symposium 2002 252

2.4 Functions

Functions should only do one thing, and do it
well. They should be short, and contain one or
two screens of text. If you have a function that
does lots of small things for different cases,
it is acceptable to have a longer function. If
you have a complex long function, it should be
rewritten to be simpler.

If you have a large number of local variables
within a function, it is also a measure of the
complexity. If there are more than 10 local
variables, it is too complex.

There are lots of good examples of nice
sized functions in thefs/*.c and other kernel
core code. Some bad examples of functions
can be found indrivers/hotplug/ibmphp_res.c
where one function is 370 lines long, or
drivers/usb/usb-uhci.cwhere one function has
18 local variables.

2.5 Comments

Comments are very good to have, if they are
good comments. Bad comments explain how
the code works, who wrote a specific function
on a specific date, or other such useless things.
Good comments explain what the file or func-
tion does, and why it does it. They should be
at the beginning of the function, and not neces-
sarily embedded within the function. You are
writing small functions, right?

There is now a standard format for function
comments. It is a variant of the documenta-
tion method used by the GNOME project for
their code. If you write your function com-
ments in this style, the information in them can
be extracted by a tool and made into stand-
alone documentation. This can be seen by run-
ning make psdocs or make htmldocs
on the kernel tree to generate akernel-api.psor
kernel-api.htmlfile containing all of the public

interfaces to the different kernel subsystems.

/ ∗∗
∗ function_name(:)? (- short description)?

(∗ @parameterx: (description of parameter x)?)∗
(∗ a blank line)?
∗ (Description:)? (Description of function)?
∗ (section header: (section description)?)∗

(∗)?∗ /

Figure 1: The format of a block comment

This style is documented in the file
Documentation/kernel-doc-nano-HOWTO.txt
andscripts/kernel-doc. The basic format can
be seen in Figure 1.

The short function description cannot be multi-
line, but the other descriptions can be, and they
can contain blank lines. All further descriptive
text can contain the following markups:

funcname() - name of a function

$ENVVAR- name of a environment variable

&struct_name - name of a structure (up to
two words including ‘struct’)

@parameter - name of a parameter

%CONST- name of a constant.

A simple example of a function comment with
a single argument looks like:

/ ∗∗
∗ my_function - does my stuff
∗ @my_arg: my argument
∗
∗ Does my stuff explained.
∗∗ /

void my_function (int my_arg)

{
...

Ottawa Linux Symposium 2002 253

}

Comments should be written for structures,
unions and enums. The format for them is
much like the function format:

/ ∗∗
∗ struct my_struct - short description
∗ @a: first member
∗ @b: second member
∗
∗ Longer description
∗ /

struct my_struct {
int a;

int b;

};

Some good examples of well commented func-
tions can be found in thedrivers/usb/usb.cfile,
where all global functions are documented.
The file arch/i386/kernel/mtrr.cis a good ex-
ample of a file with a reasonable amount of
comments, but they are in the incorrect format,
so they can not be extracted by the documen-
tation tools. drivers/scsi/pci2220i.cis also a
good example of hownot to create the com-
ment blocks for your functions.

2.6 Data Structure requirements

The addition of a chapter on data structures,
showed up in the 2.4.10-pre7 kernel release.
It describes how every data structure that can
exist outside of a single-threaded environment,
needs to implement reference counting to prop-
erly handle the memory management issues. If
you add reference counting to your structure,
you can avoid lots of nasty locking issues and
race conditions. Multiple threads can access
the same structure without having to worry that
a different thread will free the data from under
it.

The last sentence in this chapter is required

reading by any kernel developer:

Remember: if another thread can
find your data structure, and you
don’t have a reference count on it,
you almost certainly have a bug.

A good example of why reference counting is
necessary can be found in the USB data struc-
ture, struct urb . This structure is cre-
ated by a USB device driver, filled with data,
sent to a USB host controller where it will
be processed and eventually sent out over the
wire. When the host controller is finished with
the urb, the original device driver is notified.
While a host controller driver is processing the
urb, the original driver can try to cancel the urb,
or even free it. This led to long detailed argu-
ments on thelinux-usb-develmailing list about
when in the life span of a urb it was allowed to
be touched by either driver, and numerous bugs
in the core USB subsystem and different USB
drivers.

In the 2.5 kernel series,struct urb had
a reference count added to it, and the USB
core and USB host controller drivers had a
small amount of code added to properly handle
the reference count. Now whenever a driver
wants to use the urb, a reference count is in-
cremented. When it is finished, the reference
count is decremented. If this was the last user,
the memory is freed, and the urb disappears.
This allowed the USB device drivers to vastly
simplify their urb handling logic and fixed lots
of different race condition bugs. It also made
all of the developer’s lives simpler by quieting
all arguments about the topic.

3 Unwritten rules

If you follow the above set of rules, your code
looks like good Linux kernel code. There are
quite a few unwritten rules and style guidelines

Ottawa Linux Symposium 2002 254

that good kernel code follows. Here are some
of them.

3.1 Avoid NIH syndrome

There are a wide variety of well designed, well
documented, and well debugged functions and
data structures within the kernel. Take advan-
tage of them rather than reinventing your own
version. Among the most common of these are
the string functions, the byte order functions,
and the linked list data structure and functions.

3.2 String functions

In the file, include/linux/string.h, a number of
common string handling functions are defined.
These include:

strpbrk
strtok
strsep
strspn
strcpy
strncpy
strcat
strncat
strcmp
strncmp
strnicmp
strchr
strrchr
strstr
strlen
strnlen
memset
memcpy
memove
memscan
memcmp
memchr

And in the file, include/linux/kernel.h, a num-
ber of “simple” string functions are defined:

simple_strtoul

simple_strtol
simple_strtoull
simple_strtoll

If you need any type of string functionality in
your kernel code, use the built in functions. Do
not try to rewrite the existing functions acci-
dentally.

3.3 Byte order handling

Do not rewrite code to switch data between
different endian representations. The filein-
clude/asm/byteorder.h(asm will point to the
proper subdirectory, depending on your pro-
cessor architecture) brings in a wide range of
functions that allow you to do automatic con-
versions, no matter what the endian format of
your processor or your data.

3.4 Linked Lists

If you need to create a linked list of any
kind of data structure, use the code that is
in include/linux/list.h. It contains a struc-
ture, struct list_head , that should be
included within the structure for the new list.
You can easily add, remove, or iterate over a
list of data structures, without having to write
new code.

Some good examples of code that
uses the list structure can be found in
drivers/hotplug/pci_hotplug_core.c and
drivers/ieee1394/nodemgr.c. Some code
in the kernel that should be using the list
structure, can be found in the ATM core,
within thestruct atm_vcc data structure.
Because the ATM code did not usestruct
list_head , every ATM driver needs to walk
the lists of data structures by hand, duplicating
lots of code.

Ottawa Linux Symposium 2002 255

3.5 typedef is evil

typedef should not be used in naming any of
your structures. Almost all main kernel struc-
tures do not have atypedef to shorten their
usage. This includes the following:

struct inode
struct dentry
struct file
struct buffer_head
struct user
struct task_struct

Usingtypedef tries to hide the real type of a
variable. There have been records of some ker-
nel code using typedefs nested up to 4 layers
deep, preventing the programmer from telling
what type of variable they are really using.
This can easily cause very large structures to be
accidentally declared on the stack, or to be re-
turned from functions if the programmer does
not realize the size of the structure.

typedef can also be used as a crutch to keep
from typing long structure definitions. If this is
the case, the structure names should be made
shorter, according to the above listed naming
rules.

Never define atypedef to just signify a
pointer to a structure, as in the following ex-
ample:

typedef struct foo {
int bar;

int baz;

} foo_t, ∗pfoo_t;

This again hides the true type of the variable,
and is using the name of the variable type to
define what is is (see the comment about Hun-
garian notation previously.)

Some examples of wheretypedef is badly
used are in theinclude/raid/md*.hfiles where

every structure has atypedef assigned to it,
and in thedrivers/acpi/include/*.hfiles, where
a lot of the structures do not even have a name
assigned to them, only atypedef .

The only place that usingtypedef is ac-
ceptable, is in declaring function prototypes.
These can be difficult to type out every time,
so declaring a typedef for these is nice to
do. An example of this is thebh_end_io_t
typedef which is used as a parameter in the
init_buffer() call. This is defined inin-
clude/fs.has:

typedef void (bh_end_io_t)
(struct buffer_head *bh,
int uptodate);

3.6 No magic numbers

The Jargon file[2] describes a magic number
within source code as:

In source code, some non-obvious
constant whose value is significant to
the operation of a program and that
is inserted inconspicuously in-line
(hardcoded), rather than expanded in
by a symbol set by a commented
#define . Magic numbers in this
sense are bad style.

Fortunately the kernel does not have many
instances of code that uses magic numbers.
The drivers/usb/serial/pl2303.cdriver used
to have the code shown in Figure 2 in the
open() function. This code contains a lot
of of different magic numbers. The current
version of the file can be seen in Figure 3.
Even with the odd use of the macrosFISH()
and SOUP() , some of the magic numbers
have been replaced with the more descrip-
tive VENDOR_READ_REQUEST_TYPE,
VENDOR_READ_REQUEST,

Ottawa Linux Symposium 2002 256

VENDOR_WRITE_REQUEST_TYPE and
VENDOR_WRITE_REQUEST. This code
could be cleaned up a lot more, detailing what
the other magic numbers mean. Unfortunatly
the driver was written by reverse engineering
a protocol stream captured from a computer
running a different operating system. Most of
these numbers’ true purpose are not known,
only that they are necessary.

#define FISH(a,b,c,d) \
i = usb_control_msg (serial −>dev, \

usb_rcvctrlpipe(serial −>dev,0), \
b, a, c, d, buf, 1, 100); \

dbg("0x%x:0x%x:0x%x:0x%x %d - %x", \
a,b,c,d,i,buf[0]);

#define SOUP(a,b,c,d) \
i = usb_control_msg(serial −>dev, \

usb_sndctrlpipe(serial −>dev,0), \
b, a, c, d, NULL, 0, 100); \

dbg("0x%x:0x%x:0x%x:0x%x %d", \
a,b,c,d,i);

FISH (0xc0, 1, 0x8484, 0);

SOUP (0x40, 1, 0x0404, 0);

FISH (0xc0, 1, 0x8484, 0);

FISH (0xc0, 1, 0x8383, 0);

FISH (0xc0, 1, 0x8484, 0);

SOUP (0x40, 1, 0x0404, 1);

FISH (0xc0, 1, 0x8484, 0);

FISH (0xc0, 1, 0x8383, 0);

SOUP (0x40, 1, 0, 1);

SOUP (0x40, 1, 1, 0xc0);

SOUP (0x40, 1, 2, 4);

Figure 2: Original version ofpl2303.c

3.7 Noifdef in .c code

With the wide number of different processors,
different configuration options, and variations
of the same base hardware types that Linux
runs on, it is very easy to start having a lot of

#define FISH(a,b,c,d) \
i = usb_control_msg (serial->dev, \

usb_rcvctrlpipe(serial->dev,0), \
b, a, c, d, buf, 1, 100); \

dbg("0x%x:0x%x:0x%x:0x%x %d - %x", \
a,b,c,d,i,buf[0]);

#define SOUP(a,b,c,d) \
i = usb_control_msg(serial->dev, \

usb_sndctrlpipe(serial->dev,0), \
b, a, c, d, NULL, 0, 100); \

dbg("0x%x:0x%x:0x%x:0x%x %d", \
a,b,c,d,i);

FISH (VENDOR_READ_REQUEST_TYPE,
VENDOR_READ_REQUEST, 0x8484, 0);

SOUP (VENDOR_WRITE_REQUEST_TYPE,
VENDOR_WRITE_REQUEST, 0x0404, 0);

FISH (VENDOR_READ_REQUEST_TYPE,
VENDOR_READ_REQUEST, 0x8484, 0);

FISH (VENDOR_READ_REQUEST_TYPE,
VENDOR_READ_REQUEST, 0x8383, 0);

FISH (VENDOR_READ_REQUEST_TYPE,
VENDOR_READ_REQUEST, 0x8484, 0);

SOUP (VENDOR_WRITE_REQUEST_TYPE,
VENDOR_WRITE_REQUEST, 0x0404, 1);

FISH (VENDOR_READ_REQUEST_TYPE,
VENDOR_READ_REQUEST, 0x8484, 0);

FISH (VENDOR_READ_REQUEST_TYPE,
VENDOR_READ_REQUEST, 0x8383, 0);

SOUP (VENDOR_WRITE_REQUEST_TYPE,
VENDOR_WRITE_REQUEST, 0, 1);

SOUP (VENDOR_WRITE_REQUEST_TYPE,
VENDOR_WRITE_REQUEST, 1, 0xc0);

SOUP (VENDOR_WRITE_REQUEST_TYPE,
VENDOR_WRITE_REQUEST, 2, 4);

Figure 3: Current version ofpl2303.c

ifdef statements in your code. This is not the
proper thing to do. Instead, place theifdef
in a header file, and provide empty inline func-
tions if the code is not to be included.

As an example, consider the code in
drivers/usb/hid-core.cas shown in Figure 4.

Here the author does not want to call
hiddev_hid_event() if a specific config-
uration option is not enabled. This is because
that function is not present if the configuration

Ottawa Linux Symposium 2002 257

static void hid_process_event (struct hid_device ∗hid,

struct hid_field ∗field,

struct hid_usage ∗usage, __s32 value)

{
hid_dump_input(usage, value);

if (hid −>claimed & HID_CLAIMED_INPUT)

hidinput_hid_event(hid, field, usage, value);

#ifdef CONFIG_USB_HIDDEV

if (hid −>claimed & HID_CLAIMED_HIDDEV)

hiddev_hid_event(hid, usage −>hid, value);

#endif

}

Figure 4: Original version ofdrivers/usb/hid-core.c

include/linux/hiddev.h:

#ifdef CONFIG_USB_HIDDEV

extern void hiddev_hid_event (struct hid_device ∗,

unsigned int usage, int value);

#else

static inline void hiddev_hid_event (struct hid_device ∗hid,

unsigned int usage, int value) { }
#endif

drivers/usb/hid-core.c:

static void hid_process_event (struct hid_device ∗hid,

struct hid_field ∗field,

struct hid_usage ∗usage, __s32 value)

{
hid_dump_input(usage, value);

if (hid −>claimed & HID_CLAIMED_INPUT)

hidinput_hid_event(hid, field, usage, value);

if (hid −>claimed & HID_CLAIMED_HIDDEV)

hiddev_hid_event(hid, usage −>hid, value);

}

Figure 5: After removal ofifdef in drivers/usb/hid-core.c

option is not enabled.

To remove thisifdef , the changes shown in
Figure 5 were made.

If CONFIG_USB_HIDDEV is not en-
abled, the compiler replaces the call to
hiddev_hid_event() with a null func-
tion call, and then optimizes away the if

Ottawa Linux Symposium 2002 258

statement entirely. This keeps the code
readable and is much easier to maintain.

3.8 Labeled Elements in Initializers

gcc allows the use of labeled elements in ini-
tializers. This means that structures that are
initialized at compile time can have the individ-
ual field names used to specify what fields to
set. For example, if thestruct foo struc-
ture was defined as:

struct foo {
int a;
int b;
int c;

};

any static definition of a variable of this type
would traditionally be written as:

static struct foo bar =

{A_INIT, B_INIT, C_INIT };

With the gcc extension, this initialization
could also be written as:

static struct foo bar = {
a: A_INIT,

b: B_INIT,

c: C_INIT,

};

which is a lot more descriptive. If a field is
not specified with a specific value, the compiler
sets that field to zero.

The kernel is filled with large structures, and
lots of them are initialized at compile time.
Previously, if someone added a new field in
a structure, any variables that were declared
like the previous example would break. For
example, if thestruct foo structure was
changed to be:

struct foo {

int a;
char a1;
int b;
int c;

};

Any place that did not use labeled elements
would break.

A good example of this, is any file that de-
clares astruct file_operations vari-
able. Generally, you do not want to define all
fields of this structure, but rely on the VFS core
to handle the majority of operations. The file
drivers/char/raw.chas two good examples of
named initializers:

static struct file_operations
raw_fops = {

read: raw_read,
write: raw_write,
open: raw_open,
release: raw_release,
ioctl: raw_ioctl,

};

static struct file_operations
raw_ctl_fops = {

ioctl: raw_ctl_ioctl,
open: raw_open,

};

The code in Figure 6 from
arch/ia64/sn/io/hcl.c is a good example
of how much overhead is involved if you do
not use this style of code.

This file will have to be updated every time
the struct file_operations structure
changes in the future.

4 Conclusion

The Linux kernel consists of a very large
amount of source code, contributed by hun-

Ottawa Linux Symposium 2002 259

struct file_operations hcl_fops =

{
(struct module ∗)0,

NULL, / ∗ lseek - default ∗ /

NULL, / ∗ read ∗ /

NULL, / ∗ write ∗ /

NULL, / ∗ readdir - bad ∗ /

NULL, / ∗ poll ∗ /

hcl_ioctl, / ∗ ioctl ∗ /

NULL, / ∗ mmap ∗ /

hcl_open, / ∗ open ∗ /

NULL, / ∗ flush ∗ /

hcl_close, / ∗ release ∗ /

NULL, / ∗ fsync ∗ /

NULL, / ∗ fasync ∗ /

NULL, / ∗ lock ∗ /

NULL, / ∗ readv ∗ /

NULL, / ∗ writev ∗ /

};

Figure 6:arch/ia64/sn/io/hcl.c

dreds of developers over many years. Since
the majority of this code follows some simple
and basic style and formatting rules, the abil-
ity for people to quickly understand new code
has been greatly enhanced. If you want to con-
tribute to this code, please read theDocumen-
tation/CodingStyleguidelines and follow them
in your patches and new code. The “unwrit-
ten” rules can be just as important as the writ-
ten ones, when you are trying to convince peo-
ple to accept your contributions, and should be
followed just as closely.

5 Trademarks

IBM is a trademark of International Business
Machines Corporation.

Linux is a trademark of Linus Torvalds.

Other company, product or service names may
be trademarks or service marks of others.

This work represents the view of the author and
does not necessarily represent the view of IBM.

References

[1] Soloway, Elliot, and Kate Ehrlich. 1984.
“Empirical Studies of Programming
Knowledge”, IEEE Transactions on
Software Engineering SE-10, no. 5
(September): 595-609

[2] http://www.tuxedo.org/˜esr

/jargon/

An AIO Implementation and its Behaviour

Benjamin C. R. LaHaise
Red Hat, Inc.

bcrl@redhat.com

Abstract

Many existing userland network daemons suf-
fer from a performance curve that severely de-
grades under overload conditions to the point
of collapse. The design of AIO was such that
it should maintain a steady response rate when
faced with a multitude of outstanding connec-
tions. With AIO for Linux becoming ready
for more widespread use, the real world per-
formance characteristics of the design and its
shortcomings needs to be examined. What fol-
lows is an attempt to characterise the behaviour
of async poll and read under various condi-
tions, contrasting with poll(), and /dev/epoll.

1 Introduction

With the maturing of the Linux kernel, the scal-
ability of various subsystems is becoming a
greater concern for vendors in the quest for en-
terprise adoption. The advent of TUX [TUX]
has shown that very high thruput content deliv-
ery systems can be built on top of the kernel’s
internal infrastructure, yet implementing these
servers in userspace frequently exacts a large
hit in performance.

Traditional IO models based on non blocking
IO using select() or poll() have serious short-
comings when faced with loads that include
many idle connections (HTTP, FTP, LDAP
servers), or attempt to extract increased paral-
lelism from slow subsystems (filesystem and
disk IO). For example, the poll() syscall is at

best O(n), where n is the number of file de-
scriptors on which events are being monitored.
Issuing parallel disk IO requests requires the
use of threads, which have their own overhead,
in addition to adding a significant amount of
debugging effort to the application.

The Asynchronous IO implementation pre-
sented attempts to address these concerns
twofold: by providing asynchronous opera-
tions that can proceed concurrently with the
application, as well as utilising an event based
completion mechanism to return the results of
those operations in an efficient manner.

Previous work under Linux in this area in-
cludes the addition of SIGIO [SigIO] based
readiness notification, reductions in the over-
head of the poll() interface through the cre-
ation of /dev/poll [devpoll], and further op-
timizations with the event based /dev/epoll
[EPoll]. The AIO implementation presented
here should have similar performance charac-
teristics to the event interface that /dev/epoll
uses, as both models have a 1-1 correlation be-
tween events being generated and the potential
for progress to be made.

One area where AIO poll differs significantly
from /dev/epoll stems from readiness vs ready
state notification: an async poll is like poll
in that the operation completes when the de-
scriptor has one of the specified events pend-
ing. However, /dev/epoll only generates an
event when the state of the monitored events
changes. Further differences emerge once the

Ottawa Linux Symposium 2002 261

async read and write operations are introduced.

2 AIO Design and API

The basic design of AIO for Linux is based
on the POSIX AIO [PosixAIO] specifica-
tion and NT’s completion port mechanism
[Russinovich]. Primary design goals included:

1. lightweight completion events

2. usable for libraries as well as applications

3. support for general disk and network IO

4. scalable for servers handling many con-
nections

5. the desire to eventually suppport zero
copy io (O_DIRECT disk io, and hard-
ware checksum assist for TCP transmit)

6. a 64 bit kernel should be able to process
structures from both 32 and 64 bit pro-
cesses with minimal additional code

POSIX AIO fails to meet several of these cri-
teria, in part due to its reliance on signals, as
well as the nature of its io wait mechanism
(aio_suspend is O(n) where n is the number of
outstanding ios).

The core of this implementation centers
around the io context which specifies a
given completion queue. io contexts are
created by io_queue_init and destroyed via
io_queue_release. New ios are submitted via
io_submit (which is similar to lio_listio), but
can only be queued if there is sufficient space
in the completion queue to receive any result-
ing io_event.

Events are read by means of io_getevents. One
of the features of the design is that io_getevents
can be implemented as a vsyscall, which re-
duces the overhead of receiving completion
events under load.

3 Testing Methodoloy

The goals of testing are to highlight the
strengths and shortcomings of the various IO
models. To this end, the areas of interest ex-
amined include thruput under varying numbers
of open file descriptors, thruput with differing
message sizes, and the effects of increasing the
parallelism in request processing.

To demonstrate the scaling issues involved
when dealing with many file descriptors, a sim-
ple test application [PipeTest] was developed.
Pipetest attempts to measure the number of to-
ken passes per second that a given io model can
obtain under a set of conditions. The number of
idle file descriptors, parallel tokens passes and
message size are all parameters. In operation,
pipetest opens a specified number of pipes, be-
gins transmitting one or more seed tokens, then
proceeds to receive and transmit the tokens for
a number of repetitions.

Initial plans were to use TCP network con-
nections between a set of clients and a server,
but due to code maturity and other issues, the
decision to use a pipe based test was made.
Thankfully, use of the pipe mechanism elim-
inates several potential bottlenecks (including
IO bandwidth and driver performance), and re-
stricts measurements to the actual overhead of
the code under test. For all test runs, pipetest
was able to run at 100% CPU usage.

For the sake of simplicity, and to avoid
SMP scaling issues, all tests were run on
the 2.4.19pre5 kernel with /dev/epoll and AIO
patched in.

4 File Descriptors vs Thruput

It is well known that one of the crippling fac-
tors for heavily used server processes comes
from the number of active client connections

Ottawa Linux Symposium 2002 262

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

to
ke

n
pa

ss
es

 p
er

 s
ec

on
d

number of filedescriptors

"poll.res"
"aio-poll.res"

"epoll.res"

Figure 1: baseline performance vs number of
file descriptors

being serviced. To demonstrate this factor on
scaling, tests were run where the number of
open pipes increased while other factors were
held constant. Using Pipetest, the number of
token passes per second was measured as a
function of the file descriptor count and IO
model.

The baseline performance as shown in Figure 1
contains several striking features, most notably
that the existing poll() model exhibits a rapid
decay as the number of active file descriptors
increases. This stems from poll()’s O(n) work-
load in searching for active file descriptors.
Async poll remains flat as the number of fds
increases, as does epoll. The overhead of epoll
appears to be about half of async poll, which
points to a few shortcomings in the allocation
and initialization of the async poll structures.

5 A few optimizations

In an attempt to reduce the overhead present
in async poll relative to epoll, a fastpath that
does not allocate any control data structures
leads was created. In Figure 2 we can see this
leads to an approximately 20% improvement
in thruput. The addition of the io_getevents

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

to
ke

n
pa

ss
es

 p
er

 s
ec

on
d

number of filedescriptors

"aio-poll.res"
"aio-poll-fastpath-novsys.res"

"aio-poll-fastpath-vsys.res"
"epoll.res"

"poll.res"

Figure 2: addition of poll fastpath and vsyscall
mechanism to aio

0

50000

100000

150000

200000

250000

300000

350000

400000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

to
ke

n
pa

ss
es

 p
er

 s
ec

on
d

number of file descriptors

"2b.epoll.res"
"2b.aio-read.res"
"2b.aio-poll.res"

Figure 3: async read implemented

vsyscall lead to 20% increase in performance,
bringing async poll to roughly three quarters of
epoll thruput.

6 Async read

Figure 3 compares async read to epoll and
async poll thruput. It should be noted that
async read overhead includes walking the page
tables to find the underlying kernel pages for
the user virtual address. Since the token write()
is performed after the async read is posted,
async read benefits from a single copy of the
data. This brings async read throughput to

Ottawa Linux Symposium 2002 263

0

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

9e+08

1e+09

0 500 1000 1500 2000 2500 3000 3500 4000 4500

by
te

s
pa

ss
ed

 p
er

 s
ec

on
d

token size in bytes

"4.epoll.res" using 1:($2 * $1)
"4.aio-read.res" using 1:($2 * $1)
"4.aio-poll.res" using 1:($2 * $1)

Figure 4: thruput as message size increases

within 15of epoll in the worst case. Cache ef-
fects are much more apparent for async read
and epoll, probably owing to the differences
in physical page colours between runs. As
expected, async read also maintains a flat re-
sponse when the number of open file descrip-
tors increases.

7 Message Sizes

While epoll/read is faster than async reads for
small message sizes, async read should be-
come more efficient as the size increases and
the benefits of the single copy begin to out-
weigh the static setup costs.

In Figure 4 it is apparent that for message sizes
of 256 bytes or less, the async read overhead
outweighs the effects of single copy. However,
for message sizes of 512 bytes and greater,
async read is able to exceed epoll thruput, but
only by a small margin.

8 Multiple IOs in flight

The tests presented thus far only deal with one
in flight IO through each iteration of the event
loop. In real world servers, the number of IOs

0

100000

200000

300000

400000

500000

600000

0 10 20 30 40 50 60

to
ke

n
pa

ss
es

 p
er

 s
ec

on
d

number of ios in flight

"3.epoll.res"
"3.aio-read.res"
"3.aio-poll.res"

"3.poll.res"

Figure 5: thruput while increasing in flight ios

in flight will tend to increase with the number
of active clients.

Figure 5 shows the results of a run with the
number of IOs through to 60, 128 file descrip-
tors and a 12 byte message size. The event
driven models show a small increase in thruput
up to 122 IOs, then remain fairly flat. Poll
is included to show that it takes at least 15%
of the file descriptors to have IOs in flight to
match async poll performance, and almost half
to match async reads.

9 Conclusions

The first generation of AIO for Linux shows
that the event driven model is able to provide
significantly improved performance in cases
where poll() degrades severely. Comparisons
with /dev/epoll show that further work needs
to be done to mitigate the cost of mapping
userspace memory into kernel structures for
small message sizes, but that the overhead is
outweighed by the support of single and zero
copy as the amount of data transferred in-
creases.

Ottawa Linux Symposium 2002 264

10 Future work and directions

Much work remains to complete the imple-
mentation, as many existing parts of the ker-
nel were not designed with asynchronous op-
eration in mind. The first year of development
has yielded significant insight into the benefits
and drawbacks of various in kernel techniques
for the AIO implementation.

For example: during the recent addition of a
cancellation API for iocbs, the limitations of
using tqueues as the basis for the worktodo
helpers became apparent. It turns out that
tqueues cannot be cancelled safely in an SMP
environment. One option is to make use of
tasklets, but that path is hindered by the fact
that many internal APIs cannot be called from
bottom half context.

References

[TUX] TUX Web Server Manuals, Red Hat,
Inc. http://www.redhat.com/docs

/manuals/tux/ , (2002).

[RTSig] Analyzing the Overload Behavior of
a Simple Web ServerN. Provos, C.
Lever, S. Tweedie,
http://www.usenix.org

/publications/library

/proceedings/als2000

/full_papers/provos/provos_html

/index.html , (ALS 2000).

[EPoll] Improving (network) I/O
performance, Davide Libenzi
http://www.xmailserver.org

/linux-patches

/nio-improve.html , (2001).

[Russinovich] Inside I/O Completion Ports,
Mark Russinovich
http://www.sysinternals.com

/ntw2k/info/comport.shtml ,
(1998).

[SigIO] To Be Added.

[devpoll] To Be Added.

[PosixAIO] To Be Added.

[PipeTest] To Be Added.

Testing Linux® with the Linux Test Project

Paul Larson
Linux Technology Center

International Business Machines
plars@us.ibm.com

Abstract

The Linux Test Project is an organization
aimed at improving the Linux kernel by bring-
ing test automation to the kernel testing effort.
To meet this objective, the Linux Test Project
develops test suites that run on multiple plat-
forms for validating the reliability, robustness,
and stability of the Linux kernel. The LTP test
suite is designed to be easy to use, portable,
and flexible enough that tests could be added
without requiring the developer to use func-
tions provided by the LTP test driver. This pa-
per covers what the Linux Test Project is and
what we are doing to help improve Linux. I
also plan to cover the features provided by the
test harness, the structure of the test cases, and
how test cases can be written to contribute to
the Linux Test Project.

1 Introduction

Through the years of Linux development,
many people have asked the question, “What
is being done to test Linux?” Historically,
Linux testing efforts have been primarily in-
formal and ad-hoc in nature. Users of Linux
simply use it for their own normal purposes
and report any problems they find. Little has
been done to bring any organized testing effort
to Linux. This matter improved somewhat in
May 2000 when Silicon Graphics Inc. (SGI™)
introduced the first version of the Linux Test

Project (LTP). Since that time, many individ-
uals in the open source community as well
as companies such as IBM®, OSDL™, and
BULL® have contributed to the LTP.

2 LTP Test Scripts

One of the design goals of the Linux Test
Project was to make it easy to use. To facilitate
this, the LTP includes three scripts for execut-
ing subsets of the automated tests. They are:

• runalltests.sh – runs all the automated ker-
nel tests in sequential order

• network.sh – runs all the automated net-
work tests in sequential order

• diskio.sh – runs the stress_floppy and
stress_cdrom tests

The runalltests.sh script can be executed with
little or no manual setup required by the user.
Even though the script is named “runalltests”
it does not really run every test in the LTP, but
it does run almost all of them. It runs all of
the non-destructive and completely automated
tests that do not require the user to perform
manual setup tasks. Destructive tests and tests
that consume so many system resources that
they are designed to be run independently, such
as a few of the memory test programs, are not
included in the runalltests script.

Ottawa Linux Symposium 2002 266

The network.sh script includes most of the net-
work tests. These are grouped separately be-
cause additional setup is required for these tests
to function correctly. Two test machines are
necessary to run all of the network tests. Both
machines should have the same version of LTP
compiled and installed in the same location.
The client machine is the one where the net-
work.sh script is actually executed. On the
server machine, a .rhosts entry must be cre-
ated for the root user to allow connections from
the client machine. The following services will
need to be running for successful execution of
the network test suite: rlogind, ftpd, telnetd,
echo (stream), fingerd, and rshd. More detailed
information about the setup for the machines
running LTP may be found in the document
“How To Run the Linux Test Project(LTP) Test
Suite” [RunLTP].

The diskio.sh script is a small test set that runs
two IO-intensive tests. One of these targets the
cdrom drive and the other targets the floppy
drive. For the cdrom test to run, a cdrom with
data on it must be inserted in the cdrom drive.
For the floppy stress test to run, a blank format-
ted floppy disk must be in the floppy drive.

3 Pan: The LTP Test Driver

The test driver for the Linux Test Project test
suite is called pan. Pan can parse a file that
lists the tests to be executed, execute them, and
exit with 0 if all tests passed, or with a number
indicating how many tests failed. The line from
runalltests.sh that executes pan looks like this:

${LTPROOT}/pan/pan -e -S -a $$ -n $$
-f ${TMP}/alltests

The -e is necessary to tell pan to exit with the
number of test programs that failed. By default
it will ignore exit statuses, but it is generally
useful to have pan run this way.

The-Soption tells pan to run test programs se-
quentially as they are read from the command
file. If this option is not specified, it will select
test programs at random to run.

The -a $$ in the command line tells pan the
name of a file to use to store the active test
names, pids, and commands being executed.
The $$ is used here to have it use the current
pid so that a unique file is used to store this
information. This file is often useful for deter-
mining which test program was running last if
the test machine hangs or crashes.

The -n $$ in the command line is a tag name
by which this pan process will be known. It is
required and should be unique so $$ is conve-
nient to use again.

The -f option is used to tell pan the name of
a command file to execute test programs from.
The command file is a text file containing one
test per line. The first item on the line is the
tag name of the test, by which pan will know
it. Usually this should match the TCID, or
test case ID, of the test program. After the tag
name and a space should be the executable with
any necessary arguments. These files are usu-
ally stored under the runtest directory of LTP,
but in the case of runalltests, several have been
concatenated together into a file called alltests.
These command files are a convenient way of
grouping test programs together to create cus-
tom test suites.

Another useful option for pan that is not used
in the provided scripts is-s. The-s option tells
pan the number of test programs to run before
exiting. If 0 is used here, pan will keep execut-
ing tests until it is manually stopped.

The-t option can be used to specify the amount
of time pan should run test programs. This
time can be specified in seconds (s), minutes
(m), hours (h), or days (d). For instance,-t 12h
would tell pan to stop executing tests after 12

Ottawa Linux Symposium 2002 267

hours.

A complete list of options for pan can be found
in the man page for pan in the /doc/man1
[LTPMan] directory under LTP.

4 Organization of Test Programs

Test programs may also be executed individ-
ually without the need for running them un-
der pan or from a script. Once compiled, the
test programs are linked to under the /test-
cases/bin directory from the top of the LTP
source tree. Test programs may be executed di-
rectly from here with any valid command line
options. This feature is very useful when a par-
ticular test program is observed to cause an er-
ror. The test program can be executed alone to
reproduce the error without having to wait for
the entire test suite to run.

Sometimes it is desirable to modify test pro-
grams slightly for debugging purposes, or to
add additional testing to them. To help make it
easier to find test programs, they have been or-
ganized under the testcases directory into four
main categories.

• Kernel – Kernel-related tests such as
filesystems, io, ipc, memory management,
scheduler, and system calls

• Network – Network tests including tests
for ipv6, multicast, nfs, rpc, sctp, and net-
work related user commands

• Commands – Tests for user level com-
mands commonly used in application de-
velopment such as ar, ld, ldd, nm, obj-
dump, and size

• Misc – Miscellaneous tests that do not fit
into one of the other categories such as
crash (an adaptation of the well-known
crashme test), f00f, and a floating point
math set of tests

Other test programs that are not part of the au-
tomated test scripts previously mentioned can
also be found under this directory tree.

5 Developing Tests for LTP

The Linux Test Project was designed to be flex-
ible enough to allow test programs to be added
to it without requiring the use of any cumber-
some features that are specific to a certain test
driver. The LTP does provide a small set of
functions that can be used to help with the con-
sistency of test programs and to act as a con-
venience for the developer, but the driver does
not require their use. Test programs written
to be executed under the LTP should be self-
contained so that they can be executed under
pan or separately. They should be able to de-
tect within the test program itself whether or
not each test case passed or failed. The test
program should return 0 if all test cases in it
pass or anything else if any of them fail. The
exact nature of the failure indicated by return
codes other than 0 may be different from one
test program to another. Most of the test pro-
grams in LTP are written in C, but they may
be written in perl, shell scripting languages, or
anything else as long as appropriate return val-
ues are preserved. This flexibility allows devel-
opers to take any quick test program they have
written to test something, make sure it returns
0 if it passes or anything else if it doesn’t, and
submit it for inclusion in the LTP.

Some of the functions in LTP make use of
global variables that define various aspects of
the test case. Even if it is unknown whether
or not these functions will be used, it is a good
idea to define these variables in order to be con-
sistent with other test cases in the LTP.

The TCID variable should be defined in a way
similar to the example below:

char *TCID="test01";

Ottawa Linux Symposium 2002 268

The convention that has been used in other
test cases in the LTP is the system call name,
or some other name representing the test, fol-
lowed by a two digit number. The TCID should
be different from that used by any other LTP
test case or results may be confusing after exe-
cuting all the tests in the test suite. It is also a
good idea to make the TCID be the same as the
name of the source code file for the test pro-
gram. In this example, the file name should be
something liketest01.c.

The global variableTST_TOTALis of type int
and should be used to specify the number of
individual test cases within the test program.
A test program should output a line for each
test case declaring whether the test passed or
failed.

TheTst_count variable is used as a test case
counter in the main test loop:

extern int Tst_count;

The output functions provided by LTP use
Tst_count to get the number of the test case
currently being executed. This should be au-
tomatically incremented each pass through the
test loop.

The main test loop is just a for loop, but it im-
plements a macro calledTEST_LOOPING()
to control the number of iterations through the
loop.

for (lc=0; TEST_LOOPING(lc);
lc++) {

...
}

Standard command line options for LTP test
cases allow the user to set a certain number of
iterations or an amount of time to run each test
program. TEST_LOOPING() handles mak-
ing sure that the test program is executed for

the correct number of iterations, or for the cor-
rect amount of time.

The actual test itself should be wrapped in the
TEST() macro. The TEST() macro starts
by resetting the errno variable to 0 to ensure
that the correct errno is detected after the test
is complete. After executing the system call
passed to it,TEST() sets two global variables.
TEST_RETURNis set to the return code and
TEST_ERRNOis set to the value of errno upon
return. There is also a variation of theTEST()
macro calledTEST_VOID() for use with test-
ing system calls that return void.

Test programs that require little or no manual
setup are preferred. Usually setup can be per-
formed within the test program itself, or with
command line options that can be passed from
the execution script. If manual setup is re-
quired, the test program may be left out of
automated execution scripts, or grouped with
other test programs that have similar setup re-
quirements such as those found in the network
test suite.

Many test programs require a temporary direc-
tory to store files and directories created dur-
ing the test. This is especially true of filesys-
tem tests, and tests of system calls that operate
on files and directories. Thetst_tmpdir()
and tst_rmdir() functions provide a con-
venient method of creating and cleaning up a
temporary area for the test program to use.

The tst_tmpdir() function creates a
unique, temporary directory based on the first
three characters of the TCID global variable.
Once the directory is created, it makes it the
current working directory and returns to con-
tinue execution of the test program. The name
of the directory created will be saved in an ex-
tern char* variable calledTESTDIR for possi-
ble use by the test case, and for later removal
by the tst_rmdir() function. If it is un-
able to create a unique name, unable to cre-

Ottawa Linux Symposium 2002 269

ate the directory, or unable to change directory
to the new locationtst_tmpdir() will use
tst_brk() to output aBROKmessage for
all test cases in the test program and exit via
the tst_exit() function. Since no cleanup
function will be performed automatically in
this situation, tst_tmpdir() should only
be used at the beginning of the test program be-
fore any resources that would require a cleanup
function have been created.

The tst_rmdir() function will remove
the temporary directory created by a call to
tst_tmpdir() along with any other files
or directories created under the temporary di-
rectory. Thesystem() function is used by
tst_rmdir() so the test case should not
perform unexpected signal handling on the
SIGCHLDsignal.

One of the biggest conveniences provided
by using the Linux Test Project API is
parse_opts() . The parse_opts()
function provides a consistent set of useful
command line options for test cases, and al-
lows the developer to easily add more options.

#include "test.h"
#include "usctest.h"

char *parse_opts(int argc,
char *argv[],
option_t option_array[],
void (*user_help_func)());

typedef struct {
char *option;
int *flag;
char **arg;

} option_t;

Option_array must be created by the devel-
oper to contain the desired options in addition
to the default ones.User_help_func()
is a pointer to a function that will be called
when the user passes-h to the test case. This

function should display usage information for
the additional options added only. If you
do not wish to specify any additional com-
mand line options,parse_opts() should
be called with NULL for option_array and
user_help_func() .

The default options provided by parse_opts
are:

-c n – Fork n copies of this test and run them in
parallel. If -i or -I are also specified, each
forked copy will run for the given num-
ber of iterations or amount of time respec-
tively.

-e – Log all errnos received during the test.

-f – Suppress messages about functional
testing

-h – Print the help message listing
these default options first, then call
user_help_func() to display help
for any extra options the developer may
have added.

-i n – Run the test for n consecutive iterations.
Specifying a 0 for n will cause the test to
loop continuously.

-I x – Run the test loop until x seconds have
passed.

-p – Wait to receive aSIGUSR1before be-
ginning the test.TEST_PAUSEmust be
used in the test at the point you want it to
wait for SIGUSR1.

-P x – Delay x seconds between iterations.

Another useful feature of the Linux Test
Project API is that it provides functions to out-
put results and give test status in a consistent
manner, and exit the test program with an exit

Ottawa Linux Symposium 2002 270

code consistent with the results from that out-
put. This paper will not cover all of the func-
tions to do this but will briefly discuss the most
common ones.

All of these functions need to be passed attype
that specifies the type of message that is being
sent. The available values for ttype are:

• TPASS – Indicates that the test case had
the expected result and passed

• TFAIL – Indicates that the test case had
an unexpected result and failed

• TBROK – Indicates that the remaining
test cases are broken and will not execute
correctly because some precondition was
not met such as a resource not being avail-
able.

• TCONF – Indicates that the test case was
not written to run on the current hardware
or software configuration such as machine
type, or kernel version.

• TRETR – Indicates that the test case has
been retired and should not be executed
any longer.

• TWARN – Indicates that the test case ex-
perienced an unexpected or undesirable
event that should not affect the test itself
such as being unable to clean up resources
after the test finished.

• TINFO – Specifies useful information
about the status of the test that does not
affect the result and does not indicate a
problem.

The first result output function is
tst_resm() .

void tst_resm(int ttype,
char *tmesg,
[arg ...])

This function will outputtmesgto STDOUT.
Thetmesgstring and associated arguments can
be given totst_resm() and the other func-
tions listed here in the same fashion as strings
with arguments can be passed toprintf() .
After outputting the message, the test case will
resume.

void tst_brkm(int ttype,
void (*func)(),
char *tmesg, [arg ...])

The tst_brkm() function prints the mes-
sage specified bytmesg, calls the function
pointed to byfunc, and exits the test program
breaking any remaining test cases.

void tst_exit()

The tst_exit() function exits the test
program with status depending onttypes
passed to previous calls to functions such
as tst_brkm() and tst_resm() . For
TPASS, TRETR, TINFO, andTCONFthe exit
status is unaffected and will be 0 indicating
that the test passed.TFAIL , TBROK, and
TWARNall indicate that something went wrong
during the test or that the test failed. Us-
ing these values at any point in the test pro-
gram beforetst_exit() is called will cause
tst_exit() to exit the test program with a
non-zero status.

When a test cases receives an unexpected sig-
nal, it is useful to provide a means of making it
exit gracefully. The LTP provides a convenient
way of doing this through thetst_sig()
function.

#include "test.h"

void tst_sig(fork_flag,
handler, cleanup)

Ottawa Linux Symposium 2002 271

char *fork_flag;
int (*handler)();
void (*cleanup)();

If the test case is creating child pro-
cesses through functions such asfork() or
system() , thentst_sig needs to know to
ignore SIGCHLD. This can be accomplished
by settingfork_flagto FORK. If the test case is
not creating child processes,fork_flagshould
be set to NOFORK. Keep in mind that if
the test program usestst_tmpdir() and
tst_rmdir() , the fork_flag should be set
to FORK becausetst_rmdir() uses the
system() library call.

The handler parameter oftst_sig() rep-
resents the function that will be called when
an unexpected signal is intercepted. The de-
veloper may provide a custom signal han-
dler function here that returns int, or the de-
fault signal handler may be used. To use
the default signal handler fortst_sig() ,
passDEF_HANDLERas thehandler parame-
ter to tst_sig() . If the default handler is
used, then theTCID and Tst_countvariables
must be defined. The default handler will use
tst_res() to output messages for all re-
maining test cases that were incomplete when
the signal was received.

The cleanup parameter is used to specify
a cleanup function. After the handler has
been executed,tst_sig() will execute the
cleanup function. The cleanup function should
take care of removing any resource used by the
test program such as files or directories that
were created to facilitate testing. If nothing is
required for cleanup,NULL can be passed to
tst_sig() in place of a cleanup function.

6 The Future of LTP

Most of the future plans for the Linux Test
Project focus on expanding test coverage. The

majority of test cases in the LTP today test sys-
tem calls. This is, of course, a very important
part of testing Linux, but not the only thing that
should be addressed. Some test programs have
already been added for things such as network-
ing, memory management, scheduling, com-
mands, floating point math, and databases, but
the breadth of test coverage should continue to
expand. As the variety of tests increases, it may
one day become necessary to modularize the
LTP test programs into separate suites that can
be executed and even downloaded separately.
The LTP was reorganized to make this easier if
and when it becomes desirable to do so.

In addition to broader coverage, a desirable
feature is a wider range of test subsets. One
example of this that has often been discussed
is a predefined set of test programs and dif-
ferent options passed to test programs to cre-
ate a stress suite. This could be further sub-
divided into components such as a memory
stress suite, a scheduler stress suite, a filesys-
tem stress suite, and so on.

Another project for future development is a
front end for defining a customized set of test
programs and executing them. There is already
a simple menu for launching some of the test
suites under the LTP, but something more ad-
vanced is desired. Ideally, a good front end
should allow the user to select from all avail-
able test programs and see a description of all
of them. It should also allow the user to define
how long to run the suite, how many instances
to have running at once, and other options. Fi-
nally, it should allow exporting and importing
of profiles so that customized test executions
can be reproduced later.

Currently, functions are provided by LTP to
create test cases with a consistent output for-
mat, style, and command line options. These
functions are only provided for C though. Tests
may be developed in other languages, or even

Ottawa Linux Symposium 2002 272

in C, but not make use of these functions and
still work under the LTP test suite. The func-
tions are provided as a convenient way of gain-
ing a consistent set of features found through-
out most of the test programs in the LTP test
suite. To encourage more test development
by developers who prefer other languages and
want to make use of these functions, they may
be implemented in languages such as perl,
python, or others upon popular request.

The LTP has recently made significant progress
towards running on other architectures besides
x86. The majority of test programs in the LTP
test suite have been made to work on architec-
tures such as IA64, PPC, and S390. A small
amount of work may still be needed for the LTP
on a few of these architectures, but the LTP test
suite is executed frequently on all of these ar-
chitectures. As additional equipment becomes
available, this list may be expanded to include
other architecture targets that are capable of
running Linux. Some changes may be neces-
sary to make the LTP test suite run cleanly on
these other systems.

The completeness of current test cases should
also be analyzed and improved upon if neces-
sary. We are currently looking at code cover-
age analysis tools to determine how much of
the target kernel code is being executed by test
cases in the LTP. As we find areas of kernel
code that are not adequately covered by test
cases in the LTP, new test cases are written or
existing ones are modified to expand coverage
to these areas. The tools that are being devel-
oped to do this will not only allow us to see
what areas of the kernel are covered by each
test program, but will also allow kernel devel-
opers to find test cases that target a specific area
of the kernel. So, if changes are made in the
kernel and the developer wants to find test pro-
grams that will target that area of the code, they
can search for the specific test programs that
will do that.

7 Enhancing the LTP

Additional test programs are of course critical
to the test suite, but for the Linux Test Project
to be truly effective, people must use it. The
Linux Test Project encourages and appreciates
the contributions of anyone in the open source
community who wishes to participate. It would
be nice to see the LTP test suite run as part of
the exit criteria for releasing new kernels in the
stable and development trees. In addition to
this, it would be useful for kernel developers
to execute the test suite against patches before
submitting them. The LTP test suite will not
find all problems but may reduce the number
of errors in new code if used properly. If ker-
nel developers and testers diligently submit test
programs for defects as they are found, the test
suite could even help reduce the number of re-
gressed defects found in Linux.

The LTP is taking steps to encourage more
community involvement. Results of testing
done by the LTP are posted on the LTP web-
site at http://ltp.sourceforge.net and on the ltp-
results mailing list. Requests for testing can
also be submitted on the ltp-results list. An ad-
ditional mailing list exists for the purpose of
discussing development of the LTP test suite.
The LTP test suite is also available as a test-
ing tool inside the STP test tool at OSDL
(http://www.osdl.org/stp).

References

[LTPMan] The Linux Test Project Man Pages
Linux Test Project.
http://cvs.sourceforge.net

/cgi-bin/viewcvs.cgi/ltp/ltp

/doc/ (2000)

[Howto] Nate Straz,Linux Test Project
HOWTOLinux Test Project.
http://cvs.sourceforge.net

Ottawa Linux Symposium 2002 273

/cgi-bin/viewcvs.cgi/ltp/ltp

/doc/ (2000)

[RunLTP] Casey Abell and Robbie
Williamson,How To Run the Linux Test
Project(LTP) Test SuiteLinux Test
Project.
http://ltp.sourceforge.net

/ltphowto.php (2001)

Disclaimer and Trademarks

This paper represents the views of the author,
and not the IBM Corporation.

IBM is a trademark of International Business
Machines Corporation.

Other company, product or service names may
be the trademarks or service marks of others.

Security Policy Generation through Package
Management

Charles Levert
Open Systems Lab
Ericsson Research
8400 Décarie Blvd.

TMR (Qc) Canada, H4P 2N2

Charles.Levert@ericsson.ca

Michel Dagenais
Dept. of Computer Eng.

École Polytechnique de Montréal
C.P. 6079, Succ. Centre-ville

Montréal (Qc) Canada, H3C 3A7

Michel.Dagenais@polymtl.ca

Abstract

Generation and maintenance of security poli-
cies is too complex and needs simplification for
it to be widely adopted and thus truly make a
difference in delivering the promise of more se-
cure computing systems (rather than just being
ignored by administrators).

In practice, one of the great obstacles to the
adoption of security measures in system soft-
ware is the complexity of configuration that it
entails. Yet, information captured by software
package management systems is mostly not re-
layed to security configuration.

This paper covers the investigation to:

• Identify useful information already coded
in packages from various package man-
agement systems (RPM, dpkg), as well as
translation mechanisms to reuse this infor-
mation.

• Identify missing information that would
best be specified by the package integra-
tor and included in each package.

• Identify the remaining information that is
mostly site-specific and that would best be
specified by a local administrator.

• Prototype the coding of the resulting de-
sign ideas.

The approach taken follows these principles:
simplicity of design, best security practices as
default behavior (i.e., no or minimal configura-
tion/specification required, use of common pat-
terns), flexibility, and least privilege (at each
phase: installation, configuration, activation,
and execution). It builds on existing parts of
the Linux system landscape, without imposing
a total revolution: package management sys-
tems, the init process and init script system, file
system standards and file placement conven-
tions, as well as current security efforts such as
SE Linux (to express and enforce the policy).

1 Introduction

“Complexity is the worst enemy of
security.” [18]

A package management system provides a
structured way to install and de-install software
on a computer system. It maintains a database
that accounts for (ideally) all files that are not
user data on the system. Package management
really came of age with operating systems built

Ottawa Linux Symposium 2002 275

around the Linux kernel, although other sys-
tems with less functionalities, such as thepkg
system available on Solaris, predate them.

A security policy is an explicit set of rules that
govern (the configurable part of) the behavior
of a system’s security features.

The currently unresolved problem that is the
subject of this paper is the following. Soft-
ware package management systems, such as
RPM, already capture much information about
the nature of the files that make up a package
and about the interactions of a package with
other packages, yet this information is mostly
not relayed to security configuration. It is quite
possible that the complexity of configuration
stems from the current requirement to specify,
by hand, configuration information that is re-
dundant with what could already be gleaned
from packaging information.

Specific parts of the configuration informa-
tion naturally correspond to the software itself,
other parts to its inclusion via a package in an
operating system, and yet other parts to a site-
local installation. Currently, in the Linux and
open source software world, too much of this
configuration is unnaturally pushed to the local
installation and its human manager. Since se-
curity configuration information is not strictly
needed for software to perform its main task,
it is often left unspecified, which in practice
leads to a wide open system from a security
standpoint.

It is assumed that the roles of system ad-
ministrator and security administrator are dis-
tinct. Hence, the responsibilities for each of
these roles should, as much as possible, cen-
ter around the very nature of each. For exam-
ple, software installation by itself should not
grant the necessary privileges to activate ser-
vices with a security impact. Conversely, se-
curity administration should not be concerned
with the cumbersome details of software instal-

lation. In practice, total separation between the
two roles may be impossible. However, there is
still a gain in security from attempting to sep-
arate the two, if only because the human be-
ings that assume these roles are better sensibi-
lized about the responsibility and possible con-
sequences for every action they take.

Note that this paper is not about packaging a
security framework in itself. This other impor-
tant issue is being addressed elsewhere [4].

This paper is organized as follows. The first
few sections review existing parts of Linux sys-
tems that are pertinent to our endeavor. Sec-
tion 2 reviews pertinent features of package
management systems. Section 3 reviews exist-
ing execution control schemes for server pro-
cesses. Section 4 reviews file system standards
and file placement conventions. Section 5 re-
views how existing security frameworks are
configured. The remaining sections explore
how we approach the problem stated in this
introduction. Section 6 exposes proposed ad-
ditions to per-package information. Section 7
then does the same for site-specific informa-
tion. Section 8 suggests modifications to exist-
ing software. Finally, Section 9 covers a proto-
type implementation.

This work is done in support of the develop-
ment of the Distributed Security Infrastructure
(DSI) [17, 20] open-source effort that is tar-
geted for use in carrier-class (telecom) clusters.

1.1 Basic Principles

• Simplicity. All design and code, whether
they implement security or non-security
features, contribute to the total security of
a product. Security vulnerabilities creep
in with ordinary bugs when design or code
are not produced and then verified (au-
dited) with a security-minded approach.
By far the best way to ease this process

Ottawa Linux Symposium 2002 276

is to keep things as simple as possible:
to have design and code that do only one
thing at once, to limit the size and num-
ber of functions and modules, to specify
things in only one place, etc. This ap-
plies to the definition of a security policy
framework.

• Default behavior. Whenever possible, no
explicit security policy rule should have to
be specified when a situation is the most
typical one. Furthermore, custom startup
scripts for server programs with typical
behavior should not have to be provided.
Good practices, from a security stand-
point, should be used as default. On the
other hand, bad practices should require
explicit manual configuration from the se-
curity administrator, so as to discourage
them. Security relevant effects (e.g., per-
mission modifications) should be made to
be the result of existing actions when that
is what one would expect from these ac-
tions (e.g., service activation).

• Flexibility. If a system prevents its users
from accomplishing their tasks, it won’t
be used. For the security features of a sys-
tem, it means being turned off, which can-
cels out all their usefulness. Therefore,
there must always be a way to specify be-
havior that deviates from the default.

Lack of flexibility can also impose an
abrupt transition from an old way of do-
ing things to a new one. This is turn
can cause this new way to never take off
the ground. Deployment of package man-
agers on Linux systems is pervasive. For
the security related package management
changes that will be advocated later in this
document to be adopted, they must ac-
count for flexibility.

• Least privilege. The different tasks
that are accomplished in relation to

a given software package each require
their own minimal set of security priv-
ileges. These tasks (or phases of sys-
tem activity) include: installation/De-
installation/upgrade, configuration, ser-
vice assignment/activation, and regular
use/execution.

2 Features of Existing Package
Management Systems

Package management systems already carry in-
formation about their content (installed files,
mainly) that can be relevant to the generation
of a security policy. Although several package
managers are considered in this section, most
of the rest of this paper will focus more on
RPM.

2.1 Red Hat Package Manager (RPM)

RPM [13] is used by Red Hat distributions,
as well as others such as SuSE and Man-
drake. All information specified by the main-
tainer of an RPM package is included in a
package .spec file inside the.src.rpm
source version of the package. Configuration
files can be explicitly designated as such in the
.spec file of a package. There are several
possible declarations (or directives, or file at-
tributes):

• The%config directive is used to flag the
specified file as being a configuration file.

• %config(missingok) indicates that
the file need not exist on the installed
machine. It is frequently used for files
like /etc/rc.d/rc2.d/S55named
where the existence of the symbolic link
is part of the configuration in%post , and
the file may need to be removed when the

Ottawa Linux Symposium 2002 277

package is removed. The file is not re-
quired to exist at either install or de-install
time.

• %config(noreplace) indicates that
the file in the package should be installed
with extension.rpmnew if there is al-
ready a modified file with the same name
on the installed machine.

(Parts of these descriptions are plain transcripts
from [1].)

There is also the%ghost file attribute. It in-
dicates that the file is not to be included in the
package. It is typically used when the attributes
of the file are important while the contents is
not (e.g., a log file).

The package format itself is a binary that can
be handled using therpm library (and the
include file <rpm/rpmlib.h>). It begins
with a header composed of several tag-and-
value pairs. Headers tags are 32-bit integers
(RPMTAG_*), so extensions should be possi-
ble. File tags (RPMFILE_*) appear as indi-
vidual bits in an integer, so extensions should
also be possible, but there are much less free
bits available and conflicts are likely with fu-
ture versions.

Each package has the opportunity to provide
various scripts to be run before and after the
installation and de-installation steps.

2.2 Debian’s dpkg

Under the Debian Packaging scheme, bi-
nary packages are distributed in a single file
with a .deb extension. This file is an
ar archive that itself contains a file named
control.tar.gz . This file is in turn an
archive that contains plain text files, including
one namedcontrol and possibly one named
package .conffiles . This last file con-

tains a list of installed files, one per line, that
are configuration files.

The specification for the.deb file allows for
the future inclusion of new members and ex-
plicitly defines the behavior that current pro-
grams that manipulates those files should take
in order to maintain backward and forward
compatibility. This makes it easier to add fea-
tures to dpkg while allowing for a smoother
transition.

As for RPM, each package has the opportunity
to provide various scripts to be run before and
after the installation and de-installation steps.

2.3 OpenPKG

OpenPKG [6] is somewhat a clone of RPM. It
targets systems that are not Linux based such as
Solaris and FreeBSD, as well as Debian Linux.
Support for some.spec tags has been left out,
but that does not include any of the tags that
are of interest in RPM for the purpose of this
investigation.

OpenPKG otherwise includes as an extension
an “rc script” that provides centralized appli-
cation control.

3 Existing Execution Control
Schemes for Server Processes

Most Linux distributions rely on an execu-
tion control scheme for server processes that
is inherited from System V Unix. Under that
scheme, the system operates at any given time
under a specific run level, which is repre-
sented by a small integer that takes its value
from a predefined set of values with specific
meanings. Each run level defines which ser-
vices should be activated and which should
not. Each service is expected to provide a
script that can be instructed to start the ser-

Ottawa Linux Symposium 2002 278

vice, to stop it, and possibly to inquire about
the current status of the service, to restart it,
etc. Each script also usually provide sug-
gested run levels under which the service
should run, a 2-digit sequence number for ser-
vice startup, and a 2-digit sequence number
for service shutdown. These are provided un-
der achkconfig: field that is located in
a commented-out line at the beginning of the
script. Every time the run level changes, ser-
vice are started and stopped in the order that
is defined by those sequence numbers. (Often,
both sequence numbers are chosen such that
they add up to 100, so that shutdown is done in
the reverse order as startup). Thechkconfig
utility command is used to configure the activa-
tion of services at various run levels. To facili-
tate writing these scripts, commonly used shell
functions are available from a single file that
can be sourced. There is no default behavior
facility that would prevent having to provide
these scripts and their suggested information,
even for simple services that fit a common pat-
tern.

These scripts are usually stored in the
/etc/rc.d/init.d or /etc/init.d
directory.

As these scripts are provided by the package
that implements a given service, they are re-
lated to package management. An init script is
not always provided by the author of the soft-
ware that is started by the script. Indeed, this
software may have initially been targeted at an-
other type of system, such as BSD, that does
not rely on these scripts. In such a case, the
init script for that software is contributed by the
distributor or third-party packager.

At this point in time, there is no strong co-
ordination between the various distributors as
to the meaning of the various run level val-
ues, the choice of sequence numbers, the utility
shell functions that are provided, or even the

instructions beyond “start” and “stop” that can
be given to the scripts. As a result, the scripts
for the same service that come with different
distributions (e.g., Red Hat and SuSE) will not
be compatible, and hence the packages them-
selves won’t be compatible (even if they agree
to use the same dynamic libraries and file loca-
tions).

The Linux Standard Base (LSB) effort [11]
now attempts to standardize many aspects of
system initialization in general, init scripts in
particular. The LSB standardizes run level def-
initions and init script actions. It also intro-
duces a smarter way to determine the order
in which the scripts should be run when the
run level changes. It is based on “Provides: ”
and “Required-*: ” declarations, and the new
notion of facility names that refer to generic
services rather than specific ones provided by
a package. Some commonly used functions
and the location of the file that scripts should
source has also been standardize. A few other
details are standardized by LSB, but they are
not related to security. The recommendations
of the current version of the standard, 1.1.0, are
not currently implemented by major distribu-
tors such as Red Hat.

The Linuxconf configuration and activation
system [8] adds a few conventions for init
scripts. It supports the following information
fields: autoreload, processname, pidfile, con-
fig, probe, description, and override [9]. Note
that the config field is then another, redundant
way in which configuration files are explicitly
identified to the system (see Section 2).

This init scripts way of doing service startup
and shutdown is also beginning to show its
age. For instance, there is now a need for tight
packet filtering rules that need to be changed
dynamically at service startup and shutdown.
This information is currently not provided in
the package, be it in the startup script or else-

Ottawa Linux Symposium 2002 279

where.

Moreover, it is less than obvious that the
init script provided with a package should be
trusted to actually perform a stop order. If this
is a security concern, a framework needs to be
devised to make sure that the service is actually
stopped, and perhaps even that its permissions
are revoked.

The init process also has the capability to di-
rectly launch services. It has the additional
ability to monitor and restart them if neces-
sary. Behavior of the init process is configured
through the/etc/inittab file. Typical ser-
vices that are put under init control include:

• getty processes that are started on con-
soles and serial lines to display a login
prompt;

• the xdm process that is started on an X
Window System console.

The init process is what actually manages the
run level on a Linux system.

On Debian, dpkg includes a wrapper named
start-stop-daemon that features the fol-
lowing security-relevant command-line op-
tions:

• -chuid changes the user ID before exe-
cuting the daemon process.

• -chroot changes the current directory
and then changes the root of the file sys-
tem to it so that the daemon process is
jailed.

This wrapper is commonly used by Debian
startup scripts.

Another system is D. J. Bernstein’s daemon-
tools and the/service directory on which

it relies [2]. It obviates the need for a
/var/run/ name.pid file and has the abil-
ity to monitor and restart services to insure
higher availability. It relies on standard UNIX
features to accomplish its task.

Service availability monitoring can be per-
formed at different levels, but it only needs to
be performed once. These possible levels are
the process such asinit that starts the ser-
vice, the init script that wraps around the ser-
vice, or the service itself (by forking into a
monitoring process and a service process).

4 File System Standards and File
Placement Conventions

Various Linux distributions and other UNIX
and UNIX-like systems reserve directories for
specific purposes. They have naming conven-
tions for sub-directories and files within those
directories. The conventions also cover the
kind of files (i.e., their purpose) that should be
stored in these directories as well as the own-
ership and access rights that they should have.
Depending on the operating system, these con-
ventions are more or less stated explicitly.

In the Linux world, there exists a common
standard for this known as the Filesystem Hi-
erarchy Standard (FHS) [10].

There are also other, independent proposals.
D. J. Bernstein’s/package hierarchy [3]
goes all the way and reuses the file system it-
self as the database for package management.

This is related to conventions in package man-
agement and security policy configuration. In-
deed, if

• a given directory serves a very specific
purpose,

• conventions related to security policy are

Ottawa Linux Symposium 2002 280

in place for this directory, and

• there is the notion that a package’s name
automatically reserves a subset of the
naming space for subdirectories and files
within that directory,

then this in itself defines default, clear rules
for security policy that can be made to em-
body good security practices. This removes
complexity as there is then no need to specify
package-specific rules for the purpose served
by that directory, for most packages.

There is an opportunity to extend the set of
such directories. For instance, creation of tem-
porary files or named sockets in the/tmp
directory has historically been the source of
many security vulnerabilities. This is because
this directory is a public space, no subset of it
is reserved to a specific package, and a com-
plex set of steps is then required to make sure
that the temporary resource is created securely.
These/tmp problems could all be avoided by
the introduction of conventions that are prop-
erly enforced by default on the system.

The downside of such conventions is that they
are difficult to adopt instantaneously. The old
way of doing things must be supported for
some time, while still providing incentives to
move to the new, provably secure way.

5 Configuration of Existing Secu-
rity Frameworks

There are two extreme approaches to specify-
ing the security privileges that a software pack-
age (and its various components) may enjoy.

• The privileges are entirely specified by the
package itself. The act of installing the
package by the system administrator im-
plicitly carries the approval of these stated

privileges. The problem is that those priv-
ileges can be complex and are not re-
stricted to anything. They are unlikely to
be reviewed by the administrator. More-
over, they have to be expressed in the
terms of each specific security framework
that is to be supported.

• The privileges are entirely specified out-
side of the package by the security frame-
work. The problem is that all possible
packages have to be accounted for in ad-
vance. If they are not for a given package,
the security administrator has to specify
privileges for it by hand. This either lacks
flexibility or is unrealistic.

The solution lies in abstracting the whole set of
permissions that a package requests in a form
that fits in a very small space (e.g., less than a
line) and have the system or security adminis-
trator approve that explicitly. To that end, there
must be a way to express these abstractions and
they must be installed/activated beforehand by
the administrator.

In order to express them, however, we must
gain an idea of the kind of permissions that
different existing security frameworks provide.
We will examine two popular frameworks, but
there are others [16, 21, 19, 7, 14, 12] (these
are the ones for Linux).

5.1 Security Enhanced (SE) Linux

SE Linux [15] configuration is performed in
two steps. First, an utility namedsetfile
is used to assign a security context to every file
on the system. This is done using a configura-
tion file (file_contexts) that uses regular
expressions to full paths of file. This config-
uration file has been broken down into several
name.fc files, one for each covered package,
and a types.fc file for all other patterns.
This configuration operation can be performed

Ottawa Linux Symposium 2002 281

during the initial installation of SE Linux, be-
fore the system is actually running under it.
It can also be performed while running under
SE Linux. It is easily conceivable that the op-
eration could be customized to only touch files
that are part of a package at package installa-
tion time. Note that file names are no longer
used once security contexts are assigned to all
inodes when the system is running.

The second part of SE Linux configuration
is the security policy itself (policy.conf),
which is then compiled into a binary form
under /ss_policy and read by the ker-
nel. Type Enforcement rules have been broken
down into several files (name.te), one for
each covered package, and is combined with
other files to form the whole security policy.
The security policy has to be reloaded as a
whole. This complicates (or at least make more
heavyweight) what can be done at package in-
stallation time.

5.2 SubDomain

SubDomain [5] relies on a configuration
that directly uses the full path names of
files. Configuration profiles are stored in the
/etc/subdomain.d/ directory under the
name of the program that is executed and sub-
ject to control. Sub-processes are covered in a
recursive fashion by the syntax. A user-space
utility relies on asysctl() interface to feed
these rules to the kernel-space part of SubDo-
main. Add, delete, and replace operations are
supported, which means that updates to the in-
kernel policy should be possible at package in-
stallation time.

6 Proposed Additions to Per-
Package Information

6.1 Implicit, Enforced Conventions

As seen in Section 2, package management
systems support many file tags to distinguish,
e.g., configuration files, from other files. From
a security standpoint, one may wish to intro-
duce more tags to identify files that are specifi-
cally related to other phases of system activity,
such as service activation, as detailed in Sec-
tion 6.2.

An alternative to this approach is to designate
specific locations (typically directories) to nec-
essarily contain files of a given type (i.e., cor-
responding to what would have been new tags).

In both case, extension mechanisms would be
desirable to either add new custom tags, or
equivalently to designate new locations. This
idea is further expanded upon in Section 6.3
with the idea of generic “abstract” packages.

6.1.1 Naming of Packages

The naming of packages tends to follow some
unwritten conventions.

• Packages in a group of related packages
normally share a common prefix, although
there is nothing to formally separate the
prefix from the rest of the name. (Hy-
phens can be used anywhere else inside
a name, be it in a prefix or in a suffix, if
any.)

• For packages within a group with
that share the same prefix, commonly
used suffixes include: -common,
-util , -apps , -tools , -extra ,
-devel , -client , -server , -lib ,
-contrib , -doc , -perl , -python ,

Ottawa Linux Symposium 2002 282

and -X11 . Some of these suffixes are
sometimes found in a plural form. Some
packages even have several suffixes (e.g.,
openssh-askpass-gnome).

• To complicate matters, some suffixes are
not preceded by a hyphen, e.g.,kdebase
andkdelibs . Fortunately, these specific
suffixes do not appear to be relevant to the
security nature of a package.

There is no internal representation of this in-
side the package.

If these naming conventions were clearly rep-
resented, it would be possible to assign a se-
curity policy semantic meaning to them. Some
package name suffixes, such as-util , imply
that the executables contained in the package
must not carry or be given any special privi-
leges. Conversely, a package with-server
as a suffix contains executables that should be
given specific privileges when activated to pro-
vide the service for which they were written.
Although this was originally done to enable
only the client or only the server to be installed,
it is a good security practice to isolate a server
executable and its related files in such a pack-
age, provided that the opportunity to assign
specific privileges is taken. It is possible that
several executable files be included in a server
package, one being the main server and the oth-
ers being there for support (to be executed as
sub-processes of the main server). In anticipa-
tion of such a case, there must be a clear way
to tell which executable is the main server.

6.2 Explicit New Facilities

“Any problem in computer science can be
solved with another layer of indirection.”

— David J. Wheeler.

An indirect mapping is introduced between
the actual package name and the service name

(e.g., TCP port), to which other information
can be coupled (interface, address subset, etc.).

This separates the act of installing a package
that can implement a service from the act of
designating it as being currently responsible
for doing so (and thus receiving the neces-
sary privileges for doing so). Conceptually,
this designation can be done in a finer grained
manner. For instance, different providers for
a given Internet service could be enabled for
each network interface (internal/trusted and ex-
ternal/untrusted).

Each (transport_protocol,
port_number) pair should have its own
set of security contexts by default. Explicit
configuration can be useful to put a group
of ports in a single set of security contexts.
SE Linux [15] relies on statements like

tcp 25 system_u:object_r:smtp_port_t

that have to be configured by hand. This
could be generated automatically from the
/etc/services file. The SE Linux syntax
also allow for a range of ports (e.g.,22-23) to
be specified. Specifying a port range requires
explicit configuration in all cases, but it is not
a frequent occurrence.

The tasks (or phases of system activity) include
the following.

• Installation/de-installation/upgrade.
This is performed by the package man-
ager itself. When installing files and
running package-provided scripts, the
package manager should minimize its
permissions (e.g., by forking a subpro-
cess) so as to only be able to modify the
sub-part of the system that is appropriate
for the package. A strong file placement
standard can tremendously simplify the
interpretation of this statement. An
installation should not interfere with

Ottawa Linux Symposium 2002 283

other packages that are already installed
or that could be installed in a sub-part
of the system that is reserved for them.
Package-provided scripts should not be
able to use services that are not strictly
related to installation, such as network
ports.

A package that implements a given ser-
vice (e.g., SMTP) should not, just by
virtue of it being installed, be able to ac-
tivate (designate) itself at the provider for
this service. This is a separate action to be
performed by the system administrator.

Typical steps for installation are:

– Check for validity of package name,
type, etc. The package type may re-
quire to be specified explicitly by the
administrator to signify approval of
the permissions that are inherent to
it.

– Add package-specific installation
rules to the security policy;

– perform actual install under the se-
curity context that is defined by
those rules (including file copy and
script execution).

– Add package-specific security rules
for other tasks.

The security policy rules are inferred from
the package name and type. They are not
specified by the package itself.

• Configuration. Globally, the responsibil-
ity for configuration can be assigned to
a dedicated management package. This
package can then delegate its author-
ity to application-specific configuration
packages. This means that a package is
not automatically responsible for its own
configuration. By default, it should not
even be able to probe various unrelated
part of the system during installation and

execution to adjust its behavior accord-
ingly. Configuration packages may need
and be given such permissions, though.

• Service assignment/activation. Several
packages can implement the same service
(e.g.: sendmail, qmail, and postfix are all
SMTP mail transport agents). It may be
desirable to have more than one installed
at once (testing, transition), yet at most
one can be assigned the same responsibil-
ity. Service activation can be performed
by the package manager (by explicit in-
struction from the administrator, not from
the packager) or it can be performed by a
service activation manager software, with
can possibly delegate its task to more spe-
cialized service activation packages (e.g.,
Internet service activation manager).

• Regular use/execution. During regular
use, software from a package should be
able to read (and only read) its configura-
tion (in /etc , possibly store some state
in /var , etc. Depending on whether it
is a service package, an utility package,
or other, it can also get other specific per-
missions, or inherit those of its invoking
process. It should not implicitly be able to
modify its own installation, configuration,
or activation, though.

6.3 Generic Package Types

Examples of generic package types include the
following:

• network server programs

• local service programs (e.g., gpm)

• utilities (which require no special permis-
sions other than those passed by their par-
ent process)

– read-only viewer/browser

Ottawa Linux Symposium 2002 284

– strict filters

• installer programs

• configurator programs

• activator programs

• security session managers (program that
set up a specific security context for oth-
ers)

• etc.

6.3.1 Generic Abstract Packages

Generic “abstract” packages (named after the
object-oriented concept of abstract class) are
incomplete packages that merely include a de-
fault init script or configuration files. In ef-
fect, they define a generic package type. Using
this facility, a generic service package could be
able to provide an activation script (or declara-
tion), whereas a specific service package could
not because such scripts implicitly carry the
definition of access rights to be handed to the
specific package. Instead, the specific package
can be declared as being of the generic package
type defined by the generic service package.

“Multiple inheritance” of generic package
types by specific packages should be disal-
lowed by default as it can cause problems re-
lated to the combination of specific power. In-
stallation of generic packages should stand out
and require special attention from system ad-
ministrators as they effectively imply the per-
mission to install packages that follow the pat-
tern they describe. This, in turn, means that
there must be a way to explicitly identify these
package as such.

6.3.2 Framework Packages

Some packages specify a framework (e.g.,
logrotate) under which other packages can reg-
ister, but only under their own name. This
is traditionally done by a/etc subdirectory
(e.g., /etc/logrotate.d). Other frame-
works could introduce a/var subdirectory in-
stead.

From a security standpoint, a method is re-
quired to explicitly label this subdirectory. The
package manager must then only allow pack-
ages to register there under their own name.

6.3.3 Sample Packages Types

Here are typical permissions that are needed by
two sample package types.

The execution of a network server requires the
permissions to (among others):

• read its own configuration file(s)

• produce its own pid file (that can also be
handled by the availability monitor)

• listen to its assigned service (proto-
col/port)

• append to own log file (or use log service
under its own name)

• spawn modules (possibly under another
security context)

Software installation requires the following
permissions (among others):

• to install program under samename or
name-*

• to create and populated subdirecto-
ries of same name under/usr/lib ,
/usr/share , etc.

Ottawa Linux Symposium 2002 285

• to install an initial configuration file
named/etc/ name.conf or placed un-
dername in /etc/sysconfig/

6.4 Self Restrictions

A package should be able to manage its own
private space, such as private directories, by
imposing additional restrictions through the
use of policy rules. In order to do so, the rules
should be expressible in a relative syntax that
does not require the redundant mention of the
package name. Conversely, it should not be
possible to specify rules outside of that pack-
age scope. This applies to all phases of system
activity for that package.

7 Site-Specific Information

7.1 Default Policy for Generic Package Types

In order to reduce the size of the site-local se-
curity configuration, each generic package type
must be configurable.

For comparison purposes, SE Linux [15] relies
on a system of macros to reduce the complexity
of the type enforcement policy files it includes
for each special user program and server pro-
gram.

7.2 Per-Package Configuration

Additional restrictions (e.g., read-only server,
local non-networked server) should be easily
configurable as site-local options.

8 Proposed Modifications to Exist-
ing Software

The previous sections have pinpointed their re-
quirements for many modifications to existing

software. These are gathered here for every
piece of software that is involved. We try not
to introduce new programs, but rather to push
the additional security checks into existing pro-
grams, at the point where they naturally be-
long.

The following assumes that dynamic updates
to the security policy are possible.

• /bin/rpm (and other package man-
agers). Explicit service activation scripts
(default preferred), distinct from installa-
tion scripts, should be introduced, along
with command-line options to specify that
a service should be activated at installa-
tion time. Naming conventions for pack-
ages should be enforced; e.g., utils pack-
ages should not include executables with
special permissions. Special security at-
tributes for files included in a package
should be supported; e.g., the server ex-
ecutable in a server package should be
identified as such. Namespace conven-
tions in the file system, as well as con-
ventions introduced by framework pack-
ages, have to be enforced. New meta-
information can be supported by introduc-
ing a new, extended,backward compati-
ble, version of the package format. Alter-
natively, separate package-specific meta-
information files can be used to augment
the information present in existing pack-
ages. Either way, the package manager
has to be able to interpret the new infor-
mation.

• /sbin/init . Provide default init script
behavior based on package declarations,
process tracking, dependable stops (and
restarts), and automatic cleanup of tempo-
rary storage (e.g.,/var storage) to pre-
vent keeping state across invocations (if
appropriate). This can involve manage-
ment of /var/lock/subsys/ name

Ottawa Linux Symposium 2002 286

files.

• /sbin/service . This program should
have its own security context and it should
perform the task that is currently handled
by run_init in SE Linux. Init scripts
should no longer be run by specifying
their full path from anywhere in a distri-
bution, but rather by invoking this pro-
gram systematically. The program should
be rewritten in C, rather than being an in-
terpreted script.

• /sbin/chkconfig . Activating a ser-
vice means enabling the initial transition
into a package-specific security context
(as is currently done in SE Linux with the
domain_auto_trans() macro and
type_transition rules). To guard
against cooperating malicious packages
where one transition into the other, the no-
tion of defined but forbidden security con-
text could be introduced for de-activated
services (SE Linux hasneverallow ,
but it is an assertion that can cause a pol-
icy to be rejected at compilation, and not
an actual rule).

• /sbin/telinit . Since some services
are only activated for a subset of the
available run levels, their associated se-
curity context will need to be allowed
or forbidden according to the current run
level. Note that/sbin/telinit and
/sbin/init are usually the same bi-
nary.

• Configuration programs (such as
/sbin/linuxconf). Configura-
tion files for a program should be put in
a security context that is not accessible
for modification by the program itself.
Configuration programs should be able
to transition a subprocess into a security
context that can modify those files, as

well as restart the program if it is an
activated service.

9 Prototype Implementation

The implementation of the ideas exposed in
this paper is at a very early stage. Since this
work is done in support of the Distributed Se-
curity Infrastructure (DSI), which is an open
source project, feedback from the community
is important before work proceeds to actual im-
plementation. (As of writing, the actual pre-
sentation for this paper is two months in the
future and progress will have been made on the
prototype by then.)

The goals of the prototype implementation
are to assess the practicality of the proposed
changes and to measure their performance im-
pact on the system.

10 Conclusion

We have explored the possibility of generating
a system’s security policy, or at least part of it,
from the information that is or can be encoded
in software packages that are installed on the
system.

The approach described in this paper impacts
many people: distribution makers, packagers,
software designers and implementers, security
framework developers, and system administra-
tors.

Since security is a very sensitive subject, com-
munity review of this kind of work is primor-
dial. Also, since this work involves modify-
ing many existing subsystems, building com-
mitment from the community is essential.

This work highlights the following require-
ments on the security policy:

Ottawa Linux Symposium 2002 287

• Dynamic updates. Long running systems
cannot afford to be rebooted. A complete
reload of the security policy at every one
of its modifications also doesn’t scale well
with the size of the policy itself (which
is proportional to the number of packages
that are installed on the system).

• Elaborate security contexts. Associated
package, run levels, etc., need to be rep-
resented in the security contexts to avoid
overly complex rules or unnecessary up-
dates to the policy. A balance must be
achieved between those concerns and the
complexity of the security contexts them-
selves (and of their evaluation).

References

[1] Edward C. Bailey.Maximum RPM.
Sams, 1997.http://www.rpm.org

/local/maximum-rpm.tar.gz .

[2] D. J. Bernstein. Daemontools and its
/service directory.
http://cr.yp.to

/daemontools.html .

[3] D. J. Bernstein. The/package
hierarchy.http://cr.yp.to

/slashpackage.html .

[4] Russell Coker. Packaging NSA SE
Linux for Debian. InProceedings of
2002 Ottawa Linux Symposium, Ottawa
(On) Canada, June 2002.
http://www.linuxsymposium.org

/2002/ .

[5] Wirex Communications. SubDomain.
http://www.immunix.org

/subdomain.html .

[6] Ralf S. Engelschall and Michael Schloh
von Bennewitz. OpenPKG.
http://www.openpkg.org/ .

[7] Tal Garfinkel and David Wagner. Janus.
http://www.cs.berkeley.edu

/˜daw/janus/ .

[8] Jacques Gélinas. Linuxconf.
http://www.solucorp.qc.ca

/linuxconf/ .

[9] Jacques Gélinas. Linuxconf Enhanced
System V Init Script.
http://www.solucorp.qc.ca

/linuxconf/tech/sysvenh

/index.html .

[10] Free Standards Group. Filesystem
Hierarchy Standard (FHS).
http://www.pathname.com/fhs/ .

[11] Free Standards Group. Linux Standard
Base (LSB).
http://www.linuxbase.org

/spec/ .

[12] Serge Hallyn. DTE for Linux.
http://www.cs.wm.edu/˜hallyn

/dte/ .

[13] Red Hat. Red Hat Package Manager
(RPM). http://www.rpm.org/ .

[14] NAI Labs. Low Water-Mark Integrity
Protection for Linux (LOMAC).
http://www.pgp.com/research

/nailabs/secure-execution

/lomac.asp .

[15] National Security Agency (NSA).
Security Enhanced (SE) Linux.
http://www.nsa.gov/selinux/ .

[16] Amon Ott. Rule Set Based Access
Control (RSBAC).
http://www.rsbac.org/ .

[17] Makan Pourzandi, Ibrahim Haddad,
Charles Levert, Miroslaw Zakrzewski,
and Michel Dagenais. A Distributed
Security Infrastructure for Carrier Class

Ottawa Linux Symposium 2002 288

Linux Clusters. InProceedings of 2002
Ottawa Linux Symposium, Ottawa (On)
Canada, June 2002.
http://www.linuxsymposium.org

/2002/ .

[18] Bruce Schneier and Adam Shostack.
Results, Not Resolutions.
http://www.securityfocus.com

/news/315 .

[19] Huagang Xie, Philippe Biondi, and Steve
Bremer. Linux Intrusion Detection
System.http://www.lids.org/ .

[20] Miroslaw Zakrzewski. Mandatory
Access Control for Linux Clustered
Servers. InProceedings of 2002 Ottawa
Linux Symposium, Ottawa (On) Canada,
June 2002.
http://www.linuxsymposium.org

/2002/ .

[21] Marek Zelem, Milan Pikula, and Martin
Ockajak. Medusa DS 9 Security System.
http://medusa.formax.sk/ .

Scalability of the Directory Entry Cache

Hanna Linder
IBM Linux Technology Center

hannal@us.ibm.com http://www.ibm.com/linux

Dipankar Sarma
IBM Linux Technology Center

dipankar@in.ibm.com http://www.ibm.com/linux

Maneesh Soni
IBM Linux Technology Center

maneesh@in.ibm.com http://www.ibm.com/linux

Abstract

This paper presents work that we have done
to improve scalability of the directory en-
try cache (dcache). We investigated scal-
ability problems resulting from many cache
lookups, global lock contention, a possibly
non-optimal eviction policy, and cacheline
bouncing due to global reference counters.
This paper provides an overview of solutions
we tried, such as fast path walking, utilizing the
read-copy update mutual exclusion mechanism
[McKenney], and lazy updating of the LRU list
of dentries. We conclude with performance re-
sults showing scalability improvements.

1 Introduction

Every file and directory has a path. The path
must be followed to do a lookup in the dcache
to get the correct inode number of the file. A
path such as /etc/passwd contains three den-
tries: ’/’, ’etc’, and ’passwd’. Each dentry in
a lookup path has a reference counter called
d_count, which is atomically incremented and
decremented as the dcache is being checked.

This keeps the dentry from being put on the
least recently used (LRU) list.

Currently, the dcache is protected by a single
global lock, dcache_lock. This lock is held
during lookup of dentries (d_lookup) as well
as all manipulations of the dentry cache and the
assorted lists that maintain hierarchies, aliases
and LRU entries. The global dcache_lock
seems to be an issue as the number of CPUs
increase. We experimented with various ways
to improve scaling the dentry cache.

2 Workload and Measures

We have used three main workloads for mea-
suring scaling of the dentry cache: dbench
[Pool] (with settings to avoid I/O), httperf
[Mosberger], profiles [Hawkes] of Linux(R)
kernel compiles, and lockmeter [Hawkes2].
The system used is an 8-way Pentium(R)-III
Xeon(TM) with 1MB L2 cache and 2 GB of
RAM (unless otherwise noted).

Ottawa Linux Symposium 2002 290

Figure 1: Baseline contention with dbench

2.1 Summary of Baseline Measurements

The baseline measurements show that
dcache_lock suffers from an increasing level
of contention for some benchmarks. Although
other locks such as the Big Kernel Lock (ker-
nel_flag) and lru_list_lock are much higher in
the total contention numbers, once those are
dealt with, dcache_lock will move up the list.

The following work focuses on ways to in-
crease scalability of the dcache. While looking
at the distribution of lock acquisitions for these
workloads, it becomes obvious that d_lookup()
is the routine to optimize since it is the routine
where the global lock is acquired most often.

2.2 Dbench Results of Baseline

The dbench results from our initial investiga-
tions [Sarma] show that lock utilization and
contention grow steadily with an increasing
number of CPUs. On an 8-way system run-
ning 2.4.16 kernel, dbench results show 5.3%
utilization with 16.5% contention on this lock
(see Figure 1). One significant observation
with the lockmeter output is that for this work-
load d_lookup() is the most common operation.

This snippet of lockmeter output for an 8-
way in Table 1 shows that 84% of the

time dcache_lock was acquired by d_lookup().
Out of about fifteen million holds of the
dcache_lock, d_lookup() comprised twelve
million of them. The simple explanation for
this is that d_lookup is the main point into the
dcache. It does the looping search to find the
child of the given parent dentry in the hash,
then atomically increments the d_count refer-
ence of the dentry before returning it, all while
the dcache_lock is held.

Apart from contention, a large number of ac-
quisitions of a global lock result in excessive
bouncing of the lock cacheline in SMP ma-
chines as the number of CPU’s increase. It is
important to reduce contention as well as uti-
lization of the global lock to achieve better per-
formance.

2.3 Httperf Results of Baseline

The httperf results from our initial investiga-
tion show a moderate utilization of 6.2% with
4.3% contention in an 8 CPU environment.

A snippet of lockmeter output showing the dis-
tribution of acquisition of dcache_lock appears
in Table 2.

This shows that 74% of the time the global
lock is acquired from d_lookup(). Again, out
of about twenty million acquisitions of the
dcache_lock, d_lookup took fifteen million of
them.

3 Avoiding Global Lock in
d_lookup()

In the paper by Paul E. McKenney, Dipankar
Sarma, and Orran Krieger [McKenney] they
described the Read Copy Update mutual exclu-
sion mechanism (RCU). To summarize, RCU
provides support for reading an item without
holding a lock and a special callback method

Ottawa Linux Symposium 2002 291

SPINLOCKS HOLD WAIT
UTIL CON MEAN MAX MEAN MAX CPU TOTAL SPIN NAME

(%) (%) (µs) (µs) (µs) (µs) (%) (%)
5.3 16.5 0.6 2787 5.0 3094 0.89 15069563 16.5 dcache_lock

0.01 10.9 0.2 7.5 5.3 116 0.00 119448 10.9 d_alloc+0x128
0.04 14.2 0.3 42 6.3 925 0.02 233290 14.2 d_delete+0x10
0.00 3.5 0.2 3.1 5.6 41 0.00 5050 3.5 d_delete+0x94
0.04 10.9 0.2 8.2 5.3 1269 0.01 352739 10.9 d_instantiate+0x1c
4.8 17.2 0.7 1362 4.8 2692 0.76 12725262 17.2 d_lookup+0x5c

0.02 11.0 0.9 22 5.4 1310 0.00 46800 11.0 d_move+0x38
0.01 5.1 0.2 37 4.2 84 0.00 119438 5.1 d_rehash+0x40
0.00 2.5 0.2 3.1 5.6 45 0.00 1680 2.5 d_unhash+0x34
0.31 15.0 0.4 64 6.2 3094 0.09 1384623 15.0 dput+0x30
0.00 0.82 0.4 4.2 6.4 6.4 0.00 122 0.82 link_path_walk+0x2a8
0.00 0 1.7 1.8 0 2 0 link_path_walk+0x618
0.00 6.4 1.9 832 5.0 49 0.00 3630 6.4 prune_dcache+0x14
0.04 9.4 1.0 1382 4.7 148 0.00 70974 9.4 prune_dcache+0x138
0.04 4.2 11 2787 3.8 24 0.00 6505 4.2 select_parent+0x20

Table 1: Lockmeter output for 8-way

SPINLOCKS HOLD WAIT
UTIL CON MEAN MAX MEAN MAX CPU TOTAL SPIN NAME

(%) (%) (µs) (µs) (µs) (µs) (%) (%)
6.2 4.3 0.8 390 2.7 579 0.12 20243025 4.3 dcache_lock

0.02 6.5 0.5 45 2.7 281 0.00 100031 6.5 d_alloc+0x128
0.01 4.9 0.2 4.6 2.9 58 0.00 100032 4.9 d_instantiate+0x1c
5.0 4.5 0.8 387 2.8 579 0.09 15009129 4.5 d_lookup+0x5c

0.02 5.8 0.6 34 3.1 45 0.00 100031 5.8 d_rehash+0x40
0.19 8.8 0.5 296 2.8 315 0.01 933218 8.8 dput+0x30
0.89 2.3 0.6 390 2.5 309 0.01 4000584 2.3 link_path_walk+0x2a8

Table 2: Lockmeter output, distribution of acquisition of dcache_lock

Ottawa Linux Symposium 2002 292

to update all references to the data when it is
written.

The dcache_lock is held while traversing the
d_hash list and while updating the Least Re-
cently Used (LRU) list if the dentry found by
d_lookup has a zero reference count. By using
RCU we can avoid dcache_lock while reading
d_hash list [1].

In this, we were able to do a d_hash lookup
lock free but had to take the dcache_lock while
updating the LRU list. The patch does provide
some decrease in lock hold time and contention
level. Table 3 shows lockmeter statistics on a
4-way SMP running the 2.4.16 kernel without
any patches while running dbench.

Table 4 is the same dbench run with this first
RCU patch applied.

Spinning on the dcache_lock via d_lookup
went from 12.7% to 10.6%. This demonstrated
that simply doing the lock-free lookup of the
d_hash was not enough because d_lookup()
also acquired the dcache_lock to update the
LRU list if the newly found dentry previ-
ously had a zero reference count. This of-
ten was the case with the dbench workload,
hence we ended up acquiring the lock after al-
most every lock-free lookup of the hash table
in d_lookup().

From there we decided we needed to avoid ac-
quiring dcache_lock so often. Therefore, we
tried different algorithms to get rid of this lock
from d_lookup(), such as a separate lock for
the LRU list.

4 Per Bucket Lock for d_hash and
d_lru Lists

The goal was to enable parallel d_lookup. We
had to abandon this approach due to race con-
ditions and complicated code. The problem

was due to dcache having several additional
lists apart from d_hash and d_lru that span
across buckts. They are d_alias, d_subdir,
and d_child, in order to modify or access any
of these lists we would need to take multiple
bucket locks. This resulted in a serious lock
ordering problem which turned out to be un-
workable [2].

5 Separate Lock for the LRU List

The motivation behind having a separate lock
for the d_lru list was that as d_lookup() only
updates the LRU list, we could relax con-
tention on the dcache_lock by introducing a
separate lock for LRU lists. This resulted in
most of the load being transferred to the LRU
list lock. Many routines held the dcache_lock
as well, such as prune_dcache, select_parent,
d_prune_aliases, because they read or write
other lists apart from the LRU list [3]. Results
appear in Table 5.

6 Lazy Updating of the LRU List

Given that lock-free traversal of hash chains
did not significantly decrease dcache_lock ac-
quisitions, we looked at the possibility of re-
moving dcache_lock acquisitions completely
from d_lookup(). After using RCU based lock-
free hash lookup, the only remaining use of the
dcache_lock in d_lookup() was to update the
LRU list.

Our next approach was to relax the rules of
an LRU list by allowing dentries with non-
zero reference counts to remain in the list for a
short delay before being removed in the update
[4]. The beneficial side-effect was that multi-
ple dentries could be processed during the up-
date. Previously, the global dcache_lock was
held then dropped for every single entry as
each dentry was removed from the list during

Ottawa Linux Symposium 2002 293

SPINLOCKS HOLD WAIT
UTIL CON MEAN MAX MEAN MAX CPU TOTAL SPIN NAME

(%) (%) (µs) (µs) (µs) (µs) (%) (%)
6.3 9.2 0.4 1659 3.4 1648 1.3 23182304 9.2 dcache_lock

0.01 10.1 0.2 7.6 2.9 45 0.01 96649 10.1 d_alloc+0x124
0.03 11.0 0.2 70 2.9 316 0.01 184690 11.0 d_delete+0x10
0.04 8.8 0.2 95 2.7 175 0.01 281340 8.8 d_instantiate+0x1c
3.8 12.7 0.5 123 3.4 1648 0.80 10074944 12.7 d_lookup+0x58

0.02 9.9 0.8 24 2.8 56 0.00 37050 9.9 d_move+0x34
0.01 3.6 0.2 32 3.4 58 0.00 96639 3.6 d_rehash+0x3c
0.00 4.2 0.2 1.5 2.7 9.4 0.00 1330 4.2 d_unhash+0x34
2.3 6.4 0.3 120 3.3 1379 0.48 12336769 6.4 dput+0x18

0.00 5.2 2.0 882 3.9 50 0.00 3006 5.2 prune_dcache+0x10
0.02 4.8 6.1 836 3.2 23 0.00 5280 4.8 select_parent+0x18

Table 3: Lockmeter statistics, kernel 2.4.16 (unpatched)

SPINLOCKS HOLD WAIT
UTIL CON MEAN MAX MEAN MAX CPU TOTAL SPIN NAME

(%) (%) (µs) (µs) (µs) (µs) (%) (%)
4.3 7.5 0.3 1436 3.0 1222 0.88 23103201 7.5 dcache_lock

0.01 5.6 0.2 18 2.3 54 0.00 104404 5.6 d_alloc+0x128
0.03 8.1 0.2 20 2.4 322 0.01 184690 8.1 d_delete+0x10
0.04 6.9 0.2 30 2.2 79 0.01 289095 6.9 d_instantiate+0x1c
2.1 10.6 0.3 491 3.0 1222 0.54 9961665 10.6 d_lookup+0xd8

0.02 7.4 0.7 4.8 2.3 209 0.00 37050 7.4 d_move+0x34
0.01 3.4 0.2 4.8 3.0 43 0.00 104394 3.4 d_rehash+0x3c
0.00 2.5 0.2 1.3 2.9 8.6 0.00 1330 2.5 d_unhash+0x34
2.0 5.1 0.2 108 3.0 1080 0.32 12342240 5.1 dput+0x18

0.04 3.2 0.9 1436 3.1 74 0.00 65770 3.2 prune_dcache+0x140
0.02 4.1 6.6 926 2.7 8.3 0.00 5275 4.1 select_parent+0x18

Table 4: Lockmeter statistics, first RCU patch

SPINLOCKS HOLD WAIT
UTIL CON MEAN MAX MEAN MAX CPU TOTAL SPIN NAME

(%) (%) (µs) (µs) (µs) (µs) (%) (%)
3.7 5.7 0.3 1475 3.0 1551 0.63 22434872 5.7 d_lru_lock
1.7 7.9 0.3 90 3.1 1489 0.39 9956382 7.9 d_lookup+0xc8
2.0 3.9 0.2 144 3.0 1551 0.23 12346145 3.9 dput+0x18

0.04 2.8 0.5 22 3.5 79 0.00 127045 2.8 prune_dcache+0x150
0.03 3.6 9.2 1475 3.1 112 0.00 5300 3.6 select_parent+0x18
0.26 0.14 0.2 1474 1.7 204 0.00 1915750 0.14 dcache_lock
0.01 0.51 0.1 1.9 1.8 204 0.00 109702 0.51 d_alloc+0x124
0.02 0.15 0.2 9.3 2.6 169 0.00 184690 0.15 d_delete+0x10
0.03 0.16 0.1 11 1.6 57 0.00 294393 0.16 d_instantiate+0x1c
0.02 0.12 0.7 27 1.3 5.5 0.00 37050 0.12 d_move+0x34
0.01 0.12 0.1 61 1.7 3.5 0.00 109692 0.12 d_rehash+0x3c
0.00 0.23 0.1 1.6 1.1 1.7 0.00 1330 0.23 d_unhash+0x34
0.14 0.09 0.2 38 1.5 141 0.00 1099648 0.09 dput+0x4c
0.01 0.26 0.2 18 1.4 5.5 0.00 69655 0.26 prune_dcache+0x7c
0.03 0.26 8.7 1474 1.2 2.6 0.00 5300 0.26 select_parent+0x24

Table 5: Lockmeter statistics with separate lock for LRU List

Ottawa Linux Symposium 2002 294

the update.

To implement this new functionality, we in-
troduced another flag (DCACHE_UNLINK) to
mark the dentry for deferred freeing and a per-
dentry lock (d_lock) in struct dentry to main-
tain consistency between the flag and the ref-
erence counter (d_count). For all other lists in
struct dentry, the reference counter continued
to provide mutual exclusion.

Allowing additional dentries to remain in the
lru_list could lead to an unusually large num-
ber of dentries, causing a lengthy deletion pro-
cess during updates. We proposed two differ-
ent approaches to circumvent this problem:

1. Use a timer to kick off periodic updates.

2. Periodically update the d_lru list while al-
ready traversing it.

6.1 Timer Based Lazy Updating

A timer was used to remove the refer-
enced dentries from the d_lru list so that
it would be kept manageable. To take the
dcache_lock from the timer handler we had
to use spin_lock_bh() and spin_unlock_bh()
for dcache_lock. This created problems with
cyclic dependencies in dcache.h.

This approach did not prove to be any better
than the non-timer approach. However, the
patch is worth looking at as proper tuning of
timer frequency may give better results [5].

6.2 Periodic Updates During Traversal

The d_lru list is made up to date through se-
lect_parent, prune_dcache and dput. While
traversing the d_lru list in these routines, the
dentries with non-zero reference counts are re-
moved. This is the solution we chose to include
in the lazy LRU patches due to its simplicity.

6.3 Notes on Lazy LRU Implementation

Per dentry lock(d_lock) is needed to protect the
d_vfs_flags and d_count in d_lookup. There
is very little contention on the per dentry lock,
so this will not lead to a bottleneck. With this
patch the DCACHE_REFERENCED flag does
more work. It is being used to indicate the den-
tries which are not supposed to be on the d_lru
list. Right now apart from d_lookup, the per
dentry lock (d_lock) is used whereever d_count
or d_vfs_flags are read or modified. It is prob-
ably possible to tune the code more and relax
the locking in some cases.

We have created a new function in-
clude/linux/dcache.h: dentry_unhash() to
delete a dentry from the d_hash list. It sets the
DCACHE_UNLINK bit in d_vfs_flags, which
marks the dentry for deferred freeing.

As we do lockless lookup, rmb() is used
in d_lookup to avoid out of order reads for
d_nexthash and wmb() is used in d_unhash to
make sure that d_vfs_flags and d_nexthash()
are updated before unlinking the dentry from
the d_hash chain.

Every dget() marks the dentry as referenced by
setting DCACHE_UNLINK bit in d_vfs_flags.
This forced us to hold the per dentry lock in
dget. Therefore, dget_locked is not needed.

6.4 Lazy LRU Patch Results

Contention for the dcache_lock reduced in all
routines. However, the routines: prune_dcache
and select_parent take more time because the
d_lru list is longer. This is acceptable as both
routines are not in the critical path.

We ran dbench and httperf to measure the ef-
fect of lazy dcache and the results were very
good. By doing a lock-free d_lookup(), we
were able to substantially cut down on the
number of dcache_lock acquisitions. This re-

Ottawa Linux Symposium 2002 295

Figure 2: Lazy LRU contention from dbench

Figure 3: Lazy LRU dcache_lock utilization
from dbench

sulted in substantially decreased contention as
well as lock utilizations. Results appear in Ta-
ble 6.

6.5 Dbench Results of Lazy LRU

dbench results showed that lock utilization and
contention levels remain flat with lazy dcache
as opposed to steadily increasing with the base-
line kernel. So for 8 processors, contention
level is 0.95% as opposed to 16.5% for the
baseline (2.4.16) kernel.

One significant observation is that maximum
lock hold time for prune_dcache() and se-
lect_parent() are high for this algorithm. How-

Figure 4: Lazy LRU contention from httperf

ever, these are not frequent operations for this
workload. Although, this latency could be an
issue with real time applications.

A comparison of baseline (2.4.16) kernel and
lazy dcache contention and utilization while
running dbench can be seen in Figures 2 and
3.

The throughput results show marginal differ-
ences (statistically insignificant) for up to 4
CPUs, of 1% (statistically significant) on 8
CPUs. There is no performance regression in
the lower end and the gains are small in the
higher end.

6.6 Httperf Results of Lazy LRU

The httperf results showed a similar decrease
in lock contention and lock utilization. With 8
CPUs, it showed significantly less contention.
See Table 7.

A comparison of the baseline (2.4.16) ker-
nel and lazy dcache contention and utilization
while running dbench can be seen in Figures 4
and 5.

The results of httperf (replies/sec for fixed
connection rate) showed statisticially insignif-
icant differences between base 2.4.16 and lazy
dcache kernels.

Ottawa Linux Symposium 2002 296

SPINLOCKS HOLD WAIT
UTIL CON MEAN MAX MEAN MAX CPU TOTAL SPIN NAME

(%) (%) (µs) (µs) (µs) (µs) (%) (%)
0.89 0.95 0.6 6516 19 6411 0.03 2330127 0.95 dcache_lock
0.02 1.7 0.2 20 17 2019 0.00 116150 1.7 d_alloc+0x144
0.03 0.42 0.2 49 35 6033 0.00 233290 0.42 d_delete+0x10
0.00 0.14 0.8 12 3.4 8.5 0.00 5050 0.14 d_delete+0x98
0.03 0.40 0.1 32 34 5251 0.00 349441 0.40 d_instantiate+0x1c
0.05 0.30 1.7 44 22 1770 0.00 46800 0.30 d_move+0x38
0.01 0.16 0.1 21 4.5 334 0.00 116140 0.16 d_rehash+0x40
0.00 0.65 0.7 3.7 8.4 57 0.00 1680 0.65 d_vfs_unhash+0x44
0.56 1.1 0.7 84 18 6411 0.02 1383859 1.1 dput+0x30
0.00 0.88 0.4 2.3 1.3 1.3 0.00 114 0.88 link_path_walk+0x2d8
0.01 4.4 4.3 6516 4.8 32 0.00 3566 4.4 prune_dcache+0x14
0.07 2.3 1.8 6289 4.4 718 0.00 67591 2.3 prune_dcache+0x150
0.11 0.79 29 4992 28 1116 0.00 6444 0.79 select_parent+0x24

Table 6: The effect of lazy dcache

SPINLOCKS HOLD WAIT
UTIL CON MEAN MAX MEAN MAX CPU TOTAL SPIN NAME

(%) (%) (µs) (µs) (µs) (µs) (%) (%)
1.4 0.92 0.7 577 2.2 617 0.00 4821866 0.92 dcache_lock

0.02 2.2 0.6 30 1.9 7.8 0.00 100031 2.2 d_alloc+0x144
0.01 1.7 0.2 12 2.2 9.2 0.00 100032 1.7 d_instantiate+0x1c
0.03 1.5 0.7 9.2 2.3 10 0.00 100031 1.5 d_rehash+0x40
0.24 2.1 1.2 577 1.9 283 0.00 521329 2.1 dput+0x30
1.1 0.70 0.7 366 2.4 617 0.00 4000443 0.70 link_path_walk+0x2d8

Table 7: Results with 8 CPUs

Ottawa Linux Symposium 2002 297

Figure 5: Lazy LRU dcache_lock utilization
from httperf

7 Avoiding Cacheline Bouncing of
d_count

7.1 fast_walk()

On SMP systems and even moreso on some
NUMA architectures, repeated operations on
the same global variable can cause excessive
cacheline bouncing. This is due to the entire
cacheline being read into each CPU’s hardware
cache while it is being used. For some common
directories found in many paths such as ’/’ or
’usr’, this exessive cacheline bouncing will be
triggered.

Alexander Viro recommended a possible solu-
tion that we implemented. He proposed not
incrementing and decrementing the reference
counter for dentries that are already in the den-
try cache. Instead, hold the dcache_lock to
keep them from being deleted.

We used the path_lookup function to imple-
ment this change [6]:

Before:
read_lock(¤t->fs->lock);
nd->mnt =

mntget(current->fs->pwdmnt);
nd->dentry =

dget(current->fs->pwd);
read_unlock(¤t->fs->lock);

}
return (path_walk(name, nd));

After:
read_lock(¤t->fs->lock);
spin_lock(&dcache_lock);
nd->mnt = current->fs->pwdmnt;
nd->dentry = current->fs->pwd;
read_unlock(¤t->fs->lock);

}
nd->flags |= LOOKUP_LOCKED;
return (path_walk(name, nd));

The atomic increment of d_count is all that
dget and mntget do.

The rest of the changes were in path_walk (im-
plemented by link_path_walk). While the den-
try is found in the cache, just keep walking the
path. If a dentry is not in the cache, then incre-
ment the d_count to keep it synchronized and
drop the dcache_lock, and then simply con-
tinue. For coding simplicity, the dcache_lock
is always dropped in the path_walk code in-
stead of returned to path_lookup to be dropped.

This patch has been accepted by Linus Tor-
valds starting with the 2.5.11 kernel.

7.2 path_lookup()

We started with a simple cleanup of repli-
cated code involving path_init, path_walk, and
__user_walk [7]. There were sixteen occur-
rences of the following:

if(path_init(x))
error = path_walk(x)

Which changed to one call:
error = path_lookup(x)

In addition there were six
occurrences of the following:

a = getname(b)
if(error)

return
path_lookup(a)

Ottawa Linux Symposium 2002 298

Figure 6: FastWalk increases dbench through-
put

putname(a)
which changed to an existing call:

error = __user_walk(b)

This patch has been accepted by Alan Cox
starting in 2.4.19-pre5-ac2. Marcelo has not
merged this patch into mainline 2.4 as of this
writing.

7.3 Fast Path Walking Results

7.4 16-way NUMA Results of Fast Walk

Previously, we mentioned d_lookup was the
main user of dcache_lock. This is especially
noticeable on a 16-way NUMA system. Mar-
tin Bligh, in attempting to get the fastest kernel
compile, applied this patch on top of a few oth-
ers [Bligh]. Not only did it reduce time spent
spinning on the dcache_lock, it decreased total
kernel compile time by 2.5%.

Following is a profile of kernel duringmake
-j32 bzImage on a 16-way NUMA system.
This shows an almost 50% reduction in time
spinning on the dcache_lock.

Kernel compile time is now
23.6 seconds.

Here are the top 10 elements
of profile before and after
your patch (left hand column
is the number of ticks spent
in each function).

Before:

22086 total 0.0236
9953 default_idle 191.4038
2874 _text_lock_swap 53.2222
1616 _text_lock_dcache 4.6304

748 lru_cache_add 8.1304
605 d_lookup 2.1920
576 do_anonymous_page 1.7349
511 do_generic_file_read 0.4595
484 lru_cache_del 22.0000
449 __free_pages_ok 0.8569
307 atomic_dec_and_lock 4.2639

After:

21439 total 0.0228
9112 default_idle 175.2308
3364 _text_lock_swap 62.2963

790 lru_cache_add 8.5870
750 _text_lock_namei 0.7184
587 do_anonymous_page 1.7681
572 lru_cache_del 26.0000
569 do_generic_file_read 0.5117
510 __free_pages_ok 0.9733
421 _text_lock_dec_and_lock 17.5417
318 _text_lock_read_write 2.6949

...

129 _text_lock_dcache 0.3696

8 Conclusions

This paper has demonstrated performance im-
provements of the dcache via the fast path
walking patches and the lazy updating of the
LRU patches. We are working with the VFS
and kernel maintainers to get these patches ac-
cepted.

Although the dcache continues to scale, there
is more work to be done, much of it happening
as this is being written.

Ottawa Linux Symposium 2002 299

9 Availability of Referenced
Patches

As of now, all patches have been tested on ext2,
ext3, JFS, and /proc filesystem. Our goal was
to experiment with dcache, extending it for use
with other filesystems, this is in the pipleline.

dcache patches can be found on Source-
Forge.net under the Linux Scalability Effort
project page.

[1] Lockfree read of d_hash
http://prdownloads.sf.net/lse

/dcache_rcu-2.4.10-01.patch

[2] Per Bucket Lock for d_hash and d_lru
http://prdownloads.sf.net/lse

/dcache_rcu-bucket-2.4.16-05.patch

[3] Separate lock for the LRU list
http://prdownloads.sf.net/lse

/dcache_rcu-lru_lock-2.4.16-02.patch

[4] Lazy LRU
http://prdownloads.sf.net/lse

/dcache_rcu-lazy_lru-2.4.17-06.patch

[5] Lazy LRU updating via timer
http://prdownloads.sf.net/lse

/dcache_rcu-lazy_lru-timer-2.4.16-04.patch

[6] Fast Path Walking
http://prdownloads.sf.net/lse

/fast_walkA1-2.5.10.patch

[7] Path walking code cleanup
http://prdownloads.sf.net/lse

/path_lookupA1-2.4.17.patch

10 Acknowledgements

Alexander Viro has been a tremendous help
to us and we thank him for his input and all

his hard work. SourceForge.net for support-
ing Open Source development. Paul Menage
for helping to debug. Martin Bligh for running
the NUMA tests. Hans-Joachim Tannenberger,
our manager. International Business Machines
Corporation and its Linux Technology Center.
This work represents the view of the authors
and does not necessarily represent the view of
IBM.

References

[Sarma] Dipankar Sarma, Maneesh Soni
Scaling the dentry cache
http://lse.sf.net/locking

/dcache/dcache.html

[McKenney] Paul E. McKenney, Dipankar
Sarma, and Orran Krieger,Read-Copy
Update

[Mosberger] David Mosberger, Tai Lin,
httperf: A tool for measuring web server
performance.Hewlett-Packard Inc.
Research Labs.
http://www.hpl.hp.com/personal

/David_Mosberger/httperf.html

[Hawkes] John HawkeskernprofSilicon
Graphics Inc.http://oss.sgi.com

/projects/kernprof

[Hawkes2] John HawkeslockmeterSilicon
Graphics Inc.http://oss.sgi.com

/projects/lockmeter

[Pool] Martin PooldbenchSamba.org

[Bligh] Martin J. Bligh’s 23 second kernel
compile (aka which patches help
scalibility on NUMA),
linux-kernel@vger.kernel.org, March 8,
2002.
http://marc.theaimsgroup.com

/?l=linux-kernel&m=101565828617899&w=2 .

Ottawa Linux Symposium 2002 300

11 Trademarks

IBM is a registered trademark of International
Business Machines Corporation in the United
States, other countries, or both.

Other company, product or service names may
be trademarks or service marks of others.

Linux is a registered trademark of Linus Tor-
valds.

BKL: One Lock to Bind Them All

Rick Lindsley
IBM Linux Technology Center

ricklind@us.ibm.com

Dave Hansen
IBM Linux Technology Center

haveblue@us.ibm.com

Abstract

One ring to rule them all
One ring to find them
One ring to bring them all
And in the darkness bind them.

— The Fellowship of the Ring,
J.R.R. Tolkien

When the topic turns to the Big Kernel Lock
(BKL), the comparison to Tolkien’s one Ring
comes naturally. The BKL was among the first
locks to be created for the Linux(R) kernel,
and many other locks were developed either to
complement or replace instances of it. Despite
this, coders are reluctant to reduce or eliminate
the usage of the BKL so while it may not rule
them all, it continues, in a performance sense,
to “bind them all.”

Once the varied uses of the BKL are under-
stood, the BKL can safely be replaced by other
lock mechanisms, which are more appropri-
ate for each instance. The difficulty lies in
identifying these distinct instances, determin-
ing what protection is provided by the BKL in
each, and carefully replacing the BKL without
perturbing the rest of the system. In this paper,
we examine the history of the BKL, review re-
cent efforts to replace and remove it, and out-
line the work remaining. The One Lock need
not rule nor bind the others any longer.

1 Introduction

Careless locking throughout the Linux kernel
adds unneeded complexity and decreases per-
formance. With the introduction of Robert
Love’s changes1 to implement a preemptive
kernel in 2.5.4, the effects of poor locking now
can affect SMP and uniprocessor machines
alike. Locks such as the Big Kernel Lock
(BKL) have multiple uses and can be confus-
ing to use correctly.

As a result of its overuse, many instances of
the BKL subtly intertwine, causing a single
lock_kernel() call to have several protec-
tive and often unrecognized effects. Until re-
cently, for example, the BKL protected list op-
erations on a webcam list in the CPiA driver
and would lock out the NFS kernel daemon
thread while these operations were being per-
formed. These two activities always executed
exclusively, when absolutely no exclusion was
necessary. In determining how best to release
the BKL’s hold over the rest of the kernel, it is
useful to examine not only how it is currently
used, but how it came to be used that way.

2 History of the BKL

The BKL originated with Linux’s first attempts
to support SMP. The patch for 1.3.26 shows

1Patches available at
http://www.kernel.org/pub/linux
/kernel/people/rml/killbkl/llseek/

Ottawa Linux Symposium 2002 302

the first signs of the BKL’s declaration, but it
was not actually used until 1.3.31. The lock
was simply a bit which was set whenever a
CPU was in kernel context. If another CPU
attempted to enter the kernel at the same time,
it spun. The net effect was to allow only one
process in the kernel at a time. This was a time
well before thespin_lock() functions, so
the authors implemented this spinning behav-
ior themselves in theENTER_KERNELassem-
bly macro. At this point, the lock was acquired
exclusively inENTER_KERNELand released
in EXIT_KERNEL; no device drivers or kernel
subsystems explicitly interacted with it.

1.3.54 brought with it the now-familiar
lock_kernel() andunlock_kernel()
functions defined in C. This opened up the way
for code other than the kernel entry code to
use the BKL. For all of 1.3 and 2.0, this code
was limited to kernel daemons:bdflush ,
kswapd , andnfsd . With the new C defini-
tions, 1.3.54 also introduced one of the BKL’s
most striking features: the ability to be held re-
cursively. In that code, the lock’s spin loop will
terminate if the current processor already holds
the lock:

while (set_bit(0,
(void *)&kernel_flag)) {

if (proc==active_kernel_processor)
break;
<snip...>

}
active_kernel_processor = proc;
kernel_counter++;

This feature made the BKL more obviously a
processor lock rather than a process lock. A
single process was not prevented from grab-
bing it multiple times, but other processors
were blocked. It also greatly simplified the
programmer’s task: there was no worry about
deadlocks with yourself. In cases where a
function’s caller holds the lock, the second

lock_kernel() will never spin waiting for
release.

lock() // spin until acquired
func() {

lock() // kernel_counter++;
unlock() // kernel_counter--;

}
unlock() // kernel_counter--;

// (and release if
// kernel_counter == 0)

However, this convenient feature invites abuse.
With the threat of deadlocks removed, pro-
grammers can take the lock “just to be safe,”
and there is no penalty for not diligently check-
ing or commenting code. The penalty falls
on the inheritors of this code, when they ask,
“What is this guarding?” and try to remove the
BKL.

The 1.3/2.0 development period saw only very
limited spreading of the BKL. As 2.0 develop-
ment continued, the BKL was added in only
one more place, and that was for another ker-
nel daemon.

The BKL as we know it today (a spin-
lock) was introduced in 2.1.23. The old
ENTER_KERNELand EXIT_KERNEL se-
mantics were replaced bylock_kernel()
and unlock_kernel() calls around crit-
ical regions. At this point, only Sparc
and i386 had generic spinlock mechanisms,
which meant that, besides semaphores, the
BKL offered the only SMP mutex mecha-
nism. The scope of this change in Linux’s
SMP support is evident from counting how
many times lock_kernel() is called;
2.1.22 had 9 calls oflock_kernel() and
unlock_kernel() while 2.1.23 had 761!

It might appear that the 2.1.23 patch is the root
of all evil. But it did add a very important fea-
ture: kernel concurrency. Before this point,
no two tasks could be running in the kernel at

Ottawa Linux Symposium 2002 303

once. The modern BKL is perhaps not as one-
sided as it first looks, as it was the price to pay
for kernel concurrency at the time. The current
BKL removal process is just a continuation of
this effort to allow more kernel concurrency.

3 Current state of the BKL

In 2.4.18,lock_kernel() is invoked over
500 times in about 290 files. Determining why
it is invoked in those files is a little tricky, since
comments are rarely present. Sometimes it’s
not clear that even the authors understood why
it was needed; they appear to have invoked
it either because the code they were copying
from invoked it, or simply because they feared
angering the ancient gods of coding by omit-
ting it.

Semantically, we find that in the 2.4.18 kernel
the BKL is used primarily in the following ar-
eas:

• release (or close) routines

• open routines

• mmaproutines

• ptrace system call

• file system code

• module protection

Functionally, however, the intended use in each
case is far less clear. Most of the uses can only
be inferred from code inspection, because usu-
ally the users of the BKL did not create com-
ments describing their changes. After some
research into the 2.4.18 code and old change
logs, however, it is possible to hazard an edu-
cated guess at the uses.

release (or close) routines. These rou-
tines are called when a file descriptor is closed

for the last time. At one time, the BKL was
held across the release call, and when that call
was removed and responsibility for acquiring
the lock was pushed down into those routines,
many authors did not have the time, knowl-
edge, or inclination to determine whether it
was truly needed. Many of them remain today,
even though most are unnecessary, as we’ll see
later.

open routines. These routines are called
when a file descriptor is first created (opened).
As with the release routines, the BKL was orig-
inally held across the generic open call and
thus was held for all devices upon entry to their
open code. When the code acquiring the BKL
was removed, it became the responsibility of
the open routines to acquire it. To avoid break-
ing any code relying on the ability to acquire
the BKL, the patch modified each and every
open routine to grab the BKL itself, and left it
to the driver owners to take it out if it was un-
necessary. Unfortunately, many driver owners
chose not to spend time determining whether it
was necessary.

mmap routines. These routines are called
when ammapcall is made against the file de-
scriptor to map some portion of the underlying
data into memory. While the details of what
is being mapped vary with the device, it seems
to have been generally accepted that the BKL
needed to be held in order to accomplish it.
This remains one of the more mysterious uses
of the BKL, and will be high on the list for fu-
ture work.

ptrace system call.The BKL appears to be
used to lock down the important fields of a pro-
cess whileptrace() (which is architecture-
specific) manipulates them.

file system code. In the file system code,
it’s harder to discern a general pattern of us-
age. Frequently, the BKL seemed to protect
various file-system-specific data structures, as

Ottawa Linux Symposium 2002 304

well as some VFS structures. As noted above,
file system code exploded with BKL usage in
2.1.23, and since then authors have slowly been
weeding it out. What’s left is, in general, the
code hardest to fathom or the most sensitive
to changes, and extricating the BKL from this
code requires thorough knowledge of the file
system being operated on. Some very recent
work has made ext2 much less dependent on
the BKL.2

module protection. The BKL is used to pro-
tect the module list in kernel/module.c. This
use of the BKL has the unusual distinction of
at least being consistent and well-defined. If
it were not for the remote possibility of an un-
expectedly positive interaction with other BKL
usages elsewhere in the kernel, this mechanism
could be replaced with a simple spin lock. As
it is, it needs to be inspected as closely and un-
derstood as well as any other BKL usage before
taking any action.

4 Why does it matter?

It could be argued that “if it ain’t broke, don’t
fix it” and that efforts to reduce or eliminate the
BKL are not only difficult in many cases, but
pointless. The reference to the module code,
above, would be a prime example.

The BKL is not viewed as an obstacle for
many benchmarks or workloads. Certainly
on uniprocessors, many other concerns are of
higher precedence. But when the One Lock
does obstruct some task or benchmark, it is a
daunting task to remove that roadblock. As
mentioned earlier, there are few comments or
other documentation to explain why the BKL
is used in any particular spot, let alone how it
might be excised. Further, because the BKL is

2Patches (for 2.5 only) are available at
http://linus.bkbits.net:8080
/linux-2.5/cset@1.290

used in so many places, the problem may not
lie in the region in which it is contended for.

Imagine this scenario. Functionfoo() grabs
the BKL 500 times during a particular work-
load and holds it for 100ms each. Function
bar() , on the other hand, attempts to grab it
100000 times, but seems constantly thwarted,
waiting an average of 35ms 70% of the time.
When it does finally get it, it holds it for an av-
erage of 10ms before releasing it. One could
mistakenly conclude that reducing or eliminat-
ing the BKL in bar() would make the con-
tention problem go away - and indeed it would.
But the real problem probably lies in holding
the lock an incredibly long time infoo() ,
thus holding up the many instances ofbar() .

Does one fixfoo() to hold the lock a shorter
period of time, or does one fixbar() to ac-
quire it less? It’s bad practice to hold a spin-
lock a long time infoo() , but then it seems
optimization may be needed inbar() to re-
duce the number of times locking is required or
even the number of times the function is called.
Determining the correct answer really requires
that both functions be well understood in pur-
pose and scope. In a given instance, the answer
may be one or the other, or even both or neither.
(Both functions may be completely unneces-
sary upon closer inspection. Equally possible
would be that neither may be able to change
their behavior. For example, iffoo() must
hold the BKL while calling a proprietary func-
tion or performing some hardware operation it
has no control over, it may not be able to re-
duce its hold time. Similarly, the high number
of calls tobar() may be a necessary evil that
keeps an interface definition clean and more
easily supported at the expense of a seemingly
high number of function calls.)

Now recall that the BKL is used in hundreds
of routines, interacting in thousands of ways,
and you’ve answered the question of why its

Ottawa Linux Symposium 2002 305

widespread use and misuse does matter.

5 Recent work

There has already been a great deal of work in
2.5 to remove the BKL where it isn’t neces-
sary. Happily, most of the fixes to remove the
BKL are dirt-simple (once the arduous investi-
gation to prove their simplicity is completed!)
and provide significant, measurable benefits.

5.1 do_exit()

Perhaps the best example of this is
do_exit() . Lockmeter data from that
most-trusted of all benchmarks, the kernel
build, showeddo_exit() holding the BKL
for an average of 8ms, with a maximum
hold time of 55ms. That is an eternity for a
cpu whose time is simply wasted spinning.
On first examination of this code, removing
the BKL appears difficult because so many
complex data structure manipulations are done
here. However, upon closer examination, it is
evident that many of the functions called under
the BKL in do_exit() already have their
own locking implemented.

So what is the BKL really guarding? Li-
nus Torvalds himself mentioned on the linux-
kernel mailing list3 (LKML) that, even in
2.4, few of these functions actually still
need the BKL. The strategy for removal
was simple: only hold the BKL around
the functions where it is really neces-
sary. In this case,sem_exit() and
disassociate_ctty() appeared to be
the most likely candidates for still needing the
BKL. After a suggestion from Linus, the BKL
was moved into those two functions, and out
of do_exit() itself. The amount of time the

3Mailing List Archive:
http://marc.theaimsgroup.com
/?l=linux-kernel&m=101484620020622&w=2

lock was held went from 8ms on average to
only 5.5usin the worst case!

However, this fix was not without its price.
Shortly after the initial do_exit()
patch went into 2.5, posts on LKML re-
ported OOPSes during boot whenever
preemption was enabled. Replacing the
lock_kernel() in do_exit() fixed the
problem, as did a preempt_disable
(which, in a preemptive kernel, all
spin_lock() calls do implicitly). While
the task is exiting,exit_notify() sets
current->state to TASK_ZOMBIE.
However, if a preemption point occurs after
the state is set, the return from preemp-
tion code sets current->state to
TASK_RUNNING. This makes the previously
“zombied” process eligible to run again, in-
stead of being cleaned up. Theschedule()
at the end ofdo_exit() , which is never
meant to return, ends up returning.

The fix is to note the task’s state when it
was preempted and make sure not to make it
runnable again if it was exiting when it was
preempted.do_exit() is a prime example
of why it is very dangerous to derive protection
from a lock without realizing why, especially
from the BKL.

5.2 release() removal

Many device drivers’release and open
functions try to guarantee that only one open
can be done on the device at a time:

static int opened = 0;
open()
{

if(opened)
return -EBUSY;

... do opening stuff
opened = 1;

}

Ottawa Linux Symposium 2002 306

release()
{

opened = 0;
}

This works fine on a uniprocessor machine.
However, on SMP systems a race can allow
two processes to open the device simultane-
ously, as demonstrated in the C code in Fig-
ure 5.2.

Currently, this is not a problem for character or
block devices. The VFS code holds the BKL
over the calls to all char and block open func-
tions:

int chrdev_open(struct inode *inode,
struct file * filp)

{
...
if (filp->f_op->open != NULL) {

lock_kernel();
ret =

filp->f_op->open(inode,filp);
unlock_kernel();

}
...
return ret;

}

There is similar code for block devices, but
misc devices are not afforded this protection.
Also, as good practice, devices should never
depend on the layers above them to protect
against races in their own code especially when
they depend on protection provided by the
BKL. They should be even more careful to
avoid depending on the BKL’s protection with-
out realizing it (seedo_exit() example).

Before the release() removal patches,
many drivers’ open/release combinations
looked like this:

static int opened = 0;

// implicit from VFS code
// for char/block
lock_kernel();
open()
{

if(opened)
return -EBUSY;

... do opening stuff
opened = 1;

}
unlock_kernel();

release()
{

lock_kernel();
opened = 0;
unlock_kernel();

}

In almost all of these cases, the fix is simple:
just use atomic bit operations. No spinlocks or
semaphores are needed; just a simple bit op-
eration. Now the functions are safe to use in
block, char, or misc devices because they don’t
rely on VFS to do any locking for them.

static int opened;
open()
{

if(test_and_set_bit(0,&opened))
return -EBUSY;

// I’m the only opener
... do opening stuff
// success

}

release()
{

clear_bit(0,&opened);
}

6 Notable work, and kudos

Valiant, ongoing efforts by many code warriors
to reduce or eliminate the BKL are worth men-
tioning. This is not a complete list, of course,
but just some recent efforts that have had a sig-
nificant impact.

Ottawa Linux Symposium 2002 307

open
{

if(opened)
return -EBUSY;

// I’m the only opener
... do opening stuff
opened = 1; // success

}

open
{

if(opened)
return -EBUSY;

// Uh-oh, we got in before opened
// was set and there are two of us!
opened = 1;

}

Figure 1: Open Race

VFS has had a difficult struggle with the BKL.
The UNIX(R) “everything is a file” approach
forces perfection from filesystem code. VFS is
also a place where concurrency is important, so
locking must be done carefully and kept finely
grained so as not to adversely affect perfor-
mance. The BKL’s presence in so many other
pieces of code has made its presence in VFS
code troublesome.

Al Viro has done a noteworthy job of freeing
VFS from dependency on the BKL and shift-
ing the responsibility of locking into the un-
derlying code.4 This underlying code is al-
ways closer to the task at hand and can make
more well-informed, finely-grained decisions
than VFS can. He has also worked on doc-
umenting filesystem locking. The BKL still
plays a big part in VFS and Al has done a
good job of documenting that role in Docu-
mentation/filesystems/Locking. He has also
documented the locking changes in Documen-
tation/filesystems/porting.

Richard Gooch has been an exemplary advo-
cate for pushing the BKL out of devfs.5 On
one occasion, he responded within minutes of a
patch being posted which pushed the BKL into
some devfs code, down from the VFS layer. A

4Patches are available (for 2.5) at
http://linux.bkbits.net:8080
/linux-2.5/user=viro

5Patches are available (for 2.5) at
http://marc.theaimsgroup.com
/?l=linux-kernel&m=101787867929523

couple days later, he posted a patch purging the
BKL from his subsystem because it derives ab-
solutely no protection from the BKL.

7 Future Work

There are some specific areas that need to be
addressed, and some were mentioned above:
themmapcode, theptrace code, and the file
system code, for example. Stalwart, knowl-
edgable code warriors are always sought for
this sort of effort.

However, you can join the fellowship and be
a BKL Eliminator even without knowledge in
these areas. Even if you have no time to elim-
inate the BKL from existing code, you, as a
coder, can help prevent it from proliferating by
adopting simple standards for yourself:

• Never submit code that adds the BKL,
anywhere.

• If you need exclusion in your driver, pro-
vide it yourself with your own lock.

• If you need to sleep while holding a lock,
use a semaphore.

• If you still think you need the BKL, ask
somebody else first.

If you are responsible for code that still uses
the BKL, make an effort not to expand where

Ottawa Linux Symposium 2002 308

it is used. The next time you go to rewrite a big
chunk of your code, think about the BKL and
start imagining ways to remove it.

A running scorecard for each release can be
found at http://lse.sourceforge.net

/lockhier/index.html . Listed there are
versions of a locking reference document for
recent releases of both 2.4 and 2.5—in partic-
ular, outlining where the BKL is still found.
Here is a summary for 2.5.8-pre3:

Top users of BKL in 2.5.8-pre3
(excluding filesystems)

1689 .
254 drivers
177 arch
113 sound
107 sound/oss

71 include
71 drivers/usb
47 drivers/char
39 drivers/isdn
32 include/linux
29 arch/sparc64
28 arch/sparc/kernel
28 arch/sparc
23 drivers/usb/core
22 kernel
19 drivers/usb/media
19 arch/alpha/kernel
19 arch/alpha
17 arch/sparc64/solaris
16 arch/ppc64/kernel

Top users of BKL in 2.5.8-pre3
(filesystems only)

1026 fs
76 fs/reiserfs
67 fs/coda
61 fs/ext3
58 fs/intermezzo
58 fs/hfs
54 fs/nfs
51 fs/hpfs
44 fs/affs
43 fs/udf
35 fs/autofs
32 fs/ufs
30 fs/smbfs
28 fs/jffs
24 fs/ntfs
22 fs/bfs
21 fs/vfat
19 fs/ncpfs
19 fs/autofs4
18 fs/qnx4

All maintainers with a subsystem listed above
should take a hard look at their code. In most
cases, the code which uses the BKL does not
actually need it. Understandably, developers
are reluctant to change code which they do
not have great knowledge about. As the main-
tainer, you are the authority , you do have in-
timate knowledge of the code, and you can in-
telligently and safely remove the BKL.

Perhaps the only generic use for the BKL
which is spreading is the use around calls
to daemonize() . Many of them, like this
use fromibmphp_hpc.c , hold the BKL for
short periods of time.

lock_kernel ();
daemonize ();
reparent_to_init ();
...
unlock_kernel ();

However, there are many other cases where
the same operations are performed without the

Ottawa Linux Symposium 2002 309

BKL. The authors would be very interested to
receive any information that readers can add
about this use withdaemonize() .

In general, the kernel would be a better place
if Linus would never accept another patch with
lock_kernel() in it. Truth is, this is not
likely to happen anytime soon. But an in-
creased awareness among the Linux commu-
nity can be almost as useful as eradication in
achieving this goal. Until the BKL is reduced
to one or zero usages, there will remain fear
and uncertainty when it is encountered, and the
One Lock will continue its hold over all of us.

8 Acknowledgements

IBM is a registered trademark of International
Business Machines Corporation in The United
States and other countries.

Linux is a registered trademark of Linus Tor-
valds.

UNIX is a registered trademark of the Open
Source Group.

The opinions expressed are those of the au-
thors, and do not necessarily reflect the opin-
ions of the IBM Corporation.

HPC Federated Cluster Administration with C3 v3.0

Brian Luethke and Stephen Scott

Abstract1

KEYWORDS: Cluster, Administration,
Federated-cluster, multi-cluster

While administrating TORC, HighTORC, and
the various other computation clusters at Oak
Ridge National Laboratory (ORNL), it quickly
became apparent that a solution for the admin-
istration of federated clusters, or “clusters of
clusters,” was needed. The few cluster tools
available when this work began could barely
manage a single cluster let alone a number of
clusters. They also required that the user be
directly logged onto a cluster machine. This
meant to administer ten clusters required that
the administrator login and repeat a task on
each of the clusters. This solution does not
scale and therefore is unacceptable for our en-
vironment. Thus, a solution was desperately
needed whereby an administrator could per-
form duplicate operations across multiple clus-
ters and portions thereof in a scalable and se-
cure fashion from a single location that may
not be directly logged onto the cluster being
administered. Thus the development of version
3.0 of the Cluster Command and Control (C3)
tool suite began.

1Research supported by the Mathematics, Informa-
tion and Computational Sciences Office, Office of Ad-
vanced Scientific Computing Research, Office of Sci-
ence, U. S. Department of Energy, under contract No.
DE-AC05-00OR22725 with UT-Battelle, LLC.

The submitted manuscript has been authored by a
contractor of the U.S. Government under contract DE-
AC05-00OR22725. Accordingly, the U.S. Government
retains a nonexclusive, royalty-free license to publish or
reproduce the published form of this contribution, or al-
low others to do so, for U.S. Government purposes.

C3 prior to version three required, as most tools
do, that one is physically logged into a clus-
ter in order to perform administration opera-
tions. The few existing tools that permit remote
administration of clusters were all web based,
therefore they suffered security problems and
set up hassles associated with installing and
maintaining a web server. What we tried to de-
sign is an easy to use command line interface
that is powerful enough to do most system ad-
ministrating jobs and secure. These tools also
needed to be useful to regular users in building
and maintaining their distributed applications.
C3 version 2.x already met those requirements
so we decided to emulate their functionality
while adding the ability to do this with mul-
tiple clusters. This paper describes the use of
the C3 3.0 tool suite.

1 Brief Description of Commands

Ten general use tools have been developed in
the effort thus far: cexec, cget, ckill, cpush,
cpushimage, crm, cname, cnum, clist, and
cshutdown. The cpushimage and cshutdown
are both system administrator tools that may
only be used by the root user. The other eight
tools may be employed by any cluster user for
both system and application level use.

The cexec command is the general utility tool
of the C3 suite in that it enables the execu-
tion of any command on each cluster node.
As such, cexec may be considered the cluster-
ized version of rsh/ssh[1]. A command string
passed to cexec is executed “as is” on each
node. This provides a great deal of flexibility

Ottawa Linux Symposium 2002 311

in both displaying the command output and ar-
guments passed in to each instruction.

The cget command will retrieve the given files
from each cluster node and deposit them in a
specified directory location on the local ma-
chine. Since all files will originally have the
same name, only from different nodes, an un-
derscore and the node’s IP or hostname and
cluster name are appended to each file name.
Whether the IP or hostname is appended de-
pends on which is specified in the cluster spec-
ification file. Note that cget operates only on
files and ignores subdirectories and symbolic
links

The ckill tool runs the standard Linux ‘kill’
command on each of the cluster nodes for a
specified process name. Unlike ‘kill’, ckill
must use the process name as the process ID
(PID) will most likely be different on the vari-
ous cluster nodes. The root user has the ability
to further indicate a specific user in addition
to process name. This enables root to kill a
specific user’s process by name and not affect
other processes with the same name but owned
by other users. Root may also use signals to
effectively do a broad based kill command.

The cpushimage enables a system administra-
tor logged in as root to push a cluster node
image across a specified set of cluster nodes
and optionally reboot those systems. This tool
is built upon and leverages the capabilities of
SystemImager[2]. While SystemImager pro-
vides much of the functionality in this area,
it fell short in that it did not enable a cluster-
wide push for image transfer. cpushimage es-
sentially pushes a request to each participat-
ing cluster node to pull an image from the im-
age server. Each node then invokes the pull
of the image from the cluster image server.
Of course, this description assumes that Sys-
temImager has already been employed to cap-
ture and store a cluster node image on the clus-

ter image server machine.

While cpushimage has the ability to push an
entire disk image to a cluster node, as an appli-
cation support tool, it is too cumbersome when
one simply desires to push files or directories
across the cluster. Furthermore, cpushimage
is only available to system administrators with
root level access. From these restrictions grew
the desire for a simplified cluster push tool,
cpush, providing the ability for any user to
push files and entire directories across cluster
nodes. cpush uses rsync[3] to push files from
server to cluster node.

crm is a clusterized version of the standard ‘rm’
delete file/directory command. The command
will go out across the cluster and attempt to
delete the file(s) or directory target in a given
location across all specified cluster nodes. By
default, no error is returned in the case of not
finding the target. The interactive mode of ’rm’
is not supplied in crm due to the potential prob-
lems associated with numerous nodes asking
for delete confirmation.

cshutdown is a cluster wide shutdown opera-
tion. cshutdown also has the ability to boot an
alternate lilo label for a single boot. This al-
lows you to test a new kernel without making
permanent changes or to boot into another op-
erating system temporarily.

The cname command returns the node number
based on the cluster and node name supplied
at the command line. Both this command and
the cnum command are useful when the node
names of your cluster and their positions in the
configuration file are not easily paired.

The cnum command returns the node name
based on the node number and cluster supplied
at the command line.

The clist command returns a list of clusters de-
fined in the cluster configuration file and the

Ottawa Linux Symposium 2002 312

type of cluster.

2 Installation and Configuration

C3 version 2.x used a list of nodes, one per
line, to define a cluster. While it is possible
to have several clusters in this list, each node
had to be visible to the machine that the C3
command was run from. Many clusters only
have the head node exposed with the individ-
ual compute nodes on a private network. A
list of nodes also does not allow the granular-
ity need to specify which cluster to execute the
command from. In version three you have the
concept of a cluster configuration block. Each
block defines a single cluster – its external en-
try point, an optional internal entry point (if the
nodes are on a private network) and then the
list of nodes. This type of cluster is called a di-
rect cluster – the configuration of the cluster is
known by the C3 command before runtime. It
is possible to have both a local cluster (the ma-
chine that the C3 command is run from is the
head node) and a remote cluster (the machine
that the command is run form is not the head
node) use a direct method of definition. One of
the advantages of this scheme is that it is pos-
sible to build both subsets and supersets of a
given cluster. The major drawback to using a
direct cluster block on a remote machine is that
the user must keep track of which machines are
offline and which are online – this can be a real
headache. C3 solves this problem with an in-
direct remote cluster. In this type of cluster
block the only thing the C3 command knows
is the external interface of a remote cluster.
When a C3 command is run it will execute that
command on the remote cluster using the de-
fault cluster configuration block (the first clus-
ter in the configuration file) on that cluster. In
this way a user using his or her desktop need
not know how many machines are currently on
each cluster they use, only that the head node
they have specified exists and has a working

copy of C3 version 3 on it. Below is an exam-
ple configuration file:

cluster home { #the cluster
named home.
The default cluster as it is the
first in the configuration file
node0 #the head node,
external name only
node[1-15] #the compute nodes
}

cluster TORC { #the cluster
named TORC
heimdal:node0 #the head node,
heimdal is
the external interface name
and node0 is
the internal interface name
node[1-64] #compute nodes
}

cluster htorc { #the cluster
named htorc
:htorc-00 #this is a indirect remote
#cluster, htorc-00 is the external
#interface name
}

3 Usage

In early versions of C3 we were tied to the im-
plementation of a PERL[4] package to parse
the command line. In version 3 we parse the
command line ourselves giving us much more
flexibility. When designing our API we tried
to stay as close to the respective Linux tool as
possible so that a user would have a minimum
amount of learning to do. We also now have the
ability to specify node ranges on the command
line. This is very useful for system administra-
tors for doing rolling upgrades. An example of
the new API that would execute hostname on
the default cluster would be as follows:

cexec hostname

Ottawa Linux Symposium 2002 313

Extending the paradigm to federated clusters is
just as simple, simply specify the clusters you
wish to execute on. To execute on the default
cluster and on nodes four through six and node
eight on the cluster named TORC would be as
follows:

cexec : TORC:4-6,8 ls -l

In the above example the command is cexec (a
general purpose exec, similar to a cluster wide
rsh) “:” signifies the default cluster, TORC:
signifies the cluster named TORC in the con-
figuration file, 4-6,8 is a node range, and ls –l is
the command to be run. There are several ways
the C3 tools were designed to be used. The
most basic way is from the command line, one
command at a time. Next is writing scripts us-
ing the C3 tools. And the third way is extend-
ing the C3 tools themselves for site-specific
functionality.

A good example of using the tools directly
on the command line is effecting rolling up-
grades. Using cpushimage and SystemImager
it is very simple to test out a cluster configu-
ration. A system administrator could build a
small test cluster using SystemImager to clone
the current cluster. After installing the soft-
ware and testing the new image you would find
it acceptable for roll-out. You would again
use SystemImager to retrieve the image from
the test cluster. Next, make sure you have a
backup image from the production cluster and
use cpushimage to test it on a small number
of machines. Assuming the image name is
new_image the sample command would look
like:

cpushimage -reboot :0-3 new_image

This pushes the new image to only the first
four nodes in the cluster and reboots the ma-
chine. This allows you easily test the new im-
age. Assuming it works, just type the same

command as before removing the :0-3 from the
command. That would push the image to every
node in the cluster. One of the nice features of
this is if you later find a problem with the new
image it is easy to roll back to an earlier image
that is known to work.

Using C3 from the command line is also useful
for a general user of a cluster. Using the indi-
rect remote cluster a user can develop an ap-
plication on their desktop and easily distribute
the binary to either a single cluster or multi-
ple clusters (via cpush). Using C3 in this way
makes a cluster a “black box” – that is the
user only has an indiscriminate resource out
there called a cluster. They do not need to
keep up with the addition of new nodes nor if
a few nodes have been taken offline. One of
the features of writing the C3 power tools in a
platform independent language is that the tools
only must run homogeneous within there self.
For example, take the above user who wishes
to push a binary to several clusters. One of
the clusters is an Intel PC cluster and the other
is an alpha cluster, both running Linux. Us-
ing the GNU gcc cross compiler the user has
compiled a binary for an Intel machine and a
binary for an alpha cluster (it is possible that
their desktop be a power macintosh). They are
using text data files so the data can be used
by all systems. Assuming that the head nodes
home directory is NFS mounted the following
commands would distribute the application, its
data, and run it:

cpush --head Intel: app.Intel app
cpush --head alpha: app.alpha app
cpush --head Intel: alpha: data.txt
cexec --head Intel: alpha: app

Notice that once the binaries are renamed when
pushed out to the cluster so that a single cexec
can start the application. This demonstrates
that the level of homogeneity required by each
command can be different. In the first two lines

Ottawa Linux Symposium 2002 314

each cluster must be separated but in the last
two command their actual architecture is irrel-
evant as the command being run is identical on
each cluster. This is a power paradigm for both
users and system-administrator.

The next way the C3 Power Tools can be used
is with scripting. Using scripting and image
management with C3 is useful for effecting
changes for a single user. With C3, once the
image is built, it is quite easy to temporarily
install a new image with differences ranging
from a slightly different communications pack-
age, to a different flavor of Linux one the fly.
For example we have a user who requires ker-
beros[5] to be installed in order to run their
code, we do not wish to support or maintain
this. It only a matter of an hour or so of time
(because of the size of the image being trans-
ferred, all the interaction required is the ini-
tial command run and after it is done checking
to make sure the machines rebooted) to switch
to a completely different image complete with
their data and special configuration fully oper-
ational. With scripting this can even be done
within a PBS script to change the image before
the run and to restore it to the default one after-
wards.

The next way the C3 can be used is in script-
ing. While administrating our clusters one of
the largest problems we encountered was gen-
erating and managing ssh keys when creating
a new user. Unfortunately it is very difficult
to write a tool that is a general purpose ssh
manager as the policies differ from site to site.
While this script is included with C3 it is not
part of C3 proper – it is in the examples direc-
tory due to the above problems. See figure 1 for
the example code. This script works by getting
the user-name and group of a new user from the
command and then calling the standard Linux
adduser binary. next it sets the password for
that user with the standard Linux password fa-
cility. Then, using C3 all the files that were

touched are sent to the cluster nodes, and the
any needed directories are created (/home is
NFS mounted so the directory only needs to
be created on the head node). Lastly the ssh-
keys are generated and the authorized_keys2
file is created (to allow users to ssh to one of the
compute nodes without the use of a password).
Where this script and C3 really show the power
available is in combining this method with a
command line. Assuming this script is located
in /usr/sbin a command as follows:

cexec -all /sbin/add_user zbml1 users

would add the user zbml1 with the group users
to every cluster that the machine this is exe-
cuted on has access to. Thus it is just as easy to
add a user to one cluster, as it is five. The only
redundant typing would be when the password
is generated but it is trivial to write an expect
script that handles this for you.

We also use the C3 tools to take the place of
some of the daemons we would probably run.
We do not run to run NTP[6] to keep our clus-
ter’s date in sync so we wrote our own bash
script that gets the current date on the head
node and then issues a cexec to set the clus-
ter nodes to the current date. The script is ran
once a day in a cron job to keep the cluster in
sync.

The third and most powerful way that the C3
Tools can be used is in extending them. When
we wrote C3 one of the focuses was to make
it modular. We chose Python[7] as a language
both because it is well known and common and
it is also very easy to write packages for. The
two main parts we separated out of the code
into packages are the command line parser and
the configuration file parser. This allows you
to add functionality such as hardware moni-
toring, BIOS maintenance, or any functionality
you would choose. Splitting the file parser into

Ottawa Linux Symposium 2002 315

its own package also allows a system adminis-
trator to both read the c3.conf file but to also
use it as a base. A nice example of this would
be setting a cron job that once a night reads the
c3.conf file and generates an up to date config-
uration file for PVM. The command line pack-
age lets a system administrator to create new
tools that have the look and feel of the C3 tools
making it easier on their users learning a new
command line API.

Included in C3 Version 3.1 is a “contrib” direc-
tory where the script mentioned here and other
are included. The scripts in this directory are
offered for use if your site is configured such
that they are applicable (such as the add_user
script assumes NFS mounted home directories
and use of ssh). These scripts are also intended
to be concrete examples of extending and using
C3. Also included are full package documen-
tation on the command line parsing object and
the c3.conf parser.

4 The Future

Versions 3.x of the C3 Power Tools offer both
a system-administrator and a general user great
power for managing both a single cluster and
multiple clusters. One of the areas that the cur-
rent versions of C3 are short in is scalability.
We are currently working on a version 4 of
the tools that take into account homogeneity in
clusters and their topography in order to scale
the commands into clusters with thousands of
nodes.

5 Conclusion

Version 3.0 of the C3 tools suite is a major
advance in the tools. The ability to admin-
istrate multiple clusters simultaneously from
anywhere you can access each head node is
very useful. In the same number of command

in C3 v2.7 it would take to add a user to a clus-
ter you can now add a user to any number of
clusters. Users who write a distributed applica-
tion that will run on several clusters now have
an easy way to distribute their application to
the clusters, even form their own desktop.

6 References

1. http:/www.openssh.org/

2. http://www.systemimager.org/

3. http://samba.anu.edu.au/rsync/

4. http://www.perl.com/

5. http://web.mit.edu/kerberos/www/

6. http://www.eecis.udel.edu/sim/

7. http://www.python.org/

8. http://www.csm.ornl.gov/torc/

Ottawa Linux Symposium 2002 316

Figure 1: add_user script
#!/usr/bin/env python2
###
#this script adds a user to the local cluster. It assumes that
#the home directory is nfs mounted and no others are. Put this in
#a well known location (/root/bin in our case) so it can be called
#with cexec. This is an example of using the C3 tools in a script
#to automate tasks on a cluster.
###
import os, sys
try: #get user name from command line

user_name = sys.argv[1]
except IndexError:

print "must supply a user name"
sys.exit()

try: #get group name from command line
user_group = sys.argv[2]

except IndexError:
print "must supply a group name"
sys.exit()

#adduser to local machine
os.system("adduser -g " + user_group + " -m " + user_name)
#set password for local user
os.system("/usr/bin/passwd " + user_name)
#distribute the password files and group files to compute nodes
os.system("/opt/c3-3/cpush /etc/passwd")
os.system("/opt/c3-3/cpush /etc/shadow")
os.system("/opt/c3-3/cpush /etc/group")
os.system("/opt/c3-3/cpush /etc/gshadow")
#create ssh directory
os.system("mkdir /home/" + user_name + "/.ssh")
#since the script is run by root change ownership of users file to that user
os.system("/opt/c3-3/cexec chown -R " + user_name + ":" + user_group + "
/home/" + user_name)
#create users ssh-keys
os.system("/bin/su " + user_name + " -c \’/usr/bin/ssh-keygen -b 512 -t dsa
-N \"\" -f " + os.path.expanduser("~" + user_name) + "/.ssh/id_dsa\’")
#set up keys such that they can loginto nodes without a password
os.system("cp /home/" + user_name + "/.ssh/id_dsa.pub /home/" + user_name +
"/.ssh/authorized_keys2")
#make sure everything in their directory is owned by them

os.system("/opt/c3-3/cexec chown -R " + user_name + ":" + user_group + "

/home/" + user_name)

The Open Clustering Framework

Lars Marowsky-Brée
Research & Development

SuSE Linux AG
lmb@suse.de

Abstract

The Open Clustering Framework is an effort
to unify the current projects underway with re-
gard to clustering on the Linux platform with a
common component model, common APIs and
at least one Open Source implementation. The
initial focus is on High Availability Clustering
and Linux, but this is not a long-term or inher-
ent limitation.

1 Introduction

1.1 Current status of clustering on Linux

Many, many High-Availability clustering
projects have appeared on Linux in the last
few years; not only Open Source ones, but
also almost every major vendor has ported
their solution from their proprietary operating
system to Linux.

Today, we have at least ten Open Source clus-
tering solutions for Linux, and in excess of
twenty-fivecommercial ones. A solution ex-
ists for almost every niche. In fact, it is safe
to say that at leastN+1 solutions exist for ev-
ery niche. For an overview, see the very useful
Linux Clustering Information Center1 by Joe
Greenseid.

And this number is still constantly growing.

1http://www.lcic.org/

Linux enjoys an abundance of riches. Users,
application or operating system programmers
and system-integrators have many choices
available for building the perfect solution from
these many pieces.

This sounds like the topic can be safely consid-
ered solved. . .

1.2 The problem

Unfortunately, the pieces do not fit togetherat
all.

They share neither a common API, nor a com-
mon concept of what (High-Availability) clus-
tering is. This may seem surprising at first,
because at first glance most of them appear to
solve the same general problems and provide
mostly the same functionality; largely, they are
even structured roughly in the same way.

This is actually true; and the reasons why they
do not fit together are largely historic. As al-
ready said, many of them were written inde-
pendent of each other, be it due to commer-
cial interests, theI just want to solve this part-
phenomenon,My thesis has to be academically
perfect, plain ignorance or any other number of
reasons.

On the proprietary platforms, there is the
nine-hundred pound gorilla2 called The Ven-
dor defining the standard; and maybe one or

2Metaphor courtesy of Alan

Ottawa Linux Symposium 2002 318

two competing products, which would either
do something fundamentally different or com-
plement the vendor’s solution.

On Linux, such a single vendor does not ex-
ist3 for obvious reasons, which is commonly
considered a good thing. It also implies that
no-one has a higher right to claim they are the
standard than the rest, unless they would be
both vastly superior and captured a substantial
share of the market.

However, the Linux clusteringmarket is suf-
ficiently evenly fragmented that this is true of
no-one; everybody can claim roughly the same
weight as the rest, so no API, no conceptual
model has established itself as a reference.

1.3 Consequences

All solutions are incompatible with the rest;
they will not inter-operate. And what is worse,
even if they doappearto inter-operate success-
fully, it is by pure chance; not the best founda-
tion for a highly-available mission-critical sys-
tem and bound by Murphy to fail at the most
inconvenient time.

They have different APIs, different concepts of
what acluster is, slightly different approaches
of how to cope with specific failure situations
and so duplicate large parts of the picture be-
tween them. This can potentially lead to all
sorts of nasty deadlocks, data corruption and
loss of service.

1.4 Affected parties

Everyone has a different perspective on the
problem; but the short summary is:Everybody
loses.

3Despite every Linux vendor claiming it is them.

1.4.1 The end-user

The end-user usually could not care less about
how his problem is solved; he will just care
whether it is solved, and what it costs. He is
not particularly amused that yes, almost all his
problems can be solved, but that a coherent so-
lution is not possible; data has to be replicated,
independent systems running different parts of
the solution have to be purchased, installed and
maintained, and that he has to spend an amaz-
ingly large sum on making it all work.

A special case of the end-user is the system ad-
ministrator4; he has to maintain the whole mess
of different solutions with different interfaces,
and not even a commonSNMP MIB for mon-
itoring exists for the most basic aspects of the
whole.

1.4.2 Independent software vendors

Independent software vendors want to sell their
application to the largest audience possible;
preferably, everyone. Having a very heteroge-
neous environment means to either abandon a
large part of the market, cope with many dif-
ferent solutions or implement the entire stack
themselves and be independent of the mess5.

Each of these approaches has its own prob-
lems; be it a smaller potential market, huge
compatibility matrices or lots of code which
has nothing to do with the core competency of
the company.

4Put away the LART, will you.
5Which is what Oracle 9i Real Application Cluster

does.

Ottawa Linux Symposium 2002 319

1.4.3 Commercial providers of clustering
solutions

A provider of a clustering solution has largely
the same problems as the independent soft-
ware vendors; they do not have much of a
choice with regard to the scope of their solu-
tion. Even if they just want to solve part of
the problem—for examplejust a cluster-aware
filesystem—they are either stuck with building
the full package or tieing themselves to one or
more other vendors.

Even vendors of full solution stacks aren’t bet-
ter off by far; they have to compete fiercely for
the attention of the end-users and the indepen-
dent software vendors to supporttheir version
of the wheel. If they are just slightly better for
a particular niche which would theoretically be
enough for them to make do or even be off
pretty well, it may not be large enough for an
ISV to add compatibility for their solution.

1.4.4 Open Source projects

Not only does everything said before apply
here; but the Open Source community faces a
rather severe additional problem which is often
overlooked: Split of rare resources.

While it can be generally considered a good
thing to have two or even more solutions for
a particular area to keep competition up, being
split between so many different projects pre-
vents many of them from reaching critical mass
and becoming really successful.

This is especially true of an area which is inher-
ently complex, has a limited audience or sim-
ply requires more resources to work on than the
common programmer has at home, like multi-
ple nodes for a cluster.

1.4.5 System integrators

System integrators are in a tricky position; all
choices what to include are wrong. They are
unable to provide a coherent clustering solu-
tion without annoying the other ninety-five per-
cent of the market.

1.4.6 Consulting companies

If the solution is build by a consulting com-
pany, one might assume they are in heaven
– after all, lots of complexity means longer
projects, which means more money. Or, asde-
spair.com puts it: If you are not part of the so-
lution, there is good money to be made in pro-
longing the problem.

This is a false guess; consulting companies
prefer to be paid for not doing anyreal work,
and this is largely inevitable if you want to de-
liver a working clustering solution on Linux
because of the above factors.6

2 The solution

After hopefully having demonstrated that ev-
eryone will benefit from having this problem
solved, let’s look at the two obvious solutions
in more detail:

2.1 Copy-cat standard

The first thoughts were to look at other plat-
forms; was there a standard which could easily
be adopted – POSIX,best current practices or
even a de facto industry standard.

The search was unsuccessful; neither a coher-
ent full standard exists nor a subsets of the

6You did notice the tongue-in-cheek, didn’t you.

Ottawa Linux Symposium 2002 320

whole7. All other platforms have said nine
hundred pound gorilla setting the standard by
vendor decree. POSIX has not yet bothered
to work on this topic, nor has any other larger
standards body.

Mimicking one of the vendor standards
from another platforms also has intellectual-
property issues and the problem that you can-
not get any other commercial vendor to agree
to it.

2.2 Standard by appointment

The next obvious solution to the problem is to
do as the other platforms: just pick one solu-
tion and declare it the standard; many affected
parties will not care how the standard appeared,
as long as it makes their pain go away.

This has been tried by every vendor and even
many Open Source projects; the issue is that
no-one so far had sufficient weight for it, and
those who do had political reasons not to.

Another issue comes with the fact that none of
the solutions solves all aspects; a complete, co-
herent solution does not exist, despite all mar-
keting claims.

Having more than two or three solutions bethe
standard does not solve the problem; so unless
a solution which is agreeable for everyone or
at least a large enough part appears, this does
not work on Linux; compare the lack of a nine-
hundred pound gorilla described before.

3 The framework

3.1 Mission statement

And this is where theOpen Clustering Frame-
work enters the picture; the easier routes have

7As the focus is on HA clustering, MPI does not
count.

been considered, but found to be unusable. Ev-
erybody sighed, shrugged and figured that real,
not-fun work might be necessary.

Recalling that almost all solutions are con-
ceptually similar, it is assumed that a com-
mon model and associated APIs can be defined
which are generic enough to cover the required
functionality.

The mission statement therefore is:

• To define a common model for clustering
on Linux.

• To define and implement a standard set of
APIs for these on the Linux platform.

3.2 Scope

While the primary focus is Linux, the standards
aspire to be platform-agnostic; as stated above,
our search for inpedendent standards on other
platforms was negative, so they might benefit
as well.

We try to keep the standard open for input from
the High Performance Computing community
too, but the bias is towards High Availability.
Fortunately, the overlap in the requirements is
large enough that we could accommodate both
sides so far.

3.3 Requirements

3.3.1 Overall project

The project as a whole has the following re-
quirements:

• Bandwagon effect; capture enough mind-
share that a substantial piece of the market
adopts the standard; otherwise the work is
mood.

Ottawa Linux Symposium 2002 321

• The work must be royality and IP free. We
do want to support both Open Source and
proprietary implementations.

• Timely results. It was felt that early re-
lease of something usable and iteratively
improving upon this was important in pre-
serving interest and building momentum.

3.3.2 APIs

For the APIs8 to be generally accepted, they
must meet the following requirements:

• Wherever possible, the APIs shall adopt
best practices of current implementations
or be abstract enough to support as many
of them as possible.

• The APIs, though primarily targeted at
Linux, should not be applicable to Linux
only.

– Linux implementation is the primary
target. Supporting another operating
system should not negatively impact
the Linux implementation.

– Nevertheless we do want to define
the APIs so as to make it as easy
to implement in other operating sys-
tems as is consistent with the first
point; it was mentioned that the APIs
need to be OS-independent to be
useful in HPC work, where appli-
cations are often written by people
who don’t own the clusters they will
run on, and are often run on more
than one cluster.

• API specs should aspire to POSIX com-
pliance; in general, they should extend ex-
isting specifications with cluster function-
ality if sensible.

8In this document, the termsAPI providers andcon-
sumers are used respectively.

• APIs should in no way dictate anin-kernel
or user-space implementation exclusively.

• Consistency.

• While every project is free to implement
these APIs directly, it should also be pos-
sible to provide a compatibility layer on
top of legacy code.

3.3.3 Reference implementation

The following requirements for the reference
implementation have been put forward:

• The build system should be chosen to
build on various platforms9.

• Components should be portable wherever
possible.

• Component interfaces should be agnostic
with regard to OS and to kernel vs. non-
kernel implementation.

3.4 History

While the problem has lurked in the mind of
people for a long time already10, the issue has
not received enough attention until recently,
when the pain became noticeably worse.

The success of theheartbeat-stonith library,
now used by at least three clustering packages,
also suggested that the time might be right now.

At the Ottawa Linux Symposium 2001 an in-
troductionary meeting took place, where many
people got together and discussed the prob-
lem; as a follow-up, a three day workshop was
held directly prior to theLinux Kongress 2001

9i.e., autoconf
10See [HM97], section thirteen, or [GP97], section

15.3.

Ottawa Linux Symposium 2002 322

in Enschede, where the general direction was
agreed upon and the first cut at the proposed
component model was outlined – see [GL01].

Since then, there has been a lively discussion
on the mailing list, a website has been setup
and more and more people, projects and com-
panies are getting involved every week.

In 6, the author tries to give a prediction of
where OCF is going.

4 The current component model

4.1 Overview

The current proposal for the functional com-
ponents of the Open Clustering Framework is
shown in the following diagram; it is based
on our experience with how common cluster-
ing software is structured. It reflects the cur-
rent status of our discussion and is subject to
change.

M
o
n
i
t
o
r
i
n
g

D
L
M

Node Services

Communications Quorum

Liveness Membership

Cluster−aware
applications

Databases OLTP HPC
Clustered LVM / Filesystems

Cluster Resource
Management

Failover policy

M
P
I

CIM
SNMP

Group Services

Membership Messaging
Transactions Barriers

Management
Resource

Fencing Monitoring

AgentsInstantiation

The components are broken up according to the
objects they deal with;nodes, process groups,
locks et cetera. The APIs we are preparing will
map to the external interfaces of these compo-
nents.

A given implementation may chose to imple-
ment only one of these components or a sub-
component, using the other components at will.

However, the implementation might also pro-
vide the functionality of more than one com-
ponent in one brick, and use whatever internal
structure it desires. As long as it exposes these
APIs, a cluster-aware application or an other
component will be able to use it nonetheless.

This allows the programmer to focus on his
main area of interest and expertise. Within
certain limits, an system architect will be able
to build a system from the best-fitting compo-
nents.

As components can be exchanged, the need to
build the one-size-fits-all solution also dimin-
ishes; for example, a two-node cluster requires
sufficiently less complex node services than a
cluster of arbitrary size and may be configured
more easily. The architect can chose the proper
component for the intended use.

4.2 Node Services

Node services encompass all services relating
to nodes.

One of the open questions here is how to iden-
tify a specific node; the main conceptual dif-
ference is whether nodes are identified byhost
names, an integer sequence number or even
their primary IP address. All of these have
precedents and good reasons in their favour,
and specific optimizations the higher layers or
applications can implement if they know about
it.

This demonstrates one of the issues we are fac-
ing; namely, level of abstraction in the API and
the model. We have to cope with all of the pos-
sibilities reasonably well, so thenode identifier
will be either treated as an opaque blob in the
API and the API consumers will have to deal
with it, or different kinds of clusters might re-
quire a recompile of the consumers.

Ottawa Linux Symposium 2002 323

4.2.1 Node Liveness

The component responsible for monitoring
node health; mostly implemented as a binary
alive or dead, it could also yield finer-grained
data.

4.2.2 Node Communication Services

The lowest level of the cluster communication
services; the instances of the cluster software
on each node need to talk to those on the other
nodes.

This is potentially used not only by the node
membership services but also the higher-level
group communication services.

The challenge will be to define a lowest-level
denominator which can abstract the different
models used for authentication, encryption,
messaging and addressing semantics.

4.2.3 Node Membership Services

The membership – the list of currently active
or eligible nodes – in a cluster is always in
flux, because outages are only detected asyn-
chronously. However, it is vital that the mem-
bers have a coherent picture of the cluster;
this component uses theNode Liveness data to
compute the current consensus membership.

4.2.4 Node Quorum

In a high-availability cluster, one of the most
important questions is who is allowed to mod-
ify – in any way – the shared resources and
the data. In the case of a so-called cluster par-
tition, where part of the cluster loses contact
to the rest, the cluster has to arbitrate between

the fragments, ensuring that a maximum of one
partition continues to operate on the data.

A quorum isthe number (as a majority) of of-
ficers or members of a body that when duly as-
sembled is legally competent to transact busi-
ness, and this – majority of eligible cluster
nodes survives – is exactly how this is often
achieved, but implementations where thetie-
breaker algorithms take additional inputs such
as access to a specific device are also common
and in fact required in case of evenly split clus-
ters where a majority does not exist.

Most clusters implement the notion that only
one group of nodes hasquorum; this is a glob-
ally exclusive. However, this breaks down
for large and potentially hierarchial clusters,
where multiple levels of quorum exist; the dis-
cussion is not yet closed on this topic.

4.3 Group Services

A cluster-aware application knows that it is
being run in a distributed environment, span-
ning multiple nodes. A common model for this
is that the application forms aprocess group
across the cluster nodes, hence the name of this
component.

4.3.1 Group Membership Services

This is very similar to the node membership
services, just a layer above – the group also
needs to know the list of processes joined and
be informed of leaves and died processes.

4.3.2 Group Quorum Services

Discussions have also begun on deciding
whether quorum is only a property of the node
layer, or whether different process groups can

Ottawa Linux Symposium 2002 324

have different ideas of whether they have quo-
rum or not; good points have been put for-
ward for both cases. While current clusters
mostly only provide node quorum, the frame-
work should be flexible enough to be extended
to allow for group quorum, too.

4.3.3 Group Messaging Services

The group messaging service provides commu-
nication services for the process group.

Facing the same challenges as the node com-
munication services, this is also further com-
plicated by the fact that group messaging of-
ten has additional guarantees with regard to or-
dering of messages –virtual synchrony, where
all messages in a group are globally ordered.
Not all messaging services have this property,
though.

While the syntax can be the same in both cases,
the semantics and guarantees are different; it
has not been decided yet how to cope with this.

4.3.4 Group Voting Services

A group very often has the need to vote; for
example, to agree on a primary coordinator for
performing a particular operation.

4.3.5 Group Barrier Services

A distributed process group also needs to en-
sure that certain operations are only started if
all members of the group have reached a spe-
cific state; this state is called thebarrier.

The barrier services will provide an easy means
to implement such a synchronization mecha-
nism.

4.3.6 Group Transaction Services

Transactions are a common approach to pro-
viding fault resilience; a transaction either
commits as an atomic, correct transformation
of the system state or is rolled back completely,
the system is always in a valid state.

For clusters, distributed transactions with two-
phase commit are especially useful. Atransac-
tion monitor initiates the transaction and leads
the clients through, ending with either acom-
mit or rollback. By utilizing the transactional
framework, the distributed application inherits
transactional properties. Journaling, logging
and recovery are simplified compared to home-
grown solutions.

The transaction framework itself is very
generic; only theresource managers11 vary. At
the same time, it is also very complex – it has
to deal with a multitude of failure modes and
guarantee theACID 12 properties for all of them
– and this implies that a well-tested component
which can be shared between different imple-
mentations is very desirable.

For a more detailed treatment of transactions,
see [Gray93].

4.4 Resource Management

High-availability clustering, especially the so-
called fail-over or switch-over systems, mostly
centers around managing groups of resources.

A resource is a single physical or virtucal en-
tity that provides a service to clients or other re-
sources. For example, a resource can be a sin-
gle disk volume, a particular network address,
or an application such as a web server. A re-
source is generally available for use over time

11Not to be confused with the resource concept used
in fail-over systems!

12Atomicity, Consistency, Isolation and Durability

Ottawa Linux Symposium 2002 325

on two or more nodes in a cluster, although it
usually can be allocated to only one node at any
given point in time.

These basic resources are combined into re-
source groups, which are treated as atomic
units by the fail-over system; moving only the
IP address but not the database itself would be
devastating.

4.4.1 Resource Instantiation Facility

If the cluster decides to online or offline a re-
source on a specific node, a generic mechanism
for doing so must exist; in the most simple
case, this could be an abstraction to provideSe-
cure Shell -like functionality in a portable fash-
ion.

4.4.2 Resource Monitoring (RWATCH)

Resources also have to be monitored for health;
fail-over solutions which only deal with health
at the node level are less useful, as approxi-
mately eighty percent of all failures are due to
software.

This sub-component should provides a generic
interface for polling the health status of a re-
source or notifying the cluster that a resource
has failed.

4.4.3 Resource Fencing Services

As explained above, most resources that are not
designed to be cluster-aware only support be-
ing active once at a time; havoc and data cor-
ruption will result otherwise.

The fencing sub-component ensures this by al-
lowing the cluster to enforce policy with regard
to access to shared resources. Various levels

of granularity exists; some clusters will radi-
cally fence a failed or partitioned node from all
shared resources by flipping its power switch13,
while others might support fine-grained control
– see [Brower00] for a proposal.

Work has already begun on this sub-
component; theheartbeat package by Alan
Robertson includes aSTONITH library for
driving various power switches, which is a
very effective, albeit brutal, way of ensuring
that a node stops accessing shared resources
immediately.

This sub-component is also related to node or
group quorum, as some systems treat quorum
as just another resource which a cluster par-
tition either has or does not; if one side fully
fenced the other, it can be sure that only itself
has quorum and can proceed.

4.4.4 Resource Agents

Resource Agents are the glue layer between the
switch-over software and the actual resources
being managed. They aim to integrate the
resource with the switch-over software with-
out any modifications to the actual resource
provider itself, by encapsulating it carefully
and thus making it movable between real nodes
in a cluster.

They are obviously very specific to the re-
source type they are encapsulating, however
there is no reason why they should be specific
to a particular switch-over solution.

All resources have a common set of meth-
ods which they must expose to the fail-over
software; starting, stopping, a status query;
this mostly maps one-to-one to Linux Standard
Base init script functionality, with the excep-

13Shot the other node in the head, often abbreviated
to STONITH

Ottawa Linux Symposium 2002 326

tion that multiple instances of the same type
can be active on a given node simultaneously,
uniquely identified by the resource instance pa-
rameters and that they are usually much more
paranoid than init scripts.

Theseresource agents are a common concept
among all switch-over solutions; they directly
map to the range of applications supported by
them.

However, once more, the actual interfaces vary
in details, which means that the ISVs cannot
provide a common plug-in with their applica-
tion for all switch-over clustering solutions as
they should, because hopefully nobody knows
better how to control their application than the
ISV, but instead the vendors of the cluster-
ing solutions usually have to provide this code
themselves.

The current, already rather complete, draft for
the interface between theResource Agent and
the switch-over software can be found onon
the OCF website14.

4.4.5 Cluster Resource Manager

If the node membership changes, a resource
monitor reports failure or the administrator re-
quests it, thecluster resource manager coordi-
nates the recovery of the resource group; either
locally or by transition to another node.

It is also responsible for ensuring exclusivity as
explained underResource Fencing.

4.5 Distributed Lock Manager

Many cluster-aware applications coordinate
access to shared resources by locking the ob-
jects in question; this is a common approach to
ensuring coherency and synchronization. Re-

14http://www.opencf.org/standards/

covering locks in case of failures is a very com-
plex topic and probably these are the hairiest
programs in existence.

Due to historic reasons, almost every lock man-
ager provides an interface both syntactical and
semantically very similar to the VAX cluster
lock manager, so we have a good precedent for
the API here. It is assumed that just minor ad-
justments will be made to ensure a coherent de-
sign in the API.

One example of an Open Source distributed
lock manager can be foundon IBM’s web-
site15; it is already usingheartbeat for the clus-
ter infrastructure.

4.6 Cluster Monitoring

After a coherent API for a component has been
defined, it will also be possible to have a com-
mon interface toNetwork Management Sys-
tems for all clusters on Linux.

An excellent case is the definition of a SNMP
MIB for monitoring the cluster; basically func-
tionality – exporting the current membership
view, sending traps in case of membership
changes et cetera map one-to-one to the APIs
being discussed.

4.7 Cluster Configuration

Another complex issue is the configuration of
a cluster; many approaches from a system ad-
ministrators point of view have already been
tried. This is not currently being discussed
as part of the Open Clustering Framework for
now.

15http://oss.software.ibm.com/dlm/

Ottawa Linux Symposium 2002 327

4.8 The glue

4.8.1 PILS

Many modern Linux systems make extensive
use of dynamically loadable object modules
(plug-ins); this framework architecture is the
perfect example.

However, most of these systems implement
their plug-in and interface management in a
way that satisfies their own immediate needs
only, and is not generally directly usable by
other projects.

PILS is an generalized and portable open
source plug-in and interface loading system.
PILS is being developed as part of the Open
Cluster Framework reference implementation;
please visit Alan’s talk for details on it.

4.8.2 Kernel to user-space and back

Component providers can live both in the ker-
nel and in user-space; nevertheless, consumers
from both environments need access to the
functionality.

If a common API for both exists, and a com-
ponent only offers one aspect, a generic layer
should be able to translate between kernel and
user-space calls and vice versa.

4.8.3 Generic event mechanism

Almost all of the components have the need to
deliver events to and to react to events triggered
by their consumers.

An initial, very well prepared draft by Ram
Pai and Joe DiMartino was posted to the OCF
mailing list in April this year and triggered a
lot of discussion; it is available via the mailing

list archives referenced from our website.

5 Affiliation with other groups

5.1 Free Standards Group

Our goal is to become a working group under
the umbrella of the FSG; we have already be-
gun work on this. Our initial draft for the an-
swers to theirquestionnaire for new working
groups16 can be foundon the OCF website17.

We hope to benefit from their organizational
experience and legal framework, and being
able to concentrate on the technical work in-
stead.

5.2 IEEE Task force on Cluster Computing

The IEEE does have a task force dedicated
to cluster computing; however, their focus is
primarily on High Performance Computing.
The subgroup working on High Availability18

TFCC-HA takes a passive stance and mostly
monitors the development; they have shown in-
terest in working together with the Open Clus-
tering Framework group.

5.3 MPI Forum

The High Performance Computing community
has their own well-accepted message passing
interface standard. As it has different goals, it
is not immediately adaptable to the needs of
the High Availability community. However,
the Open Clustering Framework should allow
a MPI layer on top of it, so that HA and HPC
applications can run in the same cluster.

16http://www.freestandards.org
/policy/fsg102-newworkgroup-draft.txt

17http://www.opencf.org
/OCF-fsg102-1.html

18http://www.csse.monash.edu.au
/˜rajkumar/tfcc/high-availability.html

Ottawa Linux Symposium 2002 328

5.4 Service-Availability Forum

TheSAForum19 is a group of companies aim-
ing to provideOpen Standards for on-demand,
uninterrupted communication services, which
is marketing-speak for saying that they are
aiming to provide much the same standards as
OCF, just with an initial focus on the telco in-
dustry.

When OCF was created, we did not know
about the SAForum; they appear to have
formed roughly around the same time. How-
ever, we have tentatively begun to talk and
found no major obstacles to a cooperation yet.

The main difference is that the SAForum is
more closed, requiring a substantial entrance
fee, even though the resulting standards are
also supposed to be royality-free and should
also allow an Open Source implementation.

The future relationship of the two efforts is un-
known as of this time; the possibilities range
from two totally disjunct efforts – which would
be a waste, but even two standards is better than
twenty-five – to a very close cooperation and
potential joint working groups.

5.5 Members of the OCF group

It is kind of hard to answer this question at
this point in time; as the Open Clustering
Framework does not have a fixed organiza-
tional structure yet, no formal membership has
to be requested or granted; as a consequence,
while the list of members subscribed to our
mailing list includes all the major players in the
field, they cannot be listed here.

For an abbreviated list, please seethe OCF
website20, or even better, visit the presentation
itself, where you can meet the supporters in

19http://www.saforum.org/
20http://www.opencf.org/

person.

5.5.1 The Linux HA Project

TheLinux HA project21 was founded by Alan
Robertson; it providesheartbeat, the most
well-known two-node switch-over solutions
for Linux.

It is listed here in particular because its
heartbeat-stonith library was the first compo-
nent specifically targeted at clustering shared
by multiple HA solutions –heartbeat itself,
Linux FailSafe andKimberlite – and because
Alan has begun work on evolvingheartbeat to
a reference implementation of the OCF work.

6 Crystal ball gazing

The Open Clustering Group is beginning to
capture vendor attention; as such, a more for-
mal organization is likely required in the near
future. We hope that this can be achieved in
cooperation with the Free Standards Group.

Of course, at the same time, increasing mind-
and market-share is very important; the coop-
eration with the FSG and the SAForum is an
important issue here.

This is showing good progress; if a cluster-
ing vendors does not understand the benefits
of standarization, their competition will gladly
point them out to the customers. So every-
body has an incentive to not be left out. As
ISVs strongly benefit from this effort, their are
putting their weight on it, too.

So far, we have not met someone who has not
been supportive of the effort; everybody agrees
it is required for Linux to succeed in the enter-
prise market, and that all parties involved ben-
efit from it.

21http://www.linux-ha.org

Ottawa Linux Symposium 2002 329

Work has begun on the standards; two drafts
have already been produced. The next step is to
provide Open Source implementations of these
and convince vendors to also implement them.
The first API which will see deployment is very
likely the Resource Agent specification.

There is still a lot of work to be done both on
the standards, the models, and on developing a
common choice of words. Participation is ac-
tively invited22.

Join and contribute now, while admission is
still free!

7 Acknowledgments

Besides thanks to all participants of the Open
Clustering Framework – you are too many to
list one by one – the following documents were
particularly helpful in the preparation of this
paper:

References

[AlanR01] Alan’s paper where he
outlined the idea behind the Open
Clustering Framework for the first time.

[HM97] Linux High Availability HOWTO 23

by Harald Milz.

[GP97] In search of clustersby Gregory
Pfister.

[GL01] Linux Kongress 2001 Workshop
Summary24 by Greg Louis.

22As a blunt advertisement, we are in serious need of
a webmaster for the OCF website.

23http://www.ibiblio.org
/pub/Linux/ALPHA/linux-ha
/High-Availability-HOWTO.html

24http://www.opencf.org/enschede2001
/Enschede.summary.txt

[Gray93] Transaction Processing: Concepts
and techniques by Jim Gray, Andreas
Reuter; published by Morgan Kaufmann.

[Brower00] Resource fencing framework 25

by David Brower; the initial draft posted
to thelinux-ha-dev mailing list in 2000;
lots of discussions followed.

25http://lists.community.tummy.com
/pipermail/linux-ha-dev/2000-March
/000394.html

POSIX Threads and the Linux Kernel

Dave McCracken
IBM® Linux® Technology Center

Austin, TX
dmccr@us.ibm.com

Abstract

POSIX® threading (commonly called
pthreads) has long been an issue on Linux.
There are significant differences in the multi-
thread archictecture pthreads expects and the
architecture provided by Linux clone().

This paper describes the environment expected
by pthreads, how it differs from what Linux
provides, and explores ways to add pthread
compatibility to the Linux kernel without inter-
fering with Linux’s current multithread model.

1 Introduction

POSIX threads has become a widely used way
of adding concurrency to an application. How-
ever, it doesn’t map well onto Linux because
of significant differences in how each of them
defines a process, and the effects those differ-
ences have on the runtime environment.

In this paper we will describe the two models,
how they differ, and offer some suggestions for
changes to Linux that will allow it to emulate
the POSIX model for those applications that
use POSIX threads while preserving the cur-
rent behavior for all other applications.

1.1 Definitions

In our discussion of POSIX threads, first we
need to define some terms. Much confusion

arises in thread discussions because of dis-
agreement over what various terms mean. For
the purposes of this paper we’ll use the follow-
ing definitions:

processTraditionally a UNIX® process cor-
responded to an instance of a running pro-
gram. More precisely it was an address
space and a group of resources all dedi-
cated to running that program. This defi-
nition is formalized in POSIX. For this pa-
per we will use the term ’process’ to mean
this POSIX definition.

thread The term thread comes from the con-
cept of a single thread of execution, ie a
linear path through the code. POSIX de-
fines a thread to be the resources neces-
sary to represent that single thread of ex-
ecution. A process contains one or more
threads. We will use the term thread in
this paper when referring to the resources
necessary to define a single execution path
as seen by the application.

task In Linux, the basic unit is a task. In
a program that only calls fork() and/or
exec(), a Linux task is identical to a
POSIX process. The difference arises
when a task uses the clone() system call to
implement multithreading. The program
then becomes a cooperating set of tasks
which share some resources. We will use
the term task to mean a Linux task.

Ottawa Linux Symposium 2002 331

2 History of POSIX Threads

Historically, the UNIX operating system has
always had the concept of a process, which
roughly equates to a running instance of a pro-
gram. Each process has a set of resources asso-
ciated with it, including an address space, a set
of CPU registers, a process ID, a set of open
file descriptors, a user ID, a stack, etc. While
this is a powerful model, it only allows a sin-
gle linear execution path. To gain any kind of
concurrency with this model it is necessary to
create multiple processes, often requiring some
kind of inter-process communication, which is
often expensive and unwieldy.

In the late 1980s, the concept of multiple
threads of control became popular in the UNIX
community. The fundamental idea was to
take a limited set of a process’s resources
and make multiple instances of them, thus al-
lowing concurrency within a single process.
The resources selected were the minimum nec-
essary to represent a single execution state.
This primarily consisted of CPU registers and
stack. Each instance was then called a ’thread’.
This allowed concurrency within an applica-
tion without the necessity of an inter-process
communication mechanism. It is important to
note that this model preserved the concept of
a single process, and extended the definition to
include multiple threads within that process.

At that time there were only a few experimental
implementations of threads, and none in pro-
duction. It was clear, however, that it addressed
a growing need, especially with the prospect of
multi-processor UNIX machines on the hori-
zon.

At around this time the POSIX standardization
effort was also underway. There was a strong
push to create a common set of APIs that all
UNIX implementations could be guaranteed to
have. Several people put together an API that

encapsulated the multi-thread model and pro-
posed it for inclusion in POSIX. It was ac-
cepted in draft form under the real time exten-
sions. While there was little real-world experi-
ence with threads at the time, the intent was to
provide a common framework before multiple
competing implementations appeared.

In the years since then the POSIX thread API
(commonly known as pthreads) went through
many revisions and was incorporated into the
POSIX standard in 1996. Most if not all UNIX
implementations include a pthread library, and
there are many applications that use it.

3 POSIX Thread Model vs Linux
Task Model

As we’ve stated before, the multithreading
model used by POSIX is that of a single pro-
cess that contains one or more threads. In con-
trast, the Linux multithread model is that of
separate tasks that may share one or more re-
sources. While this may sound like a small
difference, the effects of this difference are far
reaching.

3.1 Resources

The POSIX model is that all resources are
global to the process except for the minimum
set of resources that are necessary to represent
a single thread of execution. This means that
modifications to a resource will be seen by all
other threads in the process.

In contrast, the Linux model has an indepen-
dent set of tasks that have separate instances
of all resources except for a few selected re-
sources that may be shared. This sharing is se-
lectable on a per-resource basis via flags passed
to the clone() system call. All other resources
have a separate instance for each task. A
change to the resource in one task may not af-

Ottawa Linux Symposium 2002 332

fect the equivalent resource in any other task.

The following resources are specific to a thread
in POSIX, while all other resources are global
to a process:

CPU registers
User stack
Blocked signal mask

The following resources may be shared be-
tween tasks via clone() in Linux, while all other
resources are local to each task:

Address space
Signal handlers
Open files
Working directory

There are a number of resources that are
process-wide in POSIX, but only task-specific
in Linux, that cause compatibility problems. A
partial list of the ones that cause the most prob-
lems includes process ID, parent process ID,
credentials (user ID, group ID, etc), and pend-
ing signal mask.

3.2 Process-wide Actions

The fundamental difference between the mod-
els is that in POSIX a process can be addressed
as a single entity, while in Linux it is a col-
lection of independent tasks. There are several
actions that can be done both from outside the
process and within the process that will affect
the whole process. In Linux, however, each of
these actions will only affect one task, leaving
the other tasks to continue without knowledge
of the event.

The actions that are of special concern are:

SignalsPOSIX states that all signals sent to
a process will be collected into a process-
wide set of pending signals, then delivered
to any thread that is not blocking that sig-

nal. Linux only supports signals that are
sent to a specific task. If that task has
blocked that particular signal, it may re-
main pending indefinitely.

Exit In POSIX, there are several actions that
can request the death of the entire process.
All threads are killed and the process exits
with a status indicating the cause of the
death. All of these actions in Linux will
only kill the specific task, leaving all other
tasks unaffected.

Suspend/ResumeCertain signals have the
default action of doing a suspend or re-
sume. In POSIX, this action is defined
to take effect on the entire process, which
is translated to include all threads in that
process. In Linux, the action only takes
effect on the task the signal was delivered
to.

ExecIn POSIX, the effect of the execve() sys-
tem call is to terminate all threads in the
process, throw away the address space,
and instantiate a new address space with
a single thread. In Linux, if there is
more than one task that shares the address
space, the task that calls execve() is de-
tached from the address space and has a
new one created. All other tasks sharing
that address space will continue to run.

4 Implementations of Multithread
Libraries

4.1 Threading Styles

Multithread libraries typically come in one of
three basic styles. Each has its advantages and
disadvantages.

Ottawa Linux Symposium 2002 333

4.1.1 M:1

The first style, M:1, implements all threads
in user space and appears to the kernel as s
single-threaded process. This style is the most
portable, in that it does not require any special
features from the underlying kernel. One draw-
back is that it requires that all blocking sys-
tem calls be emulated in the library via non-
blocking calls to the kernel. This emulation
adds significant overhead to system calls, in
particular most IO. There are also some block-
ing system calls that can not be emulated via
non-blocking calls. When these calls are used
the entire process blocks. This style also does
not allow the application to take advantage
of any multiprocessor scheduling, since to the
kernel scheduler it is still a single-threaded pro-
cess.

This style is primarily of historical interest.
Most current operating systems provide some
support for multithreading at the kernel level,
which provides improved performance.

4.1.2 1:1

The second style, 1:1, creates a kernel thread or
task for each application thread. This has the
advantage of being the simplest to implement
at the library level, but each thread created
becomes more expensive of kernel resources.
This style is also the most dependent on the
multithreading model of the underlying kernel.

There are some types of applications where this
style is desirable, primarily when the applica-
tion wants to create a small number of threads
that each act independently and spend much of
their time in runnable state.

4.1.3 M:N

The third style, M:N, provides the most flexi-
bility. It is like M:1 threading in that it does
not create a kernel thread for each applica-
tion thread. The library creates multiple ker-
nel threads, then schedules application threads
on top of them. Most M:N thread libraries will
dynamically allocate as many kernel threads as
it needs to service the application threads that
are actually runnable. This style is in some
ways more heavyweight in that scheduling is
occurring both in the kernel among the kernel
threads for the process and in the library for
the application threads, but it has the advantage
of not consuming kernel resources for the ap-
plication threads that are not actually runnable.
This style also provides significantly better per-
formance when threads in an application are
synchronizing with each other, ie taking lo-
cal mutexes. The library-level scheduler can
switch between threads much faster because it
doesn’t have to enter the kernel.

Most multithreaded application perform better
with this style, particularly applications that
create large numbers of threads that only run
sporadically.

4.2 Current Linux Thread Libraries

There have been multiple efforts to provide a
pthread-compliant library for Linux. Early on
in Linux’s history only M:1 thread libraries
were created, but were mostly abandoned as
Linux developed better multithreading support
at the kernel level.

The default library shipped with all the distri-
butions is currently LinuxThreads. It is sup-
ported by the same group that provides glibc.
The LinuxThreads library provides a pthread
API, but internally it is primarily a wrapper for
the Linux task model. It uses the 1:1 style,
creating a task for each application thread us-

Ottawa Linux Symposium 2002 334

ing clone() and sharing the address space, the
signal handlers, and the open files. This ap-
proach generally performs well, but the under-
lying differences from the POSIX thread model
are exposed to the application. Applications
that were coded to work with pthreads as spec-
ified by the standard may not work, and must
be ported.

There is a new pthread library under develop-
ment called NGPT. This library is based on
the GNU Pth library, which is an M:1 library.
NGPT extends Pth by using multiple Linux
tasks, thus creating an M:N library. It attempts
to preserve Pth’s pthread compatibility while
also using multiple Linux tasks for concur-
rency, but this effort is hampered by the under-
lying differences in the Linux threading model.
The NGPT library at present uses non-blocking
wrappers around blocking system calls to avoid
blocking in the kernel.

5 Linux Kernel Changes for
POSIX Compatibility

While it would be possible to emulate POSIX
compatibility in a library, it would be ex-
tremely painful in many areas. A much simpler
solution would be to add compatibility code to
the Linux kernel, either to provide compatible
behavior or provide hooks that would make it
easier for a library to provide it. In this sec-
tion we will describe some changes that make
POSIX compatibility feasible. Some have al-
ready been included, some have patches avail-
able, and some have not yet been addressed.
All the changes are intended to be optional,
only enabled by request from the application
or library. This would most likely be via addi-
tional flags to the clone() system call.

5.1 Thread Groups

One of the fundamental barriers to adding
POSIX compatibility to Linux has been that
Linux had no easy way to group all the tasks
together that are part of what POSIX would
call a process, and iterate through them. It was
possible to find all tasks with the same address
space, but only by looking at all tasks in the
system. This limited what could be added at
the kernel level.

This was addressed during the 2.4 development
cycle with the addition of a concept called a
’thread group’. There is a linked list of all tasks
that are part of the thread group, and there is
an ID that represents the group, called the tgid.
This ID is actually the pid of the first task in the
group (pid is the task ID assigned with a Linux
task), similar to the way sessions and process
groups work. This feature is enabled via a flag
to clone().

The task whose ID becomes the tgid is known
as the ’thread group leader’. This task takes
on special properties, since in most library im-
plementations it will be the initial task running
after exec(), and its ID is the one known to the
parent who originally invoked the application.

As part of the thread group change, the getpid()
system call was changed to return tgid instead
of pid. This means that all tasks in a thread
group will see the same pid. While this is cor-
rect for applications, pthread libraries will still
need to be able to get the actual pid of the task,
so the gettid() system call was added for them.

A corollary to the getpid() system call is getp-
pid(). At present it returns the pid of the task
that cloned() the task making the system call.
For POSIX compatibility it should return the
parent ID of the thread group leader.

While thread groups by itself only adds limited
functionality, it provides the grouping neces-

Ottawa Linux Symposium 2002 335

sary for other changes that will improve com-
patibility.

5.2 Signals

Signals have long been a difficult issue, be-
ginning with early versions of the UNIX sys-
tem. The question of how to handle signals in
a multithreaded process has been debated since
the early days of POSIX threading, and went
through extensive changes in various drafts of
the standard.

The kernel state maintained for a given sig-
nal consists of three pieces of information, the
signal handler, the blocked flag, and the pend-
ing flag. The signal handler is an address of a
user-level function to run when the signal is re-
ceived. Special values of the signal handler al-
low the application to specify default behavior
for that signal or to ignore it completely. The
blocked flag is a flag that can be set by the ap-
plication to temporarily prevent the signal from
being delivered. The pending flag is set when-
ever that signal is sent to the application, and
reset when the signal is actually delivered, ie
the handler is run or other action is taken.

Signal handlers in Linux can be either per-
process or per-task, controlled by a flag to
clone(). This allows POSIX compatibility for
handlers. POSIX specifies that the blocked flag
should be per-thread, so the existing Linux be-
havior of having blocked flags for each task is
compatible with POSIX.

The compatibility issue arises with the pend-
ing signal flag. POSIX states that signals
are sent to the entire process, which means a
thread context must be selected to run the han-
dler. POSIX specifies that the delivery code
must search the threads in the process and find
one that does not have that signal blocked.
If all threads are blocking that signal, it re-
mains pending until one thread unblocks it, at

which time that thread will run the handler. If
more than one thread is not blocking the signal,
POSIX does not specify which one will run the
handler.

In Linux, all signals are sent to a specific task.
Each task has its own pending signal flags, and
the flag for that signal will be set. If that task
has that signal blocked, it will remain pending
until the task unblocks it, even though there
may be other tasks in the process that do not
have it blocked.

It is possible to partially emulate POSIX be-
havior in a pthread library by providing a
complete signal layer, complete with its own
handler array, per-thread blocked masks, and
pending signal mask. This requires that the li-
brary register its own signal handler in the ker-
nel for all signals, and to not block signals at
the kernel level. The biggest problem with this
approach is the significant added complexity
and performance cost of duplicating the func-
tionality. There are also circumstances where
the application will still see interrupted system
calls when all threads are blocking a signal or
the signal is supposed to be ignored.

In support of the NGPT project I wrote a patch
that allows libraries to provide POSIX signal
emulation. The patch works in conjunction
with thread groups. When a signal arrives for
any task in a thread group, that signal is redi-
rected to the thread group leader. This allows
a pthread library to leave signals unblocked in
the thread group leader task, and receive all
signals directed at any task in the process. It
doest not directly support POSIX compatibil-
ity, but gives the library the tool it needs to pro-
vide its own compatibility.

The thread group leader patch has some draw-
backs of its own, however. It creates a bottle-
neck in an application with large numbers of
signals. It also still requires significant code in
the library to handle blocking signals for each

Ottawa Linux Symposium 2002 336

thread, ie if all threads block a signal, it still
needs to be blocked at the kernel level.

Another issue with this approach is that it
would make it more difficult to do a thin 1:1
pthread library, since it would still have to pro-
vide significant signal code in the library. A
better solution for this would be to actually add
a shareable structure to the kernel for pend-
ing signals, with the attendant code to check
all tasks in a thread group to see whether any
of them can receive the signal. This solution
would also address the bottleneck issue.

5.3 Credentials

Credentials are the collective identity associ-
ated with a process or task, ie the user ID, the
group ID, the list of groups, and the capabili-
ties. POSIX states that the credentials are per-
process, ie when one thread within the pro-
cess changes some part of the credentials, all
threads see the change. In Linux, the creden-
tials are per-task, so it’s possible to have two
tasks in a process running under different user
IDs, for example.

The simple solution to this is to change creden-
tials to be a shareable structure. This would
preserve existing behavior, but allow processes
that wish POSIX behavior to share credentials.

5.4 Semaphore Undo

Another resource that under POSIX is process-
wide is System V semaphores. This pri-
marily becomes an issue when an application
uses the undo feature. This feature will re-
set semaphores on process exit. In Linux, the
semaphore state is per-task, so when each task
exits it will undo the semaphore. POSIX pro-
cesses assume that the semaphore will continue
to maintain its state until the entire process ex-
its.

This problem is another one that can be solved
by sharing state between tasks when a flag is
passed to clone(). A patch for this exists, but
has not yet been accepted.

5.5 Process-wide Actions

There are some actions that POSIX defines to
be process-wide which under Linux are per-
task. Some of these actions are initiated from
inside the kernel and can not be detected and
emulated inside a library.

Exit A difficult compatibility issue is that of
exit. POSIX defines several actions that
can result in the entire process exiting, in-
cluding the exit() system call and default
actions for many signals. This process
exit should produce an exit status that can
be passed to a waiting parent. This means
that any thread in the process can cause
the entire process to exit and produce a
status back to a waiting parent.

The Linux behavior is dramatically differ-
ent. Each of these exit actions results in
the termination of a single task, leaving all
other tasks in the process running. If the
task is the initial one created by fork(), the
parent will receive its exit status and may
assume the process has exited when in fact
it is still running in other tasks.

Exec Under POSIX, an execve() system call
from any thread in a multithreaded pro-
cess will cause all other threads in that
process to terminate and the calling thread
will complete the exec. The entire address
space associated with that process will be
discarded, and a new one created.

In Linux, when a task calls execve(), it
is detached from the address space, then
a new address is created to complete the
exec. If any other task is using the old ad-
dress space it will continue to run.

Ottawa Linux Symposium 2002 337

Suspend/ResumeSome signals have the de-
fault action of initiating a suspend or a re-
sume. POSIX states that this will occur
on the entire process by suspending or re-
suming all threads in that process. Linux
only applies the suspend or resume to the
task receiving the signal and does not af-
fect any other task.

A possible solution for these would be a kernel
function that iterates through an entire thread
group and applies the requested action to each
task in that group. Special care would have to
be taken to preserve the proper exit status to
any waiting parent. Synchronizing all the tasks
in a thread group is expected to be a difficult
problem.

6 Conclusion

We have shown how POSIX threading uses a
different model than the Linux task model, and
how that affects pthread libraries on Linux. We
have also discussed some things that have been
and could be done to the Linux kernel to better
allow pthread libraries to emulate the POSIX
behavior. These changes could be added with-
out disrupting the current Linux task behav-
ior, allowing Linux to support both the POSIX
multithread model and its own cooperating task
model.

Lawyer Foo

This paper represents the views of the author,
and not the IBM Corporation.

IBM® is a registered trademark of International
Business Machines Corporation.

UNIX® is a registered trademark of The Open
Group.

POSIX® is a registered trademark of the IEEE.

Linux® is a registered trademark of Linus Tor-
valds.

Other company, product or service names may
be the trademarks or service marks of others.

Read Copy Update

Paul E. McKenney
Linux Technology Center

IBM Beaverton
pmckenne@us.ibm.com

http://www.rdrop.com/users/paulmck

Dipankar Sarma
Linux Technology Center
IBM India Software Lab

dipankar@in.ibm.com

Andrea Arcangeli
SuSE Labs

andrea@suse.de

Andi Kleen
SuSE Labs
ak@suse.de

Orran Krieger
IBM T. J. Watson Research Center

okrieg@us.ibm.com

http://www.eecg.toronto.edu/˜okrieg

Rusty Russell
Linux Technology Center

IBM Canberra
rusty@au.ibm.com

Abstract

Read-copy update is a mechanism for con-
structing highly scalable algorithms for access-
ing and modifying read-mostly data structures,
while avoiding cacheline bouncing, memory
contention, and deadlocks that plague highly
scalable operating system implementations. In
particular, code that performs read-only ac-
cesses may be written without any locks,
atomic instructions, or writes to shared cache-
lines, even in the face of concurrent updates.
We reported on the basic mechanism last
year, and have produced a number of Linux™
patches implementing and exploiting read copy
update.

This paper evaluates performance of a number
of read copy update implementations for non-
preemptive Linux kernels, and outlines a new
implementation targeted to preemptive Linux
kernels.

1 Introduction

The past year has seen much discussion of
read-copy update and the design and coding
of a number of read-copy-update implemen-
tations. These implementations make a num-
ber of different tradeoffs, and this paper takes
a first step towards evaluating them.

Comparison of read-copy update to other con-
current update mechanisms has been done else-
where [McK01b, Linder02a]. These com-
parisons have shown that read-copy update
can greatly simplify and inprove performance
of code accessing read-mostly linked-list data
structures (such as FD management tables and
dcache data structures). Evaluation of read-

The views expressed in this paper are the au-
thors’ only, and should not be attributed to
SuSE or IBM.

Ottawa Linux Symposium 2002 339

copy update in other environments has shown
that the read-copy update can also improve per-
formance of code modifying linked-list data
structures when there is a high system-wide ag-
gregate update rate across all such data struc-
tures [McK98a].

Section 2 fills in some background on read-
copy update. Section 3 gives an overview of
the design choices of the Linux read-copy up-
date non-preemptive implementations. Sec-
tion 4 compares performance and complexity
of these implementations, with emphasis on
the grace-period latency that determines the in-
cremental memory overhead compared to non-
read-copy-update locking algorithms. Sec-
tion 5 overviews the implementations, focus-
ing on call_rcu() , scheduler instrumenta-
tion, and timer processing. Section 5 also de-
scribes how thercu algorithm may be adapted
to a preemptible kernel. Section 6 describes
future plans, Appendix A provides implemen-
tation details, and Appendix B discusses mem-
ory ordering issues encountered when inserting
into a read-copy-protected data structure.

2 Background

This section gives a brief overview of read-
copy update, more details are available else-
where [McK98a, McK01a, McK01b]. Sec-
tion 2.1 contains a glossary of read-copy-
update-related terms, Section 2.2 presents con-
cepts, Section 2.3 presents the read-copy-
update API, Section 2.4 describes the IP route
cache patch that uses read-copy update, Sec-
tion 2.5 describes the module race reduction
patch that uses read-copy update, and Sec-
tion 2.6 gives an overview of how read-copy
update may be used in a preemptive kernel.

2.1 Glossary

Live Variable: A variable that might be ac-
cessed before it is modified, so that its
current value has some possibility of in-
fluencing future execution state.

Dead Variable: A variable that will be modi-
fied before it is next accessed, so that its
current value cannot possibly have any in-
fluence over future execution state.

Temporary Variable: A variable that is only
live inside a critical section. One example
is a auto variable used as a pointer while
traversing a linked list.

Permanent Variable: A variable that is live
outside of critical sections. One example
would be the header for a linked list.1

Quiescent State:A point in the code where
all of the current entity’s temporary vari-
ables that were in use before a specified
time are dead. In a non-preemptive Linux
kernel, a context switch is a quiescent
state for CPUs. In a preemptive Linux
kernel, a voluntary context switch is a qui-
escent state, but for threads. In this paper,
quiescent states are global events, as op-
posed to being associated with a specific
data structure.

Grace Period: Time interval during which all
entities (CPUs or tasks, as appropriate)
pass through at least one quiescent state.
Note that any time interval containing a
grace period is itself a grace period.

The key point underlying read-copy update is
that if you remove all permanent-variable ref-
erences to a given item, then wait for a grace

1Yes, it is possible for the same variable to be tempo-
rary sometimes and permanent at other times. However,
this can lead to confusion, so is not generally recom-
mended.

Ottawa Linux Symposium 2002 340

Search 1

Route
Cache
Element

Search 2

-

-

w

Search 1A Search 1B

Search 2A Search 2B

�
�
�
�
��� C

C
C
C
CCW �

�
�
�
���
!!!

C
C
C
C
CCW �

�
�
�
���

Figure 1: Race Between Deletion and Search

period to expire, there can be no remaining ref-
erences to that item. The item can then be
safely freed up. This process is described in
more detail in the next section.

2.2 Concepts

Read-copy update allows lock-free read-only
access to data structures that are being con-
currently modified. The accessing code needs
neither locks nor atomic instructions, and can
often be written as if the data structure were
unchanging, in a “CS 101” style. Read-copy
update is typically applied to linked data struc-
tures where the read side code traverses links
through the data structure in a single direction.

Without special action on the update side, the
read side would be prone to races with dele-
tions, as illustrated in Figure 1, which shows
two tasks searching a list that contains an ele-
ment that is concurrently deleted by a third task
(signified by the line labelled "Route Cache El-
ement"). To handle such race conditions, the
update side uses a two-phase update discipline:

1. Remove permanent-variable pointers to
the item being deleted.

2. After a grace period has elapsed, free up
the item’s memory.

Search 1

Route
Cache
Element

Search 2

-

-

Grace Periodw

Search 1A Search 1B

Search 2A Search 2B

�
�
�
�
��� C

C
C
C
CCW �

�
�
�
�� C

C
C
C
CW

C
C
C
C
CCW �

�
�
�
���

Figure 2: Read-Copy Update Handling Race

The grace period is not a fixed time duration,
but is instead inferred by checking for per-
CPU quiescent states, such as context switches.
Since kernel threads are prohibited from hold-
ing locks across a context switch, they also
prohibited from holding pointers to data struc-
tures protected by those locks across context
switches–after all, the entire data structure
could well be deleted by some other CPU at
any time the lock is not held.

Therefore, a simple implementation of read-
copy update might declare the grace period
over once it observed each CPU performing a
context switch. Now, the first phase removed
all global pointers to the item being deleted,
and kernel threads are not permitted to hold
references to the item across a context switch.
Therefore, CPUs that have performed a context
switch after the completion of the first phase
have no way to gain a reference to the item
being deleted. Thus, once all CPUs have per-
formed a context switch, it is safe to free up the
item being deleted from the list.

With this approach, searches already in
progress when the first phase executes might
(or might not) see the item being deleted. How-
ever, searches that start after the first phase
completes are guaranteed to never reference
this item. Therefore, the item may be safely

Ottawa Linux Symposium 2002 341

void synchronize_kernel(void);
struct rcu_head {

struct list_head list;
void (*func)(void *obj);
void *arg;

};
void call_rcu(struct rcu_head

*head,
void (*func)(void *arg),
void *arg);

Figure 3: Read-Copy Update API

freed once all searches in progress at the end
of the first phase have completed, as shown in
Figure 2.

Efficient mechanisms for determining the du-
ration of the grace period are key to read-copy
update.

2.3 Read-Copy Update API

Figure 3 shows the external API for read-copy
update. Thesynchronize_kernel()
function blocks for a full grace period. This is
a simple, easy-to-use function, but imposes ex-
pensive context-switch overhead on its caller.
It may not be called with locks held or from
BH/IRQ context.

Another approach, taken bycall_rcu() is
to schedule a function to be called after the end
of a full grace period. Sincecall_rcu()
never sleeps, it may be called with locks held
or from BH (and perhaps also IRQ) con-
text. The call_rcu() function uses its
struct rcu_head argument to store the
specified callback function and argument, and
the read-copy-update subsystem then uses this
struct to schedule the callback invocation. An
rcu_head is often placed within a structure
being protected by read-copy update.

A typical use ofcall_rcu is shown in Fig-

1 void delete(struct el *p)
2 {
3 spin_lock(&list_lock);
4 p->next->prev = p->prev;
5 p->prev->next = p->next;
6 spin_unlock(&list_lock);
7 call_rcu(&p->my_rcu_head,
8 my_free, p);
9 }

Figure 4: Read-Copy Dequeue From Doubly-
Linked List

ure 4, where an element is deleted from a
circular doubly linked list with a header ele-
ment. Heremy_free() is a wrapper around
kfree() , and the lock is used only to seri-
alize concurrent calls todelete() . Since
the element’snext andprev pointers are un-
affected, and sincemy_free() is not called
until a grace period has elapsed, non-sleeping
reading tasks may traverse the list concurrently
with the deletion of the element without dan-
ger of a NULL pointer or a pointer to the freel-
ist. This is a common read-copy-update idiom:
kfree() is replaced by acall_rcu() to a
function that is a wrapper aroundkfree() .

2.4 Read-Copy Update and IP Route Cache

Read-copy update has been used in a num-
ber of OSes, including several patches to
Linux [McK01b, Linder02a]. This section de-
scribes how read-copy update may be used in
the Linux IP route cache. This modification
was done to validate the RCU implementa-
tions, rather than in response to a known per-
formance problem in the IP route cache.

The Linux IP route cache uses a reader-writer
lock, so multiple searches may proceed in par-
allel. However, the multiple readers’ lock
acquisitions result in the cacheline bouncing.
Read-copy update may be used to eliminate
this read side cacheline bouncing:

Ottawa Linux Symposium 2002 342

1 @@ -314,13 +314,13 @@
2 static inline void rt_free(
3 struct rtable *rt)
4 {
5 - dst_free(&rt->u.dst);
6 + call_rcu(&rt->u.dst.rcu_head,
7 (void (*)(void *))dst_free,
8 &rt->u.dst);
9 }

10
11 static inline void rt_drop(
12 struct rtable *rt)
13 {
14 ip_rt_put(rt);
15 - dst_free(&rt->u.dst);
16 + call_rcu(&rt->u.dst.rcu_head,
17 + (void (*)(void *))dst_free,
18 + &rt->u.dst);
19 }

Figure 5: dst_free() Modifications

1. Delete all calls toread_lock() ,
read_unlock() ,
read_lock_bh() , and
read_unlock_bh() .

2. Replace all calls towrite_lock() ,
write_unlock() ,
write_lock_bh() , and
write_unlock_bh() with the
corresponding member of the
spin_lock() family of primitives.

3. Add rmb() primitives on the read side
between the fetch of the pointer and its
dereferencing. These should be replaced
by read_barrier_depends()
when it becomes available.

4. Replace all calls todst_free() with a
call tocall_rcu() which causes
dst_free() to be invoked after the
end of a following grace period, as shown
in Figure 5.

This results in a significant decrease in
ip_route_output_key() overhead dur-

Figure 6: IP Route Cache Speedup Using rcu

ing a workload that transmits a fixed number
of random-sized IP packets to a single desti-
nation, as shown in Figure 6. This workload
was run on an 8-CPU 700MHz PentiumTM

III XeonTM with 1MB L2 cache and 6GB of
memory.

Figure 7 shows the total non-idle kernel pro-
file ticks for this same workload. This data
shows the IP route cache speedup is real; it
is not happening at the expense of other pro-
cessing in the system. The overall speedup
is quite small, as expected, given that the
change was not motivated by a known per-
formance problem.2 More compelling Linux-
based read-copy-update results include a 30%
improvement for FD management [McK01b]
and a 25% improvement for dcache manage-
ment [Blanchard02a, Linder02a]

2.5 Read-Copy Update and Module Race Re-
duction

Linux 2.4 is subject to races between module
unloading and use of that module. These races

2However, we will be measuring this patch on vari-
ous workloads as Linux’s scaling continues to improve.

Ottawa Linux Symposium 2002 343

Figure 7: IP Route Cache System Performance
Using rcu

can result in the racing code that is attempt-
ing to use the module holding a reference to
newly freed memory, most likely resulting in
an “oops.”

One way to reduce the likelihood of these
races occurring is to wait for a grace pe-
riod after removing the module structure from
themodule_list beforekfree() ing it in
free_module() [Kleen02a]. Races can
still occur, but the race’s window has been de-
creased substantially. The change is a one-
liner (not counting comments), as shown in
Figure 8.

As noted earlier, this change does not address
all the module-unloading problems. However,
we hope that it can be a basis for a full solution.
This approach is now being used in production
in SuSE Linux.

2.6 Read-Copy Update and Preemption

Preemption has recently been added to Linux
in 2.5.4. The addition of preemption means
that read side kernel code is subject to involun-
tary context switches. If not taken into account,

1 @@ -1065,6 +1066,12 @@
2 p->next = mod->next;
3 }
4 spin_unlock_irqrestore(&modlist_lock,
5 flags);
6
7 + /* Wait for all other cpus to go
8 + * through a context switch. This
9 + * doesn’t plug all module unload

10 + * races, but at least some of
11 + * them and makes the window much
12 + * smaller.
13 + */
14 + synchronize_kernel();
15
16 /* And free the memory. */

Figure 8: Module Unloading

this leads to premature flagging of the ends of
grace periods. There are two ways to handle
preemption: (1) explicitly disabling preemp-
tion over read side code segments, and (2) con-
sidering onlyvoluntarycontext switches to be
quiescent states.

Explicitly disabling preemption over read side
code segments adds unwanted overhead to
reading processes, and removes some of the
latency benefits provided by preemption. In
contrast, considering only voluntary context
switches to be quiescent states allows the ker-
nel to reap the full benefit of reduced latency.
This scheme for tracking only voluntary con-
text switches is inspired by the K42 implemen-
tation [Gamsa99].3 The main drawback is in-
creased length of grace periods. This paper fo-
cuses on the voluntary context switches option
and its effects.

3K42’s extensive use of blocking locks and short-
lived threads results in use of thread termination rather
than voluntary context switch as the K42 quiescent state.
In addition, Linux migrates preempted tasks to other
CPUs, which requires special tracking of tasks that have
been preempted since their last voluntary context switch.

Ottawa Linux Symposium 2002 344

3 Read-Copy Update Implementa-
tions

As noted earlier, the key to read-copy update
is a CPU-efficient mechanism for determining
the required duration of the grace period. This
mechanism is permitted to overestimate the
grace-period duration, but the greater the over-
estimation, the greater the amount of memory
that will be consumed by waiting callbacks.
There are a number of simple and efficient al-
gorithms to determine grace-period duration,
and this paper reviews a number of them.

There are a number of design parameters for a
read-copy update implementation:

1. Batching. Many implementations batch
requests, so that a single grace-period
identification can satisfy multiple re-
quests. Batching is particularly important
for implementations with heavyweight
grace period identification mechanisms.
Although there have been implementa-
tions without batching [McK01a], all im-
plementations described in this paper do
batching.

2. Deducing the length of the grace period.
The simplest mechanisms force a grace
period by a reschedule on all CPUs in
non-preemptive kernels. However, this
approach is relatively expensive, particu-
larly if extended to cope with preemptible
kernels. More efficient implementations
use something like per-CPU quiescent-
state counters to deduce when the natural
course of events has resulted in the expi-
ration of a grace period.

3. Polling mechanism. Implementations that
deduce when a grace period has ended
must use some mechanism to be informed
of this event:

(a) Adding explicit checks to code cor-
responding to quiescent states, for
example, rcu-sched’s hooks in the
Linux scheduler shown in Figure 29.
Explicit checks allow fast response
to quiescent states, but add overhead
when there are no read-copy call-
backs in flight.

(b) Adding counters to code corre-
sponding to quiescent states, and us-
ing kernel daemons to check the
counters, as shown in Figure 13.
This approach adds some complex-
ity, but greatly reduces the overhead
when there are no read-copy call-
backs in flight.

(c) As above, but use tasklets instead
of kernel daemons to do the check-
ing. This further reduces the over-
head, but uses more exotic features
of Linux.

(d) As above, but use a per-CPU
timer handler [Sarma02a] instead of
tasklets to do the checking. It is not
yet clear which of tasklets and timer
handlers are preferable.

If the implementation forces the end of the
grace period, it must similarly use a mech-
anism for doing so:

(a) Scheduling a thread on each CPU in
turn. This has the advantage of im-
mediacy, but cannot be used from
BH or IRQ, and gains no perfor-
mance benefit from batching.

(b) Reserving a kernel daemon that,
upon request, schedules itself on
each CPU in turn. This permits
batching and use from BH and IRQ,
but is more complex.

4. Request queuing. Requests may be
queued globally or on a per-CPU basis.

Ottawa Linux Symposium 2002 345

Grace periods must of course always be
detected globally, but per-CPU queuing
can reduce the CPU overhead incurred by
call_rcu() . This is a classic perfor-
mance/complexity tradeoff. The correct
choice depends on the workload.

5. Quiescent state definition. For non-
preemptive kernels, context switch is a
popular choice. For preemptive Linux
kernels (such as Linux 2.5), voluntary
context switch may instead be used.

6. Environments. Ifcall_rcu() use is
prohibited in the BH or IRQ contexts, then
more kernel functionality is available to
the implementor ofcall_rcu() , and
less overhead is incurred.

Ottawa Linux Symposium 2002 346

Section 5 describes a number of Linux imple-
mentations of read-copy update, summarized
in Table 1.

All the implementations in Table 1 exceptrcu-
preemptassume a run-to-block kernel. Sec-
tion 5.7 describesrcu-preempt, which operates
efficiently in a preemptive kernel.

The “QS” column lists the quiescent states that
each algorithm tracks, “I” for idle-loop execu-
tion, “C” for context switch, and “U” for user-
mode execution.

The “BH/IRQ Safe” column indicates whether
code running in BH/IRQ context may safely
delete elements of a read-copy-update-
protected data structure that is accessed by
base-level code with interrupts enabled. The
rcu-poll implementation is BH safe, but is IRQ
unsafe by choice, in order to eliminate the
overhead of interrupt disabling and enabling
that would otherwise be incurred on each call
to call_rcu() . If a strong need arises
for use ofcall_rcu() from IRQ context,
trivial changes torcu-poll will render it IRQ
safe.

The read-copy-update implementations dis-
cussed in this paper choose different points in
this design space. These implementations are
freely available [LSE]. TheX-rcu, rcu, and
rcu-ltimer implementations are similar to the
ptxTM implementation, using per-CPU timers,
kernel daemons, and architecture-dependent
timer support, respectively. Thercu-taskqim-
plementation is an extremely compact imple-
mentation in which a kernel task forces per-
CPU kernel daemons to run on their respec-
tive CPUs. Thercu-sched implementation
uses ring counters within the Linux sched-
uler, and boasts an extremely low overhead
call_rcu() implementation. It is also the
only known read-copy-update implementation
that uses absolutelyno locks, interrupt mask-
ing, memory barriers, or atomic instructions.

The rcu-poll implementation is designed for
minimal overhead when there are no outstand-
ing read-copy callbacks, and boasts very low
call_rcu() latencies. Finally, thercu-
preemptimplementation adapts thercu imple-
mentation to work correctly in preemptible ker-
nels. We will adapt some of the other imple-
mentations for preemptible use, as well. These
implementations are described in more detail
in Section 5 and Appendix A.

4 Performance and Complexity
Comparisons

Table 2 shows the amount of overhead incurred
by each implementation when there is no read-
copy update activity in the system. Thercu-
taskq implementation does best by this mea-
sure, with absolutely no overhead. Thercu-
poll and rcu-preemptare next, with but a sin-
gle local non-atomic increment in the sched-
uler. Thercu-preemptalso incurs overhead on
each preemption, asrcu-poll likely will once
it is adapted to run in a preemptive kernel.
The other implementations incur timer over-
head under idle conditions.

An important figure of merit for a read-copy-
update implementation is the grace period la-
tency. The greater the latency, the more mem-
ory is waiting on the internal lists for the
current grace period to end. On the other
hand, longer latency results in higher effi-
ciency, since the per-callback-batch process-
ing is done less frequently, spreading the over-
head over morecall_rcu() requests. The
best tradeoff depends on the workload: sys-
tems with very infrequentcall_rcu() invo-
cations would prefer small latency in order to
conserve memory, while systems with very fre-
quentcall_rcu() invocations would prefer
larger latencies in order to amortize the over-
head of detecting a grace period over more
call_rcu() invocations.

Ottawa Linux Symposium 2002 347

Name Batch? Deduce Poll Queuing QS BH/IRQ Safe

X-rcu Yes counters timers per-CPU IC Yes
rcu Yes counters daemons per-CPU C Yes
rcu-poll Yes counters tasklet global C BH Only
rcu-ltimer Yes counters tasklets per-CPU IUC Yes
rcu-taskq Yes No daemons global C Yes
rcu-sched Yes counter ring N/A per-CPU-rrupt IC Yes
rcu-preempt Yes counters timers per-CPU IC Yes

Table 1: Read-Copy Implementations

RCU Idle Memory Refs
Name Switch Preempt Timer Timer Type

X-rcu 1 local 8 local + 1 global + 1 timer 50ms per CPU
rcu 1 local 2 local + 1 global read + 1

global write + 1 timer + #CPU
* up()

50ms global

rcu-poll 1 local
rcu-ltimer 1 local 7 local + 1 global + 1 tasklet per CPU
rcu-taskq
rcu-sched 1 global read
rcu-preempt 1 local 6 local

Table 2: Read-Copy Idle Overhead

Figure 9: call_rcu() Latency Under dbench
Load

This latency depends on worst-case kernel
codepath length, the workload, and the de-
tails of the read-copy-update implementation.
Figure 9 shows thecall_rcu() latency for
the different read-copy update algorithms as a
function of offered load to the dbench bench-
mark. It was run on an 8-CPU 700MHz Xeon
system with 1MB L2 caches and 6GB of mem-
ory using the dcache-rcu patch [LSE]. The
winner by far isrcu-poll, which keeps laten-
cies below 10 milliseconds (and below 250mi-
crosecondson an idle system) by allowing qui-
escent states to be detected in parallel and by its
aggressive forcing of scheduling when a grace
period is required (see Figure 10, which shows
the same data on a semilog plot). Therefore,
rcu-poll is preferable on systems that invoke
call_rcu() infrequently. TheX-rcu, rcu-

Ottawa Linux Symposium 2002 348

Figure 10: call_rcu() Latency Under dbench
Load (logscale)

ltimer, andrcu implementations have larger la-
tencies that are well bounded as the number
of clients increase. These algorithms are thus
preferable on systems that have very high rates
of call_rcu() invocation.

The rcu-schedalgorithm exhibited very large
latencies (14.5 seconds at 8 clients and 57.7
seconds at 4 clients), which we are investigat-
ing. The rcu-taskqalgorithm’s latencies in-
creases with increasing numbers of clients, be-
cause this algorithm requires the CPUs to pass
through quiescent states sequentially, and be-
cause keventd (which runs the taskq’s) runs at
low priority.

Read-copy update can pose a tradeoff between
latency and overhead, since increased latency
increases the number of callbacks that are ser-
viced by a single grace period. To evaluate
this tradeoff, Figure 11 compares the perfor-
mance of the chat benchmark with 20 rooms
and 500 messages on a 4-CPU 700MHz Pen-
tium III Xeon system with 1MB L2 caches and
1GB memory. This benchmark was run us-
ing the read-copy-update-based IP-route-cache
and FD management patches [LSE]. These re-

Figure 11: RCU Performance on Chat Bench-
mark

sults show little sensitivity to the read-copy-
update algorithm. We are collecting more data
on other workloads.

Table 3 shows the number of lines in each al-
gorithm’s patch. The “All Archs” column gives
the size of the patch applied to all architec-
tures currently in the kernel, while the “One
Arch” column gives the size of each patch ap-
plied to only one architecture. Architecture-
independent patches will have the same num-
ber in both columns. Thercu-taskqimplemen-
tation is the simplest, and so might be a good
place to start looking at read-copy-update im-
plementations.

The rcu-ltimer patch works only on the i386
architecture, so the figure for “All Archs”
is an estimate based on the i386-specific
portion of the patch, which simply invokes
RCU_PROCESS_CALLBACKS()from the
smp_local_timer_interrupt() func-
tion. The rcu-schedpatch contains code to
guard against architectures that shut down their
CPUs when idle.

Ottawa Linux Symposium 2002 349

Size of
Unified Diffs

Name All One
Archs Arch

rcu-taskq-2.5.3-1.patch 237 237
rcu-poll-2.5.3-1.patch 378 378
X-rcu-2.5.3-4.patch 424 424
rcu-sched-2.5.3-1.patch 575 333
rcu-2.5.3-2.patch 603 603
rcu-preempt-2.5.8-3.patch 682 682
rcu-ltimer-2.5.3-1.patch 742 514

Table 3: Read-Copy Implementation Com-
plexity

5 Read-Copy Update Implementa-
tion Overviews

The following sections summarize the
call_rcu() implementation, the quiescent-
state instrumentation (usually in the sched-
uler), and the high-level timer processing.
More details on the more-complex implemen-
tations may be found in Appendix A, and
patches for each may be found on the Linux
Scalability Effort website [LSE].

5.1 X-rcu

X-rcu is loosely based on the ptx read-copy-
update implementation. It uses a per-CPU con-
text switch counter to instrument this quiescent
state, uses per-CPU queues to track callbacks,
and per-CPU timers to track quiescent states
as needed to find the end of grace periods.
The timers further check for running from idle,
which is a second quiescent state. Dipankar
Sarma implemented this variant to evaluate the
use of timers rather than the kernel daemons
or architecture-dependent timer hooks used by
thercu andrcu-ltimer implementations.

This implementation depends on patches that
have not yet appeared in 2.4, 2.5, or both. The

required patches include:

1. Rusty Russell’s per-CPU data area
patch [Russell02a] permits more natural
maintenance of per-CPU data. It per-
mits the context switch counter to be
maintained separately from the rest of
the per-CPU state, which avoids some
nasty header file cyclic dependencies
between interrupt.h, fs.h, and sched.h.
This separation means thatrcupdate.h
need not include interrupt.h, which
makes it easier to includercupdate.hin
lower-level kernel subsystems, such as
dcache. This patch recently was accepted
into the Linux 2.5 kernel.

2. Per-CPU timer support [Sarma02a]. This
patch enhances Ingo Molnar’s smptimers
patch to guarantee that timers queued in
a CPU always get executed on the same
CPU where they were enqueued. This
guarantee allows per-CPU quiescent state
checking to be performed in a clean and
architecture independent way. In addition,
timers have significantly lower overhead
than kernel daemons.

The call_rcu() function constructs the
callback and enqueues it onto the current
CPU’s rcu_nextlist , as shown in Fig-
ure 12.

Figure 13 shows how the scheduler is instru-
mented. The added line 5 compiles to a local
increment, with no locking, atomic operations,
or cacheline bouncing.

Figure 14 shows the processing done by the
per-CPU timer handler, currently set up to
execute every 5 jiffies on each CPU. This
code detects idle-loop execution and counts
this as a quiescent state. It then invokes
rcu_process_callbacks() to advance
callbacks as ends of grace periods are detected.

Ottawa Linux Symposium 2002 350

1 void call_rcu(struct rcu_head
2 *head,
3 void (*func)(void *arg),
4 void *arg)
5 {
6 unsigned long flags;
7
8 head->func = func;
9 head->arg = arg;

10 local_irq_save(flags);
11 list_add_tail(&head->list,
12 &this_cpu(rcu_nextlist));
13 local_irq_restore(flags);
14 }

Figure 12:X-rcucall_rcu() Implementation

1 @@ -685,6 +686,7 @@
2 switch_tasks:
3 prefetch(next);
4 prev->work.need_resched = 0;
5 + per_cpu(rcu_qsctr, prev->cpu)++;
6
7 if (likely(prev != next)) {
8 rq->nr_switches++;

Figure 13:X-rcuScheduler Instrumentation

1 static void rcu_percpu_tick(void)
2 {
3 /* Check for idle loop */
4 if (task_idle(current))
5 this_cpu(rcu_qsctr)++;
6 rcu_process_callbacks();
7 }

Figure 14:X-rcuTimer Processing

This callback advancement is described in Ap-
pendix A.1.

5.2 rcu

The rcu patch is also based on the ptx al-
gorithm. Unlike theX-rcu patch described
in Section 5.1,rcu has minimal dependencies
on other patches. It is otherwise quite sim-
ilar, using per-CPU queues of callbacks and
context-switch counters instrumenting the qui-
escent states. However, it uses per-CPU kernel
daemons to periodically check for the end of
grace periods, which means that it cannot eas-
ily check for the CPU having been idle. These
daemons are awakened by a timer that is sched-
uled only when there is at least one callback
in the system. Dipankar Sarma implemented
this variant to evaluate use of kernel dae-
mons rather than architecture-dependent timer
hooks.

Thecall_rcu() function simply constructs
the callback, enqueues it onto the current
CPU’s RCU_nxtlist , then schedules the
current CPU’s tasklet, as shown in Figure 15.

The scheduler is instrumented as shown in Fig-
ure 16. As withX-rcu, this is a local incre-
ment without locking, atomic instructions, or
cacheline bouncing, but, due to the lack of a
per-CPU data area, array-indexing instructions
are required.

The code that performs periodic RCU process-
ing is shown in Figure 17. UP kernels invoke it

Ottawa Linux Symposium 2002 351

1 void call_rcu(struct rcu_head *head,
2 void (*func)(void *arg),
3 void *arg)
4 {
5 int cpu = cpu_number_map(
6 smp_processor_id());
7 unsigned long flags;
8
9 head->func = func;

10 head->arg = arg;
11 local_irq_save(flags);
12 list_add_tail(&head->list,
13 &RCU_nxtlist(cpu));
14 local_irq_restore(flags);
15 tasklet_schedule(&RCU_tasklet(cpu));
16 }

Figure 15:rcu call_rcu() Implementation

1 @@ -685,6 +686,7 @@
2 switch_tasks:
3 prefetch(next);
4 prev->work.need_resched = 0;
5 + RCU_qsctr(prev->cpu)++;
6
7 if (likely(prev != next)) {
8 rq->nr_switches++;

Figure 16:rcu Scheduler Instrumentation

1 static void
2 rcu_percpu_tick_common(void)
3 {
4 rcu_process_callbacks(0);
5 }

Figure 17:rcu Timer Processing

directly from the timeout handler, while SMP
kernels invoke it fromkrcuddaemons that are
awakened by the timeout handler.

Details of rcu’s callback processing are dis-
cussed in Appendix A.2.

5.3 rcu-poll

The rcu-poll algorithm was written by An-
drea Arcangeli and Dipankar Sarma. It ap-
pears in the “-aa” series of kernels and in re-
cent SuSE releases. Unlike theX-rcu andrcu
algorithms,rcu-poll uses a single set of lists to
process read-copy-update callbacks, which are
processed by a single tasklet. This results in
more cacheline bouncing than do the other al-
gorithms, but is considerably shorter and sim-
pler, and, as noted earlier, boasts extremely
short average grace-period latencies and low
incremental overheads when there are no read-
copy update callbacks in flight.

The call_rcu() function constructs
the callback, enqueues it onto a global
rcu_nxtlist , then schedules the tasklet, as
shown in Figure 18.

The scheduler is instrumented in much the
same way as for the previous algorithms, as
shown in Figure 19.

Periodic RCU processing is handled by
a single tasklet, whose body is shown
in Figure 20. This tasklet invokes
rcu_prepare_polling() to snap-
shot each CPU’s quiescent state counters if
polling is not yet in progress and if there are

Ottawa Linux Symposium 2002 352

1 void call_rcu(struct rcu_head *head,
2 void (*func)(void *arg),
3 void *arg)
4 {
5 head->func = func;
6 head->arg = arg;
7
8 spin_lock_bh(&rcu_lock);
9 list_add(&head->list, &rcu_nxtlist);

10 spin_unlock_bh(&rcu_lock);
11
12 tasklet_hi_schedule(&rcu_tasklet);
13 }

Figure 18:rcu-poll call_rcu() Implementation

1 @@ -685,6 +686,7 @@
2 switch_tasks:
3 prefetch(next);
4 prev->work.need_resched = 0;
5 + RCU_quiescent(prev->cpu)++;
6
7 if (likely(prev != next)) {
8 rq->nr_switches++;

Figure 19:rcu-poll Scheduler Instrumentation

pending callbacks. If polling has already been
started, it instead invokesrcu_polling()
to check to see if the grace period has ended.
This ensures all CPUs have passed through
their quiescent states via the context switch.

Details of rcu-poll’s callback processing are
discussed in Appendix A.3.

1 static void rcu_process_callbacks(
2 unsigned long data)
3 {
4 int stop;
5
6 spin_lock(&rcu_lock);
7 if (!rcu_polling_in_progress)
8 stop = rcu_prepare_polling();
8 else
9 stop = rcu_polling();

10 spin_unlock(&rcu_lock);
11
12 if (!stop)
13 tasklet_hi_schedule(&rcu_tasklet);
14 }

Figure 20:rcu-poll Tasklet Body

1 void call_rcu(struct rcu_head *head,
2 void (*func)(void *arg),
3 void *arg)
4 {
5 int cpu = cpu_number_map(
6 smp_processor_id());
7
8 head->func = func;
9 head->arg = arg;

10 local_bh_disable();
11 list_add_tail(&head->list,
12 &RCU_nxtlist(cpu));
13 local_bh_enable();
14 }

Figure 21: rcu-ltimer call_rcu() Implementa-
tion

5.4 rcu-ltimer

The rcu-ltimer implementation is simi-
lar to X-rcu and rcu, but it inserts calls
to RCU_PROCESS_CALLBACKS() into
do_timer() and into the architecture-
specific smp_local_timer_interrupt()

functions, instead of using timers or a kernel
daemon to check for the ends of grace periods.
This allows rcu-ltimer to count user-mode
execution as a quiescent state, in addition to
the idle loop and context switch. The current
patch is fully implemented only on the i386
architecture. Dipankar Sarma implemented
this variant to obtain the closest analog to the
ptx implementation.

The call_rcu() function constructs the
callback and enqueues it onto a per-CPU
RCU_nxtlist , as shown in Figure 21.

The scheduler is instrumented in much the
same way as for the previous algorithms, as
shown in Figure 22.

Periodic RCU processing is handled by per-
CPU tasklets, which are invoked as shown
in Figure 23. Lines 3–4 note a quiescent
state if the CPU was interrupted from user

Ottawa Linux Symposium 2002 353

1 @@ -685,6 +686,7 @@
2 switch_tasks:
3 prefetch(next);
4 prev->work.need_resched = 0;
5 + RCU_qsctr(prev->cpu)++;
6
7 if (likely(prev != next)) {
8 rq->nr_switches++;

Figure 22: rcu-ltimer Scheduler Instrumenta-
tion

1 #define RCU_PROCESS_CALLBACKS(cpu,regs) \
2 do { \
3 if (user_mode(regs) || idle_cpu(cpu)) \
4 RCU_qsctr(cpu)++; \
5 if ((RCU_tasklet(cpu).state & \
6 ((1 << TASKLET_STATE_SCHED) | \
7 (1 << TASKLET_STATE_RUN))) \
8 == 0) \
9 tasklet_schedule(

10 &RCU_tasklet(cpu)); \
11 } while(0)

Figure 23:rcu-ltimerTimer Processing

mode or the idle loop. Lines 5–10 sched-
ule this CPU’s tasklet if it is not already ei-
ther scheduled or running. This tasklet invokes
rcu_process_callbacks() , which is de-
scribed in more detail in Appendix A.4.

5.5 rcu-taskq

Dipankar Sarma implemented thercu-taskqal-
gorithm to obtain a minimal efficient imple-
mentation. And this implementation does in
fact have the smallest patch, using a single task
and a global set of callback queues. The task
forces each of a set of per-CPU kernel dae-
mons to schedule itself; when each done so, the
grace period has expired. This implementation
thus directly forces quiescent states, unlike the
other implementations, which instead measure
naturally occurring quiescent states. Its grace-
period latency increases with increasing load
on the system, as noted earlier, but is the only
implementation with absolutely zero load on
the system when there are no read-copy call-

1 void call_rcu(struct rcu_head * head,
2 void (*func)(void * arg),
3 void * arg)
4 {
5 unsigned long flags;
6 int start = 0;
7
8 head->func = func;
9 head->arg = arg;

10
11 spin_lock_irqsave(&rcu_lock, flags);
12 if (list_empty(&rcu_wait_list))
13 start = 1;
14 list_add(&head->list, &rcu_wait_list);
15 spin_unlock_irqrestore(&rcu_lock, flags);
16
17 if (start)
18 schedule_task(&rcu_task);
19 }

Figure 24: rcu-taskqcall_rcu() Implementa-
tion

backs in flight.

Figure 24 shows thecall_rcu() implemen-
tation. Lines 8–9 initialize the callback, lines
11 and 15 handle locking, lines 12–13 record
the initial list state, and line 14 adds the call-
back to thercu_wait_list . Lines 17–18
start the task if lines 12–13 found the list ini-
tially empty.

The task started bycall_rcu() invokes
the functionprocess_pending_rcus() ,
shown in Figure 25. Lines 8–10 snapshot
rcu_wait_list into a local list. Line 13
then invokeswait_for_rcu() to wait for a
full grace period to elapse. Finally, lines 15–23
invoke the callbacks from the local list.

Figure 26 showswait_for_rcu() . Lines
6–10 awaken thekrcud daemons for the other
CPUs, and lines 11–13 wait for these daemons
to respond.

Figure 27 shows the code for thekrcud dae-
mons. Lines 6–20 initialize the daemon, set
its priority high, blocking signals, binding
to the corresponding CPU, setting the task
name, initializing the task name, and inform-
ing the spawn_krcud() task that the dae-

Ottawa Linux Symposium 2002 354

1 static void process_pending_rcus(
2 void *arg)
3 {
4 LIST_HEAD(rcu_current_list);
5 struct list_head * entry;
6
7 spin_lock_irq(&rcu_lock);
8 list_splice(&rcu_wait_list,
9 rcu_current_list.prev);

10 INIT_LIST_HEAD(&rcu_wait_list);
11 spin_unlock_irq(&rcu_lock);
12
13 wait_for_rcu();
14
15 while ((entry = rcu_current_list.prev)
16 != &rcu_current_list) {
17 struct rcu_head * head;
18
19 list_del(entry);
20 head = list_entry(entry,
21 struct rcu_head, list);
22 head->func(head->arg);
23 }
24 }

Figure 25: rcu-taskqprocess_pending_rcus()
Implementation

1 static void wait_for_rcu(void)
2 {
3 int cpu;
4 int count;
5
6 for (cpu = 0; cpu < smp_num_cpus; cpu++) {
7 if (cpu == smp_processor_id())
8 continue;
9 up(&krcud_sema(cpu));

10 }
11 count = 0;
12 while (count++ < smp_num_cpus - 1)
13 down(&rcu_sema);
14 }

Figure 26: rcu-taskq wait_for_rcu() Imple-
mentation

1 static int krcud(void * __bind_cpu)
2 {
3 int bind_cpu = *(int *) __bind_cpu;
4 int cpu = cpu_logical_map(bind_cpu);
5
6 daemonize();
7 current->policy = SCHED_FIFO;
8 current->rt_priority = 1001 +
9 sys_sched_get_priority_max(SCHED_FIFO);

10
11 sigfillset(¤t->blocked);
12
13 /* Migrate to the right CPU */
14 set_cpus_allowed(current, 1UL << cpu);
15
16 sprintf(current->comm,
17 "krcud_CPU%d", bind_cpu);
18 sema_init(&krcud_sema(cpu), 0);
19
20 krcud_task(cpu) = current;
21
22 for (;;) {
23 while (down_interruptible(
24 &krcud_sema(cpu)));
25 up(&rcu_sema);
26 }
27 }

Figure 27:rcu-taskqkrcud() Implementation

mon is ready to process requests. Lines 22–
26 process each request, alternately sleep-
ing on thekrcud_sema and waking up the
process_pending_rcus() task.

5.6 rcu-sched

The rcu-schedimplementation was developed
by Rusty Russell [Russell01d], with a goal of
minimizing call_rcu() overhead. It uses
a ring of per-CPU counters, and each CPU
sets its counter to one greater than that of its
neighbor on each pass through the scheduler
when read-copy-update callbacks are pending.
Thus, when a given CPU sees its neighbor’s
counter change, it is guaranteed that each CPU
has passed through the scheduler (a quiescent
state) since the given CPU last incremented its
own counter.

This implementation also maintains not just
per-CPU callback queues, but two sets of per-
CPU-per-IRQ callback queues. This allows the

Ottawa Linux Symposium 2002 355

queues to be accesses without the need for ei-
ther locks (per-CPU) or for interrupt masking
(per-IRQ). One set of these queues accumu-
lates new callbacks fromcall_rcu() , while
the other set holds callbacks waiting for the end
of the current grace period.

Finally, this implementation places checks in
the idle loop in order to ensure that idle CPUs
do not indefinitely delay the end of the grace
period. This has the beneficial side effect of
causing idle-loop execution to be a quiescent
state without using the active entities (tasklets,
timers, kernel daemons) used by the other im-
plementations.

Figure 28 shows thecall_rcu() func-
tion. Lines 9–10 initialize thercu_head
callback. Lines 11–14 determine the inter-
rupt state, which is used later as an index to
the array of lists of callbacks. Lines 17–18
find the right queue for the callback. The
rcu_batch[cpu].queueing is a bit that
contains the index of the half of the array that is
accumulating new callbacks. The sense of this
bit is reversed inrcu_batch_done() at the
end of each grace period. Line 20 increments
the number of pending callbacks, which sig-
nals the scheduler to start looking for a grace
period, and lines 23–24 enqueues the callback.

Figure 29 shows the first patch to the sched-
uler. Lines 12–13 check to see if there are
read-copy-update callbacks pending, and, if so,
branch to thercu_process label in the sec-
ond patch shown in Figure 30

Lines 8–10 of Figure 30 set local variablec
to one greater than the previous CPU’s ring
counter. Ifc is different than this CPU’s ring
count, a grace period has ended, and is handled
by lines 16–23. Line 11 checks for scheduler
reentry, and if this has not occurred, lines 19–
23 invokercu_batch_done() , protecting
against scheduler re-entry by manipulating this
CPU’s finished_count . Line 25 updates

1 void call_rcu(struct rcu_head *head,
2 void (*func)(void *data),
3 void *data)
4 {
5 unsigned cpu = smp_processor_id();
6 unsigned state;
7 struct rcu_head **headp;
8
9 head->func = func;

10 head->data = data;
11 if (in_interrupt()) {
12 if (in_irq()) state = 2;
13 else state = 1;
14 } else state = 0;
15
16 /* Figure out which queue we’re on. */
17 headp = &rcu_batch[cpu].head[
18 rcu_batch[cpu].queueing][state];
19
20 atomic_inc(&rcu_pending);
21 /* Prepend to this CPU’s list:
22 no locks needed. */
23 head->next = *headp;
24 *headp = head;
25 }

Figure 28: rcu-schedcall_rcu() Implementa-
tion

1 @@ -634,10 +639,16 @@
2 prio_array_t *array;
3 list_t *queue;
4 int idx;
5 + int c, this_cpu;
6
7 if (unlikely(in_interrupt()))
8 BUG();
9 release_kernel_lock(prev,

10 smp_processor_id());
11 +
12 + if (unlikely(is_rcu_pending()))
13 + goto rcu_process;
14 +
15 +rcu_process_back:
16 spin_lock_irq(&rq->lock);
17
18 switch (prev->state) {

Figure 29: rcu-schedScheduler Instrumenta-
tion, Part 1

Ottawa Linux Symposium 2002 356

1 @@ -700,6 +711,23 @@
2 }
3 spin_unlock_irq(&rq->lock);
4
5 +rcu_process:
6 + /* Avoid cache line effects
7 + if value hasn’t changed */
8 + this_cpu = smp_processor_id();
9 + c = ring_count((this_cpu + 1) %

10 + smp_num_cpus) + 1;
11 + if (c != ring_count(this_cpu)) {
12 + /* Do subtraction to
13 + avoid int wrap corner case */
14 + if (c - finished_count(this_cpu)
15 + >= 0) {
16 + /* Avoid reentry: temporarily
17 + set finish_count
18 + far in the future */
19 + finished_count(this_cpu) =
20 + c + INT_MAX;
21 + rcu_batch_done();
22 + finished_count(this_cpu) =
23 + c + smp_num_cpus;
24 + }
25 + ring_count(this_cpu) = c;
26 + }
27 + goto rcu_process_back;
28 +
29 reacquire_kernel_lock(current);
30 return;
31 }

Figure 30: rcu-schedScheduler Instrumenta-
tion, Part 2

this CPU’s ring count, which will result in the
next CPU seeing the end of a grace period.
Line 27 returns control to the mainline sched-
uler.

Figure 31 shows how the idle loop is instru-
mented to prevent architectures that shut down
CPUs on idle from indefinitely extending the
grace period. The other implementations get
this effect through use of timers or forced con-
text switches.

Figure 32 shows rcu_batch_done() ,
which is invoked from the scheduler at the end
of a grace period. Line 7–8 pick up a pointer
to this CPU’s set of read-copy-update callback
queues. Lines 11–22 invoke all the callbacks
in each of this CPU’s callback queues (one
for each possible IRQ level) that was waiting
for the current grace period to expire (selected

1 @@ -84,7 +85,8 @@
2 get into the scheduler unnecessarily. */
3 long oldval = xchg(
4 ¤t->work.need_resched, -1UL);
5 if (!oldval)
6 - while (current->work.need_resched < 0);
7 + while (current->work.need_resched < 0
8 + && !is_rcu_pending());
9 schedule();

10 check_pgt_cache();
11 }

Figure 31: rcu-schedIdle Loop Instrumenta-
tion

1 void rcu_batch_done(void)
2 {
3 struct rcu_head *i, *next;
4 struct rcu_batch *mybatch;
5 unsigned int q;
6
7 mybatch =
8 &rcu_batch[smp_processor_id()];
9 /* Call callbacks: probably delete

10 themselves, may schedule. */
11 for (q = 0; q < 3; q++) {
12 for (i = mybatch->head[
13 !mybatch->queueing][q];
14 i;
15 i = next) {
16 next = i->next;
17 i->func(i->data);
18 atomic_dec(&rcu_pending);
19 }
20 mybatch->head[
21 !mybatch->queueing][q] = NULL;
22 }
23
24 /* Start queueing on this batch. */
25 mybatch->queueing = !mybatch->queueing;
26 }

Figure 32:rcu-schedrcu_batch_done()

by !mybatch->queueing), and empty
each list. Line 25 swaps the sets of queues,
so that the callbacks previously waiting for a
new grace period to begin are now waiting for
the now-current grace period, and the newly
emptied queues will now accept new callbacks
registered by future calls tocall_rcu() .

5.7 Preemptible Algorithm

With the addition of preemption to the Linux
kernel, read-copy update must also handle pre-

Ottawa Linux Symposium 2002 357

emption. Rusty Russell [Russell01b] produced
such a patch, but it requires scanning all tasks
on the runqueue, a job made more complex by
the addition of the multi-queue scheduler.

Dipankar Sarma created a prototype pre-
emptible algorithm that is similar torcu,4

but adds per-CPU counts of preempted tasks,
which operate in a manner in some ways
similar to the generation mechanism in
K42 [Gamsa99]. The key concept is that a
preemptible kernel must track tasks rather than
CPUs. However, to avoid potentially expen-
sive scans of the task list or the runqueues, the
tasks are tracked on a per-CPU basis. When
a task returns from a voluntary context switch
(or is created), it is implicitly associated with
the CPU that it starts running on. No matter
how many times the task is preempted, from a
read-copy-update perspective, it remains affil-
iated with that CPU, even if it is migrated to
other CPUs. Once it performs a voluntary con-
text switch, it gives up its affiliation.

However, no additional work is done (over that
done by a non-preemptible kernel running a
non-preemptible implementation of read-copy
update) until that task is preempted. The task
then increments a per-CPU counter, which re-
mains incremented until the task executes a
voluntary context switch, possibly by exiting.
The task then decrements that same per-CPU
counter, even if the task is running on some
other CPU at the time.

Of course, if there is a lot of preemption, it
might be that a particular CPUalways has
at least one preempted task affiliated with it.
However, the end of a grace period is marked
not by the absence of tasks, but by each of the
tasks that was either running or preempted at
the start of the grace period having either ex-

4However, as noted earlier, this preemptible version
of rcu has greatly reduced CPU overhead when there are
no read-copy callbacks in the system.

ited or voluntarily switched context.

This distinction is maintained by providing
each CPU with a pair of counters, a “next”
counter that is incremented by tasks returning
from their voluntary context switch onto the
corresponding CPU, and a “current” counter
that is only decremented. Note that the “next”
counter will be also decremented whenever a
task resumes execution quickly enough after
being preempted. The end of the grace pe-
riod occurs when all CPUs’ “current” coun-
ters reach zero.5 The roles of the counters in
each pair are now reversed in order to start the
next grace period, just after the basercu por-
tion of the algorithm moves the callbacks in the
rcu_nextlist to rcu_currlist .

Each CPU’s pair of counters is as shown
in Figure 33, along with the pair of point-
ers that handle the reversing of their roles.
The next_preempt_cntr pointer points
to the element ofrcu_preempt_cntr[]
that is atomically incremented (by a new
rcu_preempt_get() function) when task
affiliated with this CPU is preempted for the
first time since its preceding voluntary con-
text switch. The task records this pointer in
a new cpu_preempt_cntr pointer in its
task structure, which is initially NULL. After
the task resumes and voluntarily relinquishes
the CPU6, it atomically decrements the counter
pointed to by itscpu_preempt_cntr , us-
ing a new rcu_preempt_put() func-
tion, then NULLs itscpu_preempt_cntr
pointer.

5Unless one of the CPUs has been running a task
continuously since before the start of the grace period,
but this case is handled by the basercu portion of the
implementation.

6Possibly after having been preempted several more
times along the way. This is why the counter cannot be
decremented immediately when the task is resumed, but
must instead wait for the task to voluntarily relinquish
the CPU.

Ottawa Linux Symposium 2002 358

1 extern atomic_t
2 rcu_preempt_cntr[2] __per_cpu_data;
3 extern atomic_t
4 *curr_preempt_cntr __per_cpu_data;
5 extern atomic_t
6 *next_preempt_cntr __per_cpu_data;

Figure 33: rcu_preempt Per-CPU Counters

The curr_preempt_cntr pointer points
to the element ofrcu_preempt_cntr[]
that next_preempt_cntr does not point
to. This element of the array contains the
number of tasks affiliated with this CPU that
were first preempted before the beginning of
the current grace period, and that must re-
sume and voluntarily relinquish a CPU be-
fore the current grace period can expire.
When this CPU becomes aware of the end
of the current grace period, it exchanges
the values ofnext_preempt_cntr and
curr_preempt_cntr , so that the elements
of the rcu_preempt_cntr[] array ex-
change roles.

The rest of the callback processing is
very similar to that of the rcu algo-
rithm. The major difference is that
rcu_check_quiescent_state() must
check that all tasks preempted on this CPU
prior to the current grace period have voluntar-
ily relinquished the CPU.

6 Conclusions and Future Plans

Andrea Arcangeli’srcu-poll implementation
exhibits the bestcall_rcu() latency, and is
therefore a good implementation for workloads
that do not have high aggregatecall_rcu()
invocation rates. The longer (but well-
bounded)call_rcu() latencies of theX-
rcu, rcu-ltimer, andrcu implementations may
make them preferable for systems with higher
call_rcu() invocation rates.

We are continuing our work on preemptible

read-copy-update implementations, in order
to obtain the best implementation compatible
with the 2.5 kernel. Finally, we are continu-
ing our measurements with various workloads,
which we expect will evolve as the 2.5 kernel
evolves. In particular, we will measure perfor-
mance under heavycall_rcu() load.

7 Acknowledgments

We owe thanks to Martin Bligh and Hanna Lin-
der for their able assistance with the machines
we used to gather the data shown in this paper,
and to Hans Tannenberger and Gerrit Huizenga
for arranging access to these machines. We
are especially grateful to Maneesh Soni and
Hanna Linder for their efforts with read-copy
update, and to Jonathan Appavoo for many en-
lightening discussions. We are indebted to Dan
Frye, Randy Kalmeta, Vijay Sukthankar, Hugh
Blemings, and Manish Gupta for their support
of this effort.

References

[Blanchard02a] A. Blanchardsome RCU
dcache and ratcache results,
Linux-Kernel Mailing List, March 2002.
http://marc.theaimsgroup.com

/?l=linux-kernel&m=

101637107412972&w=2 .

[Compaq01] Compaq Computer Corporation
Shared Memory, Threads, Interprocess
Communication, Ask The Wizard,
August 2001.
http://www.openvms.compaq.com

/wizard/wiz_2637.html .

[Gamsa99] B. Gamsa, O. Kreiger, J.
Appavoo, and M. Stumm.Tornado:
maximizing locality and concurrency in
a shared memory multiprocessor
operating system, Proceedings of the 3rd

Ottawa Linux Symposium 2002 359

Symposium on Operating System
Design and Implementation, New
Orleans, LA, February, 1999.

[Linder02a] H. Linder, D. Sarma, and
Maneesh Soni.Scalability of the
Directory Entry Cache, To appear in
Ottawa Linux Symposium, June 2002.

[Kleen02a] A. KleenReduce Module Races,
kernel.org, January 2002.
ftp://ftp.us.kernel.org/pub

/linux/kernel/people/andrea

/kernels/v2.4/v2.4.19pre7aa2

/00_reduce-module-races-1 .

[LSE] D. Sarma et al.Linux Scaling Effort
(LSE), SourceForge Project, April 2002.
http://prdownloads.sourceforge.net

/lse/ .

[McK98a] P. E. McKenney and J. D.
Slingwine.Read-copy update: using
execution history to solve concurrency
problems, Parallel and Distributed
Computing and Systems, October 1998.
(revised version available at
http://www.rdrop.com/users

/paulmck/rclockpdcsproof.pdf).

[McK01a] P. E. McKenney and D. Sarma.
Read-Copy Mutual Exclusion in Linux,
http://lse.sourceforge.net

/locking/rcu

/rcupdate_doc.html , February 2001.

[McK01b] P. E. McKenney, J. Appavoo, A.
Kleen, O. Krieger, R. Russell, D. Sarma,
M. Soni.Read-Copy Update, Ottawa
Linux Symposium, July 2001. (revised
version available at
http://www.rdrop.com/users

/paulmck/rclock

/rclock_OLS.2001.05.01c.pdf) .

[McK01c] P. E. McKenney, et al.RFC: patch
to allow lock-free traversal of lists with

insertion, LKML, October 2001.
http://www.ussg.iu.edu

/hypermail/linux/kernel/0110.1

/0239.html .

[McK01d] P. E. McKenney, et al.Data
Dependencies and wmb(), LSE, October
2001.
http://lse.sourceforge.net

/locking/wmbdd.html .

[Russell01b] R. Russell.Re: [PATCH for 2.5]
preemptible kernel,
http://www.uwsg.indiana.edu

/hypermail/linux/kernel/0103.3

/1070.html , March 2001.

[Russell01d] R. RussellRe: 2.4.10pre7aa1,
Linux-Kernel Mailing List, September
2001.http://www.ussg.iu.edu

/hypermail/linux/kernel/0109.2

/0021.html .

[Russell02a] R. RussellRe: [PATCH]
per-cpu areas for 2.5.3-pre6,
Linux-Kernel Mailing List, February
2002.http://marc.theaimsgroup.com

/?l=linux-kernel&

m=101255391528359&w=2 .

[Sarma02a] D. Sarma[RFC][PATCH] Ingo’s
smptimers patch experiment,
Linux-Kernel Mailing List, February
2002.http://marc.theaimsgroup.com

/?l=linux-kernel&

m=101301053225522&w=2 .

[Sarma02b] D. Sarma[PATCH] memory
barriers, Linux-Kernel Mailing List,
March 2002.
http://www.ussg.iu.edu

/hypermail/linux/kernel/0203.2

/1604.html .

Ottawa Linux Symposium 2002 360

?

?

?

?

rcu_donelist

rcu_currlist

rcu_nextlist

Invoke Callbacks

End of Grace Period

rcu_currlist Empty

call_rcu() Request

Figure 34: RCU Callback Flow

8 Trademarks

Linux is a trademark of Linus Torvalds.
Pentium and Xeon are trademarks of Intel Corpo-
ration.
IBM and ptx are trademarks of International
Business Machines Corporation.

Appendix

A Implementation Details

These appendices contain more implementa-
tion details of the various algorithms.

A.1 X-rcu Callback Processing

This section describes theX-rcu callback pro-
cessing. The processing proceeds as shown in
Figure 34.

The rcu_process_callbacks() func-
tion shown in Figure 35 handles the over-
all flow. Lines 3–12 move callbacks from
rcu_currlist to rcu_donelist after
the end of a grace period. Line 14 in-
vokes rcu_move_next_batch() (shown

1 static void rcu_process_callbacks(void)
2 {
3 if (!list_empty(
4 &this_cpu(rcu_currlist)) &&
5 RCU_BATCH_GT(rcu_currbatch,
6 this_cpu(rcu_batch))) {
7 list_splice(
8 &this_cpu(rcu_currlist),
9 &this_cpu(rcu_donelist));

10 INIT_LIST_HEAD(
11 &this_cpu(rcu_currlist));
12 }
13
14 rcu_move_next_batch();
15
16 rcu_check_quiescent_state();
17
18 if (!list_empty(
19 &this_cpu(rcu_donelist))) {
20 rcu_invoke_callbacks(
21 &this_cpu(rcu_donelist));
22 }
23 }

Figure 35:X-rcu rcu_process_callbacks()

in Figure 36), which moves callbacks from
rcu_nextlist to rcu_currlist , initi-
ating grace-period detection if needed. Line 16
calls rcu_check_quiescent_state() ,
which checks to see if the current CPU has
passed through a quiescent state since the be-
ginning of the current grace period. Lines 18–
22 call rcu_invoke_callbacks() to in-
voke any callbacks inrcu_donelist .

The rcu_move_next_batch() func-
tion shown in Figure 36 disables local
interrupts (line 3), and then checks to
see if rcu_currlist is empty and
rcu_nextlist is not (lines 4–7). If
so, it moves the contents ofrcu_nextlist
to rcu_currlist (lines 8 and 9), then
re-enables interrupts (line 12). It then obtains
a new RCU batch number (lines 18–19) and
registers it usingrcu_reg_batch() (line
20, see Figure 39 for this function’s definition)
under thercu_lock .

If lines 4–5 find rcu_currlist to be
nonempty, rcu_move_next_batch()
simply re-enables interrupts and returns (line

Ottawa Linux Symposium 2002 361

1 static void rcu_move_next_batch(void)
2 {
3 local_irq_disable();
4 if (!list_empty(
5 &this_cpu(rcu_nextlist)) &&
6 list_empty(
7 &this_cpu(rcu_currlist))) {
8 list_splice(&this_cpu(rcu_nextlist),
9 &this_cpu(rcu_currlist));

10 INIT_LIST_HEAD(
11 &this_cpu(rcu_nextlist));
12 local_irq_enable();
13
14 /*
15 * start the next batch of callbacks
16 */
17 spin_lock(&rcu_lock);
18 this_cpu(rcu_batch) =
19 rcu_currbatch + 1;
20 rcu_reg_batch(this_cpu(rcu_batch));
21 spin_unlock(&rcu_lock);
22 } else {
23 local_irq_enable();
24 }
25 }

Figure 36:X-rcu rcu_move_next_batch()

23).

The rcu_check_quiescent_state()
function shown in Figure 37 checks to see if
the current CPU has gone through a quiescent
state, and, if so, publicizes it.

Lines 6–8 check to see if this CPU has al-
ready passed through a quiescent state during
the current grace period, and, if so, line 6 sim-
ply returns. Lines 17–22 check to see if this
is the first that this CPU has heard of the cur-
rent grace period, and, if so, lines 19–20 take a
snapshot of this CPU’s context-switch counter
in rcu_last_qsctr and returns. Lines 23–
26 check to see if this CPU has passed through
a quiescent state since the snapshot, and, if not,
line 25 simply returns.

Execution reaches line 29 when this CPU
first determines that it has passed through a
quiescent state in the current grace period.
Lines 28–44 publish this fact under the global
rcu_lock , which possibly marks the end of
the current grace period. Line 33 clears this

CPU’s bit in rcu_cpumask , which publi-
cizes the fact that this CPU has passed through
a quiescent state during the current grace pe-
riod. Lines 34–35 setrcu_last_qsctr to
an invalid quantity, which will indicate that this
CPU is not yet aware of the next grace pe-
riod. If there are other CPUs that have not
yet passed through their quiescent states, then
lines 36–41 release thercu_lock and return.
Execution reaches line 42 if this CPU is the
last one to detect that it has passed through a
quiescent state during the current grace period,
which marks the end of the grace period. Line
42 incrementsrcu_currbatch , which sig-
nals the end of the grace period. Line 43 in-
vokesrcu_reg_batch() to initiate a new
grace period if needed, and line 36 releases the
rcu_lock .

Figure 38 shows
rcu_invoke_callbacks() , which sim-
ply loops through the list of callbacks,
invoking each in turn.

Figure 39 showsrcu_reg_batch() , which
publicizes the beginning of a new grace pe-
riod, if needed. Lines 4–7 check to see if
the batch number of the requested grace pe-
riod is larger than that of the largest-numbered
grace period that has been requested thus
far (the RCU_BATCH_LT() macro handles
wraparound). If so, line 6 publicizes the
new maximum batch number. If the largest-
numbered grace period requested thus far has
already completed or if a grace period is cur-
rently in progress, lines 8–12 simply return.
Otherwise, line 13 setsrcu_cpumask to in-
dicate that all CPUs need to pass through a qui-
escent state, which publicizes the start of a new
grace period.

A.2 rcu Callback Processing

Thercu algorithm’s callback processing is very
similar to that of theX-rcualgorithm, shown in

Ottawa Linux Symposium 2002 362

1 static void rcu_check_quiescent_state(void)
2 {
3 int cpu = cpu_number_map(
4 smp_processor_id());
5
6 if (!test_bit(cpu, &rcu_cpumask)) {
7 return;
8 }
9

10 /*
11 * May race with rcu per-cpu tick -
12 * in the worst case
13 * we may miss one quiescent state
14 * of that CPU. That is tolerable.
15 * So no need to disable interrupts.
16 */
17 if (this_cpu(rcu_last_qsctr) ==
18 RCU_QSCTR_INVALID) {
19 this_cpu(rcu_last_qsctr) =
20 this_cpu(rcu_qsctr);
21 return;
22 }
23 if (this_cpu(rcu_qsctr) ==
24 this_cpu(rcu_last_qsctr)) {
25 return;
26 }
27
28 spin_lock(&rcu_lock);
29 if (!test_bit(cpu, &rcu_cpumask)) {
30 spin_unlock(&rcu_lock);
31 return;
32 }
33 clear_bit(cpu, &rcu_cpumask);
34 this_cpu(rcu_last_qsctr) =
35 RCU_QSCTR_INVALID;
36 if (rcu_cpumask != 0) {
37 /* All CPUs haven’t gone
38 through a quiescent state */
39 spin_unlock(&rcu_lock);
40 return;
41 }
42 rcu_currbatch++;
43 rcu_reg_batch(rcu_maxbatch);
44 spin_unlock(&rcu_lock);
45 }

Figure 37:X-rcu rcu_check_quiescent_state()

1 static inline void rcu_invoke_callbacks(
2 struct list_head *list)
3 {
4 struct list_head *entry;
5 struct rcu_head *head;
6
7 while (!list_empty(list)) {
8 entry = list->next;
9 list_del(entry);

10 head = list_entry(entry,
11 struct rcu_head, list);
12 head->func(head->arg);
13 }
14 }

Figure 38:X-rcu rcu_invoke_callbacks()

1 static inline void rcu_reg_batch(
2 rcu_batch_t newbatch)
3 {
4 if (RCU_BATCH_LT(rcu_maxbatch,
5 newbatch)) {
6 rcu_maxbatch = newbatch;
7 }
8 if (RCU_BATCH_LT(rcu_maxbatch,
9 rcu_currbatch) ||

10 (rcu_cpumask != 0)) {
11 return;
12 }
13 rcu_cpumask = cpu_online_map;
14 }

Figure 39:X-rcu rcu_reg_batch()

Appendix A.1. Differences include:

1. rcu must explicitly index into arrays con-
taining per-CPU elements, whileX-rcudi-
rectly accesses the per-CPU data area.

2. rcu’s rcu_process_callbacks()

contains code that clears the current
CPU’s bit fromrcu_active_cpumask .

3. rcu’s rcu_move_next_batch() con-
tains code that sets the current CPU’s bit
in rcu_active_cpumask and schedules
the timer if there are RCU callbacks active
and the timer is not already scheduled.

A.3 rcu-poll Callback Processing

Figure 40 shows the
rcu_prepare_polling() func-
tion. This function relies on
rcu_process_callbacks() (see Fig-
ure 20) acquiring thercu_lock . Lines 12–27
check to see if there are callbacks waiting
in rcu_nxtlist , and, if so, starts a grace
period. Lines 13–14 move the list from
rcu_nxtlist to rcu_curlist . Line 16
records the fact that a grace period is now
in progress. Lines 18–25 mark each CPU

Ottawa Linux Symposium 2002 363

1 static int rcu_prepare_polling(void)
2 {
3 int stop;
4 int i;
5
6 #ifdef DEBUG
7 if (!list_empty(&rcu_curlist))
8 BUG();
9 #endif

10
11 stop = 1;
12 if (!list_empty(&rcu_nxtlist)) {
13 list_splice(&rcu_nxtlist, &rcu_curlist);
14 INIT_LIST_HEAD(&rcu_nxtlist);
15
16 rcu_polling_in_progress = 1;
17
18 for (i = 0; i < smp_num_cpus; i++) {
19 int cpu = cpu_logical_map(i);
20
21 rcu_qsmask |= 1UL << cpu;
22 rcu_quiescent_checkpoint[cpu] =
23 RCU_quiescent(cpu);
24 force_cpu_reschedule(cpu);
25 }
26 stop = 0;
27 }
28
29 return stop;
30 }

Figure 40:rcu-poll rcu_prepare_polling()

(other than the current one) as needing to
go through a quiescent state, take a snapshot
of each CPU’s context-switch counter, and
expedite a context switch. Line 26 indicates
that grace-period polling needs to continue –
if rcu_nxtlist had been empty, polling
would cease until the nextcall_rcu()
invocation.

Figure 41 shows thercu_polling() func-
tion. Lines 6–13 check each CPU that has not
yet been observed passing through a quiescent
state (as indicated by thercu_qsmask
check at line 9) to see if that CPU’s
RCU_quiescent counter has advanced
since the rcu_prepare_polling()
started the current grace period. If it has,
then that CPU has recently passed through
a quiescent state, so line 12 clears its bit
from rcu_qsmask . Line 16 then checks
to see if all CPUs have now passed through

1 static int rcu_polling(void)
2 {
3 int i;
4 int stop;
5
6 for (i = 0; i < smp_num_cpus; i++) {
7 int cpu = cpu_logical_map(i);
8
9 if (rcu_qsmask & (1UL << cpu))

10 if (rcu_quiescent_checkpoint[cpu]
11 != RCU_quiescent(cpu))
12 rcu_qsmask &= ~(1UL << cpu);
13 }
14
15 stop = 0;
16 if (!rcu_qsmask)
17 stop = rcu_completion();
18
19 return stop;
20 }

Figure 41:rcu-poll rcu_polling()

1 static int rcu_completion(void)
2 {
3 int stop;
4
5 rcu_polling_in_progress = 0;
6 rcu_invoke_callbacks();
7
8 stop = rcu_prepare_polling();
9

10 return stop;
11 }

Figure 42:rcu-poll rcu_completion()

their quiescent states. If so, line 17 invokes
rcu_completion() to mark the end of
the grace period. If another grace period
is required, rcu_completion will have
started it, and will then return zero to signal
that grace-period polling should continue.

Figure 42 shows thercu_completion()
function that is invoked at the end of a grace
period. Line 5 records the fact that a grace
period is no longer in progress, line 6 invokes
rcu_invoke_callbacks() to invoke the
callbacks, and line 8 starts a new grace period,
if required.

Figure 43 shows the

Ottawa Linux Symposium 2002 364

1 static void rcu_invoke_callbacks(void)
2 {
3 struct list_head *entry;
4 struct rcu_head *head;
5
6 #ifdef DEBUG
7 if (list_empty(&rcu_curlist))
8 BUG();
9 #endif

10
11 entry = rcu_curlist.prev;
12 do {
13 head = list_entry(entry,
14 struct rcu_head, list);
15 entry = entry->prev;
16
17 head->func(head->arg);
18 } while (entry != &rcu_curlist);
19
20 INIT_LIST_HEAD(&rcu_curlist);
21 }

Figure 43:rcu-poll rcu_invoke_callbacks()

rcu_invoke_callbacks() function.
This is similar to that shown forX-rcu in Fig-
ure 38, but processes a single global list rather
than a per-CPU list, and removes elements
from the list in a slightly different manner.

A.4 rcu-ltimer Callback Processing

This implementation is closest to that in
ptx, and is thus driven from timer han-
dlers, as noted in Section 5.4. The
rcu_process_callbacks() function,
shown in Figure 44 is invoked on every timer
tick to process the per-CPU callback lists. This
function invokesrcu_check_callbacks()

if any of the following are true:

1. There are callbacks inRCU_curlist and
the corresponding grace period has ex-
pired (lines 7–9).

2. There are no callbacks inRCU_curlist ,
but there are some inRCU_nxtlist wait-
ing to start a grace period (lines 10–11).

3. This CPU has not yet passed through a
quiescent state for the current grace period
(line 12–13).

1 static void rcu_process_callbacks(
2 unsigned long data)
3 {
4 int cpu = cpu_number_map(
5 smp_processor_id());
6
7 if ((!list_empty(&RCU_curlist(cpu)) &&
8 RCU_BATCH_LT(RCU_batch(cpu),
9 rcu_ctrlblk.curbatch)) ||

10 (list_empty(&RCU_curlist(cpu)) &&
11 !list_empty(&RCU_nxtlist(cpu))) ||
12 test_bit(cpu,
13 &rcu_ctrlblk.rcu_cpu_mask))
14 rcu_check_callbacks();
15 }

Figure 44:rcu-ltimer rcu_process_callbacks()

Figure 45 showsrcu_check_callbacks()

advances callbacks for the current CPU
through the lists. Lines 7–13 check to see if the
grace period corresponding to callbacks in this
CPU’s RCU_curlist has expired, and, if so,
moves the contents of this list to the local vari-
able list . Lines 15–29 check to see if this
CPU’sRCU_curlist is empty and if there are
callbacks in this CPU’sRCU_nxtlist waiting
to start a grace period, and, if so, moves them
from RCU_nxtlist to RCU_curlist on lines
17–19 and requests a new grace period in lines
24–28. Line 30 then checks to see if this CPU
has passed through a quiescent state. Lines
31–32 invoke any callbacks on local variable
list .

Figure 46 showsrcu_reg_batch() , which
schedules a new grace period if required. Lines
4–7 check to see if the new batch number is
larger than the largest seen thus far, and, if so,
records the new maximum batch number on
line 6. Lines 8–10 check to see if the grace
period corresponding to the largest batch num-
ber has already expired (lines 8–9), or if a grace
period is already in progress (line 10), and, in
either case, simply returns. Otherwise, lines
13–14 record the fact that all CPUs need to go
through a quiescent state for the new grace pe-
riod. As before, theRCU_BATCH_LT()macros
check for batch-number wraparound.

Ottawa Linux Symposium 2002 365

1 static void rcu_check_callbacks(void)
2 {
3 int cpu = cpu_number_map(
4 smp_processor_id());
5 LIST_HEAD(list);
6
7 if (!list_empty(&RCU_curlist(cpu)) &&
8 RCU_BATCH_GT(rcu_ctrlblk.curbatch,
9 RCU_batch(cpu))) {

10 list_splice(&RCU_curlist(cpu),
11 &list);
12 INIT_LIST_HEAD(&RCU_curlist(cpu));
13 }
14
15 if (!list_empty(&RCU_nxtlist(cpu)) &&
16 list_empty(&RCU_curlist(cpu))) {
17 list_splice(&RCU_nxtlist(cpu),
18 &RCU_curlist(cpu));
19 INIT_LIST_HEAD(&RCU_nxtlist(cpu));
20
21 /*
22 * start the next batch of callbacks
23 */
24 spin_lock(&rcu_ctrlblk.mutex);
25 RCU_batch(cpu) =
26 rcu_ctrlblk.curbatch + 1;
27 rcu_reg_batch(RCU_batch(cpu));
28 spin_unlock(&rcu_ctrlblk.mutex);
29 }
30 rcu_check_quiescent_state();
31 if (!list_empty(&list))
32 rcu_invoke_callbacks(&list);
33 }

Figure 45:rcu-ltimer rcu_check_callbacks()

1 static void rcu_reg_batch(
2 rcu_batch_t newbatch)
3 {
4 if (RCU_BATCH_LT(rcu_ctrlblk.maxbatch,
5 newbatch)) {
6 rcu_ctrlblk.maxbatch = newbatch;
7 }
8 if (RCU_BATCH_LT(rcu_ctrlblk.maxbatch,
9 rcu_ctrlblk.curbatch) ||

10 (rcu_ctrlblk.rcu_cpu_mask != 0)) {
11 return;
12 }
13 rcu_ctrlblk.rcu_cpu_mask =
14 cpu_online_map;
15 }

Figure 46:rcu-ltimer rcu_reg_batch()

Figure 47 shows how
rcu_check_quiescent_state() checks
that the current CPU has passed through a qui-
escent state since the beginning of the current
grace period. Lines 6–9 check to see if this
CPU has already passed through a quiescent
state, and, if so, simply returns. Lines 19–20
checks to see if this CPU is unaware of the
current grace period, and, if so, snapshots the
current quiescent-state counter on lines 21–22
and then returns. Lines 25–28 checks to see if
this CPU has passed through a quiescent state
since it became aware of the current grace
period, and, if not, simply returns. Execution
reaches line 30 the first time that this CPU
realizes that it has passed through a quiescent
state since it became aware of the current grace
period. Lines 36 and 37 publish the fact that
this CPU has passed through a quiescent state.
Lines 38–41 check to see if this is the last CPU
to pass through a quiescent state, thus ending
the grace period, and returning if not. Line 42
publicizes the end of the grace period, and line
43 invokesrcu_reg_batch() to start a new
grace period, if one is needed.

B Memory Ordering Issues

This paper has heretofore focused on lock-free
search on lists subject to concurrent deletion.
Insertion poses additional problems on systems
with very weak memory ordering, as noted in
recent discussions on LKML [McK01c]. This
appendix focuses on these problems and some
solutions.

Some of these problems may be addressed by
using thewmb() primitive as shown on line
9 of Figure 48. Thiswmb() guarantees that
the element initialization in lines 6–8 is not ex-
ecuted before the element is added to the list
on line 10. On many (but not all) CPUs, this
is sufficient, and the lock-free search on lines
14–26 will then operate correctly.

Ottawa Linux Symposium 2002 366

1 static void rcu_check_quiescent_state(void)
2 {
3 int cpu = cpu_number_map(
4 smp_processor_id());
5
6 if (!test_bit(cpu,
7 &rcu_ctrlblk.rcu_cpu_mask)) {
8 return;
9 }

10
11 /*
12 * Races with local timer interrupt -
13 * in the worst case
14 * we may miss one quiescent state
15 * of that CPU. That is
16 * tolerable. So no need
17 * to disable interrupts.
18 */
19 if (RCU_last_qsctr(cpu) ==
20 RCU_QSCTR_INVALID) {
21 RCU_last_qsctr(cpu) =
22 RCU_qsctr(cpu);
23 return;
24 }
25 if (RCU_qsctr(cpu) ==
26 RCU_last_qsctr(cpu)) {
27 return;
28 }
29
30 spin_lock(&rcu_ctrlblk.mutex);
31 if (!test_bit(cpu,
32 &rcu_ctrlblk.rcu_cpu_mask)) {
33 spin_unlock(&rcu_ctrlblk.mutex);
34 return;
35 }
36 clear_bit(cpu, &rcu_ctrlblk.rcu_cpu_mask);
37 RCU_last_qsctr(cpu) = RCU_QSCTR_INVALID;
38 if (rcu_ctrlblk.rcu_cpu_mask != 0) {
39 spin_unlock(&rcu_ctrlblk.mutex);
40 return;
41 }
42 rcu_ctrlblk.curbatch++;
43 rcu_reg_batch(rcu_ctrlblk.maxbatch);
44 spin_unlock(&rcu_ctrlblk.mutex);
45 }

Figure 47: rcu-ltimer
rcu_check_quiescent_state()

1 struct el *insert(long key, long data)
2 {
3 struct el *p;
4 p = kmalloc(sizeof(*p), GPF_ATOMIC);
5 spin_lock(&mutex);
6 p->next = head.next;
7 p->key = key;
8 p->data = data;
9 wmb();

10 head.next = p;
11 spin_unlock(&mutex);
12 }
13
14 struct el *search(long key)
15 {
16 struct el *p;
17 p = head.next;
18 while (p != &head) {
19 /* BUG ON ALPHA!!! */
20 if (p->key == key) {
21 return (p);
22 }
23 p = p->next;
24 };
25 return (NULL);
26 }

Figure 48: Insert and Lock-Free Search

However, some CPUs, such as Alpha, have ex-
tremely weak memory ordering such that the
code on line 20 of Figure 48 could see the old
garbage values that were present before the ini-
tialization on lines 6–8.

Figure 49 shows how this can happen on an
aggressively parallel machine with partitioned
caches, so that alternating caches lines are pro-
cessed by the different partitions of the caches.
Assume that the list headerhead will be pro-
cessed by cache bank 0 and that the new el-
ement will be processed by cache bank 1.
On Alpha, thewmb() will guarantee that the
cache invalidates performed by lines 6–8 of
Figure 48 will reach the interconnect before
that of line 10 does, but makes absolutely no
guarantee about the order in which the new
values will reach the reading CPU’s core. For
example, it is possible that the reading CPU’s
cache bank 1 is very busy, but cache bank 0
is idle. This could result in the cache inval-
idates for the new element being delayed, so
that the reading CPU gets the new value for the

Ottawa Linux Symposium 2002 367

(w)mb Sequencing

Cache
Bank 0

Cache
Bank 1

Writing CPU Core

(w)mb Sequencing

Cache
Bank 0

Cache
Bank 1

Reading CPU Core

6
Interconnect

Figure 49: Why rmb() is Required

pointer, but sees the old cached values for the
new element. See Compaq’s Alpha documen-
tation [Compaq01] for more information, or if
you think we are just making all this up.

This can be fixed in an implementation-
independent manner by inserting anrmb()
between the pointer fetch and dereference, as
shown on line 19 of Figure 50. However,
this imposes unneeded overhead on systems
(such as i386, IA64, PPC, and SPARC) that
respect data dependencies on the read side.
A read_barrier_depends() primitive has
been proposed to eliminate overhead no these
systems [Sarma02b]. It is also possible to im-
plement a software barrier that could be used in
place ofwmb() , which would force all read-
ing CPUs to see the writing CPU’s writes in
order[McK01d]. However, this approach is
deemed to impose excessive overhead on ex-
tremely weakly ordered CPUs such as Alpha.7

For the moment,rmb() should be used on
lock-free code paths traversing lists subject to
concurrent insertion.

7CPUs that respect data dependencies would define
such a barrier to simply bewmb() .

1 struct el *insert(long key, long data)
2 {
3 struct el *p;
4 p = kmalloc(sizeof(*p), GPF_ATOMIC);
5 spin_lock(&mutex);
6 p->next = head.next;
7 p->key = key;
8 p->data = data;
9 wmb();

10 head.next = p;
11 spin_unlock(&mutex);
12 }
13
14 struct el *search(long key)
15 {
16 struct el *p;
17 p = head.next;
18 while (p != &head) {
19 rmb();
20 if (p->key == key) {
21 return (p);
22 }
23 p = p->next;
24 };
25 return (NULL);
26 }

Figure 50: Safe Insert and Lock-Free Search

The Linux Kernel Device Model

Patrick Mochel
Open Source Development Lab

mochel@osdl.org

Abstract

Linux kernel development follows a simple
guideline that code should be only as complex
as absolutely necessary. This design philoso-
phy has made it easy for thousands of people
to contribute code, especially in the realm of
device drivers: the kernel supports hundreds of
devices on over a dozen peripheral buses.

This bottom-up approach to development has
provided a great deal of benefit for users of typ-
ical systems in the last decade. However, as
Linux progresses into new niches and more re-
quirements are imposed on operating systems
of modern hardware, lack of unification among
device subsystems poses some serious road-
blocks.

The new Linux Device Model (LDM) is an ef-
fort to provide a set of common interfaces for
device subsystems to use. This foundation is
intended to enhance the kernel’s support for
modern platforms and devices, which require
a more unified approach to devices.

This paper discusses the attributes of the LDM
and the issues they are designed to resolve.
It describes the interfaces in a bottom-up ap-
proach; in the same manner in which they were
devloped. It also discusses the current progress
of the effort, and some potential uses of it in the
future.

1 Introduction

The LDM was initially motivated by a single
goal: to provide a global device tree that could
be used to suspend and resume all devices in a
computer during system sleep transitions.

Figure 1 show how all devices in a computer
connected. Like devices are grouped on a bus.
Buses are linked together via bridge devices.
All physical devices can be represented via a
single tree structure. This tree structure can be
walked to provide proper suspend and resume
sequences.

Kernel device subsystems have been developed
to concisely represent devices of a particular
physical type. Because of this, and because
of the vast number of physical configurations
possible, there is little data or code shared be-
tween subsystems. Figure 2 shows how the
PCI device hierarchy is represented internally.
Though the PCI tree is physically connected
to other devices, this hierarchy is autonomous
with regard to other internal device representa-
tions.

2 The Linux Device Model Core

In order to construct a global device tree, a
common device structure was created to rep-
resent each physical device in the system.
Listing 1 includes the definition ofstruct
device , which is the minimum set of data
necessary to describe each device in the sys-

Ottawa Linux Symposium 2002 369

CPU

PIC

Host-PCI
Bridge

Video

Audio
USB Host

Controller

Keyboard

Mouse
IDE

Serial

Floppy

ISA
Bridge

Figure 1: Physical Device Topology

Host-PCI
Bridge

Video
Audio IDE ISA

BridgeUSB Host
Controller

Figure 2: Kernel Repesentation of PCI Topol-
ogy

struct device_driver {
char * name;
list_t node;
int (*probe) (struct device * dev);
int (*remove) (struct device * dev,

u32 flags);
int (*suspend)(struct device * dev,

u32 state, u32 level);
int (*resume) (struct device * dev,

u32 level);
};

struct device {
list_t g_list;
list_t node;
list_t bus_node;
list_t children;
struct device * parent;

char name[DEVICE_NAME_SIZE];
char bus_id[BUS_ID_SIZE];

spinlock_t lock;
atomic_t refcount;

struct device_driver * driver;
void * driver_data;

};

int device_register(struct device
*dev);

/* device reference counting */
void get_device(struct device *dev);
void put_device(struct device *dev);

/* device-level locking */
void lock_device(struct device *dev);
void unlock_device(struct device

*dev);

Listing 1: The Device Model Core

Ottawa Linux Symposium 2002 370

tem. It contains little detail about the physi-
cal attributes of the device, but provides proper
linkage information and support for device-
level locking and reference counting.

System bus drivers allocate a device struc-
ture for each physical device discovered when
probing. The bus driver is responsible for ini-
tializing the bus_id and parent fields of
the device and registering the device with the
LDM core. The LDM core will then initialize
the other fields of the device and add it to the
device hierarchy.

Device Reference Counting

The LDM core exports device reference count-
ing primitives

get_device , which increments the refer-
ence count, andput_device , which decre-
ments it. When the reference count reaches 0,
it is removed from the device hierarchy and the
remove callback of its driver is called to free
resources.

The LDM core does not export an interface
to explicitly unregister the device. Instead, it
relies on reference counting to handle proper
garbage collection and removal from the global
hierarchy.

The device reference count is initialized to 2 in

device_register . It is decremented to
1 when the function exits, leaving the device
structure pinned in memory.

Device Locking

The LDM core exports simple primitives to
provide device-level locking. The current im-
plementation is a simple spinlock, though this
is abstracted from the caller should the type of
lock change (e.g. to a semaphore or R/W lock).

Device Drivers

A global device hierarchy allows each device
in the system to be represented in a com-
mon way. This allows the core to easily walk
the device tree to do such things as prop-
erly ordered power management transitions.
struct device_driver in Listing 1 de-
fines a simple set of operations for the core to
perform these actions on each device.

The suspend and resume callbacks pro-
vide power management functionality. The
remove callback is called to logically remove
the device from the system. It is called when
the device reference count reaches 0, or during
system reboot to quiesce all the devices in the
system.

probe is called when attemptingto bind a
driver to a device. This callback is currently
unused since driver binding currently happens
solely at the bus driver level.

Currently, many bus drivers define a driver
similar to this. Instead of converting every de-
vice driver to use this common structure, bus
drivers implement only one instance of this
common structure and bind it to each device
discovered. This generic driver then forwards
calls to the bus-specific driver. This solution
is an interim one only; eventually each driver
will use this common structure and register it-
self with the LDM core instead of a bus.

3 Completing the Device Tree

The Device Model core was designed to explic-
itly support the semantics of modern peripheral
buses and their drivers, such as PCI and USB.
These bus drivers have well-defined and ma-
ture methods for discovering devices and rep-
resenting them locally in a tree-like manner.
Because the LDM was based on the existing
data and behavior of these bus drivers, convert-

Ottawa Linux Symposium 2002 371

Host-PCI
Bridge

Audio IDE ISA
Bridge

USB Host
Controller

Root

Video

KeyboardMouse

Figure 3: Device Hierarchy with Logical Root
Device

ing them to the generic interface typically only
involves modifying references to bus-specific
structures to generic structures.

There is no common peripheral bus for many
of the devices in the system. These devices are
referred to as either “platform” devices, includ-
ing Host-Peripheral Bus bridges and legacy de-
vices; or “system” devices, including CPUs
and interrupt controllers. The Linux drivers for
these devices represent this logical autonomy.

To complete a global hierarchial representa-
tion, these devices must be also be represented.
The global hierarchy thus needs some com-
mon, top-level entry point.

Device Root

Referring to the figure of device topology, it is
apparent that devices are arranged in an acycli-
cal graph, though not necessarily a tree. The
kernel bus drivers map subsets of this graph
into local tree structures with an explicit root
node: the bridge device to the bus. The global
hierarchy binds the local trees into one global
tree.

Root buses (e.g. root PCI buses) do not have
upstream bridges to other peripheral buses. As
such, they do not have an explicit parent, and
create a forest of devices, instead of one unified
tree.

To bind all the devices together, the LDM core
creates a logical root device that is the ancestor
of all devices in the hierarchy. It is statically
allocated and initialized when the LDM core is
initialized. Buses that have no obvious parent
are registered as children of this device. Fig-
ure 3 shows the logical device root and the its
relation to the hierarchies of peripheral buses.

Platform Devices

Platform devices are all devices that are phys-
ically located on the system board. This in-
cludes all legacy devices and host bridges to
peripheral buses. host-peripheral bridges are
typically not represented in the kernel as de-
vices on a bus; only as parent devices to buses.

These devices appear as autonomous devices in
the system responding to I/O requests on hard-
coded ports. Drivers for these devices perform
device discovery and immediately bind to the
devices. These differ from modern bus drivers
which perform device discovery in a separate
stage than driver binding.

In many modern systems, the system firmware
provides information about the devices in the
system, often enumerating all of the platform
devices. The OS can use this information
in lieu of probing legacy I/O ports on plat-
forms that do not support them.To support this
firmware enumeration, drivers for platform de-
vices must be taught to use the firmware data
for discovery rather than their legacy methods.

Instead of creating special cases in the platform
drivers for every firmware discovery mecha-
nism, the method of device discovery is decou-
pled from the driver binding; legacy probing

Ottawa Linux Symposium 2002 372

becomes only one method of device discovery.

struct platform_device {
list_t node;
char name[BUS_ID_SIZE];
u32 instance;
struct device device;

};

int platform_add_device(
struct device * parent,
char * busid,
u32 instance);

struct platform_driver {
char * name;
list_t node;

};

int platform_register_driver(
struct platform_driver * drv);

Listing 2: The platform bus interface

To implement this, a “platform” bus driver
is created to manage platform devices and
drivers. As platform devices are discovered,
via legacy probing or via a firmware driver, it
is added to the bus’s list of devices. As drivers
are loaded, they register with the bus, and it
attempts to bind them to specific devices. List-
ing 2 lists the interfaces to the platform bus.

Firmware enumeration usually knows the
proper ancestral ordering of the devices, so the
device is added in the proper location in the
hierarchy. Legacy probing usually does not,
though it is not necessary to add any special
cases for those devices.

Platform devices are of two types: host-
peripheral bridges and legacy devices.
Bridges do not have parent devices, so
it is valid to pass a NULL parent to
platform_add_device . Figure 3
displays the logical relationship between
the device root and the Host-PCI bridge;
platform_add_device is the means for
representing that relationship in the kernel.

Root

CPU PIC

Serial
Floppy

Legacy
"Bridge"

System
"Bridge"

Figure 4: Logical Legacy and System Buses

Legacy Devices

Legacy devices usually do have a parent,
though it is difficult to infer exactly who
it is when legacy probing is used for dis-
covery. Rather than attempt to guess, a
logical “legacy bridge” is created to act
as surrogate parent for all legacy devices.
To register as a legacy device, a driver
uses legacy_add_device , which inter-
nally calls platform_add_device , the
legacy bridge as the parent.

int legacy_add_device(char * busid,
u32 instance);

Listing 3: Legacy device interface

System Devices

System devices are devices integral to the func-
tion of the computer, such as CPUs, APICs,
and memory banks. These devices do not
follow traditional Unix read/writesemantics.
They do have attributes though, and most have
drivers exporting sort of interface to the rest
of the kernel and userspace. However, there
are no common bus-level semantics for com-
municating with the set of system devices as a
whole.

It is desirable to group these devices for log-
ical organization. To do this, a logical bus

Ottawa Linux Symposium 2002 373

represents the bus that the system devices re-
side on. Similar to legacy devices, a logical
bridge device is created to parent system de-
vices. Devices are added to the system bus
usingsystem_add_device . Figure 4 dis-
plays the hierarchy of the logical buses, and
their relationship to the device root.

int system_add_device(char * busid,
u32 instance);

Listing 4: System device interface

4 The User Interface: driverfs

During the early development stages of the De-
vice Model, a debugging aid was desired to test
various aspects of the code. A device tree, it
turns out, maps nicely to a filesystem directory
structure.

The device tree was initially exported to
userspace using theprocfsfilesystem. A new
filesystem, driverfs, was soon created to
specifically represent the devices.driverfs is a
simple filesystem based onramfs. It is initial-
ized when the LDM core is initialized, and can
be mounted anywhere in filesystem hierarchy.

When registered, every devicehas adriverfs
directory created on its behalf. It is created
in its parent’s directory, representing the phys-
ical topology. The name of the directory is the
struct device::bus_id field .

Exporting Device Attributes

The device directories can be populated with
files to export device and driver attributes to
userspace. These attributes can be accessed us-
ing standard thereadand write system calls.

Attributes can be added at any level. The LDM
core adds three default files:name, power,
and status. Upon device discovery, the bus

drivers may add files to export bus-specific at-
tributes. When a driver is bound to a device,
it may add files to export device-specific at-
tributes.

struct driver_file_entry {
struct driver_dir_entry * parent;
struct list_head node;
char * name;
mode_t mode;
struct dentry * dentry;

ssize_t (*show)(struct device
* dev,
char * buf,
size_t count,
loff_t off);

ssize_t (*store)(struct device
* dev,
const char * buf,
size_t count,
loff_t off);

};

int
device_create_file(struct device

*device,
struct driver_file_entry * entry);

Listing 5: driverfs interface

Listing 5 shows thedriver_file_entry
object, which is how driverfs files are repre-
sented. Theshow callback is called when a
user reads from a file. Thestore callback is
called when a user writes to a file.

To create a file, a caller statically declares a
driver_file_entry object and initialize
the name, mode, show andstore fields of
it. device_create_file is used to add
the file to the device’s directory.

The LDM core clones the
driver_file_entry structure by al-
locating a new structure of that type and
copying the object passed in. This allows
the caller to reuse the same file description
to create files for multiple devices without

Ottawa Linux Symposium 2002 374

having to manually allocate and initialize each
instance.

Operation

The driverfs core stores a pointer to the
driver_file_entry structure in the pri-
vate data fields of the VFS objects representing
the file. From this pointer, thedriverfscore can
obtain the pointer to the device structure. This
pointer is then referenced on read and write op-
erations.

During a read operation,driverfs allocates a
page-sized buffer and passes the buffer pointer
to it to the show callback. The driver fills
the buffer and returns. It is then copied to
userspace.

When the file is written to,driverfs allocates
another page-sized buffer and fills it with data
copied from userspace. It passes the buffer
pointer to thestore callback of the driver,
which consumes the data.

File Format

The preferred contents ofdriverfsfiles is one
ASCII-encoded value per file. Although these
preferences are not enforced, maintaining this
standard has several usability advantages:

• A user can read from and write to the file
using cat and echo; tools found on any
Linux distribution.

• Coordination between kernel drivers and
user space consumers becomes easier;
there is no proprietary format for each file.

• A file’s contents are obvious to a com-
mand line user.

• A file’s contents are obvious to a program-
mer looking at the driver source code.

• It eases creation of automated tools to
export device attributes in a more user-
friendly manner (i.e. via a GUI).

5 Bus Drivers

struct bus_type {
char * name;
list_t node;
spinlock_t lock;
list_t devices;
list_t drivers;

};

int bus_register(
struct bus_type * bus);

void bus_unregister(
struct bus_type * bus);

int driver_register(
struct device_driver * drv);

void driver_unregister(
struct device_driver * drv);

Listing 6: Bus driver interface

At the time of this writing, most LDM develop-
ment is concentrated on creating a generic bus
type object and set of operations to operate on
this type. Listing 6 defines a structure to wrap
attributes common across all buses. Consoli-
dating bus data affords the creation of generic
routines to manipulate that data.

Bus drivers typically maintain a list of all de-
vices on all buses of their type. This allows for
easy searches of devices when binding drivers.
Insertion into this list can happen when the bus
driver callsdevice_register() for a de-
vice.

Device drivers register with their bus, which
insert the driver into an internal list and at-
tempt to bind it with every present device.
Drivers can instead be taught to use only the
genericstruct device_driver and reg-
ister with the LDM core.This would insert the

Ottawa Linux Symposium 2002 375

driver in the bus’s list of drivers, then attempt
to bind the driver to the devices on that partic-
ular bus (by calling the driver’s probe callback
for each device).

Device insertion at runtime requires register-
ing a device with the bus and attempting to
bind a known driver to it. A userspace agent
(/sbin/hotplug) is executed to finish configur-
ing the device.

Hotplug insertion events are nearly identical to
device discovery when a bus is initially probed,
though no buses attempt to bind drivers to de-
vices when they are initially discovered. Driver
binding can be coupled to device discovery
when the bus is probed, making all device dis-
coveries appear as hotplug events. With cen-
tralized lists to manage devices and drivers,
this binding can take place when the device is
registered with the LDM core.

Many buses do not do locking on their internal
lists or reference counting on their devices and
drivers. By centralizing the list manipulation
routines, proper locking and reference count-
ing can be guaranteed for all buses.

driverfsexports an accurate physical represen-
tation of the device hierarchy. It is difficult to
navigate, though, since devices can be buried
under several obscure directories. By centrally
managing bus lists, devices and drivers can
easily be added to a driverfs directory owned
by the bus.

Conclusion

The Linux Device Model is an effort to con-
solidate data and interfaces from the many dis-
parate device and driver models in the Linux
kernel today. It allows the kernel to do things
never possible before, like proper power man-
agement and shutdown sequences. It provides
common infrastructure to guarantee proper

locking, reference counting, and handling of
hotplug events for all bus types.

LART Lessons Learned: cpufreq

J.A.K. (Erik) Mouw, Koen Langendoen, Johan Pouwelse
UbiCom program

Delft University of Technology
PO BOX 5031, 2600 GA Delft, The Netherlands

{erik,koen,pouwelse}@ubicom.tudelft.nl

Abstract

In order to run as long as possible on a single
battery, battery-powered computers need to be
efficient. A large part of that efficiency can
be gained by using low-power hardware, but
software can also help to reduce power con-
sumption. One way to do that is to let the OS
control the CPU frequency and core voltage.
This paper will explain the backgrounds of
power consumption in CPUs and how clock
and voltage scaling can help to decrease the
power consumption. It will show the current
Linux implementation (cpufreq) and compare
it with other implementations.

1 Introduction

The Mobile Multimedia Communications
project (MMC, 1996 – 2000)[MMC] and
the Ubiquitous Communications program
(UbiCom, 1998 – 2002)[UbiCom] at the Delft
University of Technology are two related
projects that research high data rate cellular
networks. The MMC project focused on
multimedia communication protocols and
applications (text, audio, video) for mobile
use, while the UbiCom program extended this
to augmented reality and wearable computer
systems. Both projects needed a mobile
computer platform to test their theories. This

platform had to be small, low power, powerful,
affordable, and extendible. To solve the ten-
sion between these requirements, the emphasis
was put on best computing power per watt.
Unfortunately there was not such a computer
platform available on the market around
1997, so MMC project members decided to
design such a system themselves: the Linux
Advanced Radio Terminal (LART)[LART].

2 LART

The LART is build around the Intel Stron-
gARM SA-1100 CPU, an embedded processor
with an excellent power/MIPS ratio and a large
set of built-in peripherals[SA-1100]. The CPU
normally runs at 221 MHz, at which speed it
delivers a performance comparable to an In-
tel Pentium 200. The SA-11x0 CPU family is
well supported by the Linux operating system,
and the mature userland utilities (gcc, etc.) and
openness of Linux allows for easy integration
of special purpose device drivers.

Figure 1 shows the LART processor board
(7.5×10 cm), holding the CPU, 32 MB of EDO
DRAM, 4 MB of Flash boot ROM, a connector
for two (simple) serial ports, a JTAG debug in-
terface connector, a high-speed extension con-
nector and a low-speed extension connector (at
the back of the board). The complete LART
processor board weighs only 50 g.

Ottawa Linux Symposium 2002 377

Figure 1:LART processor board

An extension board known as the Kitchen Sink
Board (KSB) can be connected and provides a
PS/2 interface (2×) for keyboard and mouse,
USB client interface, IrDA infra-red link, IDE
disk interface, stereo 16 bit 48 kHz audio out-
put, mono 12 bit 26 kHz audio I/O (speakers
and microphone), telephony interface, touch
panel interface, and an LCD interface. Both
the LART and the KSB design files are avail-
able under an open license allowing everybody
to build boards for themselves or even improve
the designs.

At full CPU utilization the processor board
consumes about 1 W, which allows it to run for
several hours from a single 4.5 V battery. How-
ever, the LART design was flexible enough that
frequency and voltage scaling could be added
at a later stage. This allows the CPU to run
at lower frequencies and voltages thereby sav-
ing energy. The amount of energy saved de-
pends on the type of application: applications
with different CPU load patterns yield different
amounts of energy savings. This paper will fo-
cus on the Linux implementation of frequency
and voltage scaling, Pouwelse et. al. discuss
the power saving techniques for different kinds
of workloads[Pouwelse].

3 Frequency and voltage scaling

To understand the advantages of frequency
and voltage scaling, we will first discuss the
theory behind it. Digital CMOS (Comple-
mentary Metal-Oxide Semiconductor) circuits
as used in the majority of modern micropro-
cessors have both static and dynamic power
consumption[Pouwelse][Burd][Ishira]. The
static power consumption is caused by bias and
leakage currents, and can usually be ignored
for designs that consume more than 1 mW of
power.

The dynamic power consumption is caused by
the logic transactions of the gates in the digital
circuit: every charge and subsequent discharge
of the gate capacitance drains power. The dy-
namic power consumption can be modeled by

Pdynamic =
N∑

i=1

Ci · fi · V 2
DD (1)

whereN is the total number of gates in the cir-
cuit, Ci the load capacitance of gategi, fi the
switching frequency of gategi, andVDD the
supply voltage. Equation 1 clearly shows that
lowering VDD yields the largest reduction in
power. However, reducingVDD will increase
the circuit delay, which can be described by

τ ∝ VDD

(VG − VT)2
(2)

whereτ is the propagation delay of the CMOS
transistor,VT the threshold voltage, andVG

the input gate voltage. The propagation de-
lay restricts the maximum clock frequency for
any clock driven digital CMOS circuit. Equa-
tions 1 and 2 show there is a trade-off between
switching frequency and supply voltage: dig-
ital CMOS circuits (and hence microproces-
sors) can only operate at a lower supply voltage

Ottawa Linux Symposium 2002 378

when the clock frequency is lowered to com-
pensate for the increased propagation delay.

Equation 1 can be simplified by assuming that
all gatesgi create a collective switching capac-
itanceC operating at a common switching fre-
quencyf :

P = α · C · f · V 2
DD (3)

This equation shows that lowering the clock
frequency linearly decreases power, but that
voltage reduction results in a squared power re-
duction. Figure 2 illustrates this conclusion for
a LART running a CPU intensive workload at
various clock frequencies.

0

100

200

300

400

500

600

700

800

 74 103 133 162 192 221

po
w

er
 c

on
su

m
pt

io
n

[m
W

]

clock frequency [MHz]

fixed voltage

scaled voltage

Figure 2: Total power consumption for a LART
running a CPU intensive workload

An important observation is that frequency
scaling alone only savespower, but notenergy.
Running a task at a decreased clock frequency
makes that it takes longer to complete that par-
ticular task. The task completion time is pro-
portional to1/f , and hence the total energy
consumed remains the same. Combining fre-
quency scaling with voltage scaling will save
powerand energy becauseVDD can be scaled
with respect tof .

4 Implementation

To exploit the potentials of frequency and volt-
age scaling, we implemented it on our LART
computer platform. The LART frequency and
voltage scaling consists of a hardware and soft-
ware part. The SA-1100 natively supports fre-
quency scaling: the clock frequency can be set
in 15 MHz steps from 58 to 221 MHz. It does
not, however, support voltage scaling. There-
fore the LART design includes additional cir-
cuitry to control the core voltage supply.

A

D

Core Voltage
Regulator

Core

SA1100

GPIO

Vcore

Figure 3:LART voltage scaling hardware

Figure 3 shows how the CPU controls the core
voltage: eight General Purpose I/O (GPIO)
pins are used to set the output voltage of an
8 bit digital to analog converter (DAC), which
on its turn controls the core voltage regulator.
The core voltage is thus completely software
controlled, and there are a couple of hardware
safety measures to prevent the CPU from ex-
posing itself to excess voltages.

The SA-1100 is an embedded CPU and among
its built-in interfaces is a memory controller,
which should be programmed to generate the
necessary waveforms for the memory con-
nected to the system (e.g. SRAM and DRAM).
This memory controller is directly driven by
the core frequency oscillator, so it has to be

Ottawa Linux Symposium 2002 379

reprogrammed at each clock speed change.
The SA-1100 is special in that it needs soft-
ware to reprogram the core voltage and mem-
ory settings: most other CPUs have external
memory controllers independent of the CPU
frequency and hardware controlled core volt-
age regulators. Figure 4 shows the order of
events that have to happen when increasing
the clock speed. Decreasing the clock speed
reverses the order: decrease clock speed, de-
crease core voltage, tighten memory settings.
When switching to a higher clock speed, the
generated memory waveforms are too wide
for the current frequency speed and hence de-
crease the available memory bandwidth. How-
ever, this situation only exists for such a small
amount of time that it does not decrease the
system performance.

low frequency

relax memory timings

increase core voltage

increase clock speed

high frequency

Figure 4: Order of execution for switching to a
higher clock speed

The initial Linux driver for the LART clock
and voltage scaling hardware exactly followed
the procedure depicted in Figure 4. The
switching was controlled from a file in the

/proc file system: in this way the mechanism
was implemented in the kernel, while the pol-
icy of whento change clock speed could be im-
plemented in userland. The initial implementa-
tion worked well for a simple system with only
the LART processing board, but it did not have
enough flexibility to support a LART system
with more hardware (like hard disk, PCMCIA
interface, etc.), or a system build around a dif-
ferent kind of CPU.

5 Cpufreq

Quite some kernel drivers depend on the
udelay() function for timed access to hard-
ware. For the ARM family, this func-
tion is implemented as a busy wait that
uses the loops_per_jiffy variable to
check if the requested number of micro
seconds already passed. The value of
the loops_per_jiffy variable is derived
during the famousCalibrating delay loop
event when the kernel boots. Because
loops_per_jiffy depends on the CPU
frequency, it needs to be adjusted after a speed
change. Fortunately the variable does not need
to be recalibrated: it is directly proportional to
the CPU frequency so it can be calculated.

When frequency and voltage scaling support
for several 80x86 CPUs was added, it became
clear that those CPUs use a timer independent
from the CPU core frequency to calculate the
amount of time to be spend inudelay() .
Also, these CPUs did not need to reprogram
their memory controller. Therefore, Russell
King designed a flexible framework for clock
and voltage scaling: cpufreq [Cpufreq].

Cpufreq separates the act of changing the
CPU speed from the other measures that have
to be taken upon a speed change. At ker-
nel initialization, the CPU dependent driver
needs to register itsvalidatespeed() and

Ottawa Linux Symposium 2002 380

setspeed() functions with cpufreq. All
other hardware drivers that depend on the
CPU frequency also need to register them-
selves with cpufreq so they can be notified
for speed changes. A 80x86 cpufreq driver
only need to register itsvalidatespeed()
and setspeed() functions, while the SA-
1100 driver also has to register the func-
tions that change the memory timings. The
value of loops_per_jiffy is automati-
cally changed by cpufreq; it is not neces-
sary for 80x86 CPUs, but it is nice that
/proc/cpuinfo gives an indication of the
current CPU speed, even though it is a bogus
one.

Old speed

Query drivers about upcoming speed change

Adjust requested speed

Notify drivers speed will change

Change CPU speed

Notify drivers speed has changed

New speed

Figure 5:Cpufreq order of execution

Figure 5 shows the cpufreq order of execu-
tion at a CPU speed-change request. First of
all, all registered drivers are queried about the
speed range they can tolerate. A driver that
for some reason (like the SA-1100 LCD con-
troller that needs a certain amount of band-
width) currently can’t accept a speed range can
limit the requested range to the range it is able
to handle. If the new CPU frequency is out
of the range the drivers can currently tolerate,
it is adjusted to fall within the range. The
drivers are then notified about the upcoming

CPU speed change, so they can decide to adjust
certain parameters. For example: when going
to a faster speed, the SA-1100 memory driver
will relax the memory timings. Next, the CPU
speed will be changed to the requested value
using the CPUsetspeed() function. After
that, all drivers will be notified that the CPU
speed has changed, so they can adjust their
parameters. For example: when going to a
slower speed, the SA-1100 memory driver will
tighten the memory timings. This completes
the speed change and the system can continue
to do whatever it was doing before the speed
change. Again, the kernel only implements the
switching mechanism; the policy can be con-
trolled through a sysctl interface by a userland
process.

6 Discussion

The flexible cpufreq framework supports
StrongARM SA-1100, StrongARM SA-1110,
ARM Integrator, VIA Longhaul, AMD Elan,
AMD PowerNow K6, and Intel SpeedStep,
while work is underway to add support for
AMD PowerNow K7. The current cpufreq im-
plementation is stable and scheduled to be in-
cluded in Linux-2.5. Following the Unix de-
sign rules, cpufreq only implements themech-
anismto change the CPU speed; thepolicy of
when to change speed is left to userland.

A simple userland scheduler that changes the
CPU speed by observing the CPU idle time
works nice for most workloads, but it breaks
down at bursty real-time tasks like real-time
video decoding. The CPU speed scheduler
will select a low clock frequency when the
video decoder decodes low-complexity frames,
but it will be too late to select a high clock
frequency when the video decoder encounters
a high-complexity frame. As a result, the
frame will be decoded too late which will be
visible to the user. The CPU speed sched-

Ottawa Linux Symposium 2002 381

uler can also decide to select a high clock
frequency so all frames will be completed in
time, but in this case the CPU will waste en-
ergy. Pouwelse et. al. show that a power
aware video decoder is able to combine close-
to-optimal energy savings with real-time de-
coding performance[Pouwelse2][Pouwelse3].

7 Related work

There are two software frameworks for CPU
power management. Advanced Power Man-
agement (APM)[APM] is an older standard
still widely in use that allows the CPU to en-
ter a low power state when executing the idle
loop. APM only implements an on/off power
savings approach: intermediate power saving
levels are not available, even when the CPU is
able to switch to multiple performance levels.

The Advanced Configuration and Power Inter-
face (ACPI)[APCI] is the successor of APM.
ACPI has a fine-grained CPU power manage-
ment interface that can be controlled by the
OS. Unfortunately, the standard also allows the
ACPI BIOS to control the CPU speed without
notifying the OS thereby removing the abil-
ity for userland scheduling tools to control the
CPU speed policy. Another disadvantage of
ACPI is that it depends on the BIOS imple-
mentation. In many cases, frequency and volt-
age scaling is not implemented in the BIOS,
thereby missing an opportunity to save energy.
Fortunately, work is being carried out to fit
cpufreq within the Linux ACPI subsystem.

A hardware approach to CPU power manage-
ment is implemented in the Transmeta Crusoe
TM5400 CPU[Crusoe] which implements fre-
quency and voltage scaling in its microcode
(“LongRun”). This means that the policy is
implemented in the CPU and operates without
knowledge about the applications. The sched-
uler works the same as the simple scheduler de-

scribed in the previous section, and thus has the
same limitations.

8 Conclusions

A well designed experimental computer plat-
form can lead to interesting results: the flexible
LART platform allowed to exploit the theoreti-
cal power and energy savings of frequency and
voltage scaling. The resulting software frame-
work was used, together with other implemen-
tations, to get at the generic cpufreq frequency
and voltage scaling driver which allows the OS
to control the CPU power consumption. Other
approaches to control the CPU power either
lack the fine grained control cpufreq offers, or
try implement the power saving policy at the
wrong place.

Cpufreq only implements the mechanism of
frequency and voltage scaling. The policy
of when to change CPU speed is still an ac-
tive area of research. It is clear that the sim-
ple speed scheduler as described in Section 5
does not yield optimal power savings and fails
for bursty real-time tasks, but the ideal sched-
uler still has to be written[Pouwelse3]. As Li-
nus Torvalds remarked: “The really interesting
things happen in userland.”

9 Acknowledgements

This work was carried out within the MMC
project and the UbiCom program and funded
by the Dutch Foundation of Applied Sciences
(STW) and the TU Delft DIOC research pro-
gram. We would like to thank Jan-Derk Bakker
for designing an excellent low-power platform
and Russell King for the cpufreq framework
and the many discussions we had.

Ottawa Linux Symposium 2002 382

References

[APCI] Compaq Computer Corporation, Intel
Corporation, Microsoft Corporation,
Phoenix Technologies Ltd., Toshiba
Corporation,Advanced Configuration
and Power Interface, Revision 2.0, July
2000.

[APM] Intel Corporation, Microsoft
Corporation,Advanced Power
Management (APM) BIOS Interface
Specification, Revision 1.2, February
1996.

[Burd] T. Burd, R. Brodersen,Processor
design for portable systems, Journal of
VLSI Signal Processing, Aug/Sept 1996.

[Cpufreq] D. Jones, R.M. King, J.A.K.
Mouw, J.A. Pouwelse, A. van der Ven,
Cpufreq homepage,
http://www.lart.tudelft.nl

/projects/scaling/

[Crusoe] Transmeta Corporation,The
technology behind the Crusoe processor,
http://www.transmeta.com

/crusoe/download/pdf

/crusoetechwp.pdf

[Ishira] T. Ishihara, H. Yasuura,Voltage
scheduling problem for dynamically
variable voltage processors, ISLPED,
Aug. 1998.

[LART] J.-D. Bakker, M.A.H.G. Joosen,
J.A.K. Mouw,Linux Advanced Radio
Terminal,
http://www.lart.tudelft.nl/

[MMC] Mobile Multimedia Communications
Project,
http://www.mmc.tudelft.nl/

[Pouwelse] J.A. Pouwelse, K. Langendoen,
H. Sips,Voltage scaling on a low-power

microprocessor, Mobile Computing
Conference (MOBICOM), Jul. 2001.

[Pouwelse2] J.A. Pouwelse, K. Langendoen,
R.L. Lagendijk, H. Sips,Power-aware
video decoding, Picture Coding
Symposium (PCS), 2001.

[Pouwelse3] J.A. Pouwelse, K. Langendoen,
H. Sips,Energy priority scheduling for
variable voltage processors,
International Symposium on Low-Power
Electronics and Design (ISLPED), Aug
2001.

[SA-1100] Intel StrongARM SA-1100
microprocessor developer’s manual,
available at
http://www.lart.tudelft.nl

/doc.php3

[UbiCom] Ubiquitous Communications
Program,
http://www.ubicom.tudelft.nl/

User Interfaces for Clustering Tools

John L. Mugler and Thomas Naughton and Stephen L. Scott∗

Computer Science and Mathematics Division

Oak Ridge National Laboratory

Oak Ridge, TN

{muglerj, naughtont, scottsl}@ornl.gov

Abstract

This paper discusses ongoing research at Oak
Ridge National Laboratory (ORNL) to make
computing clusters easier to use. Cluster ad-
ministration, setup, and use is an active re-
search area with many different components.
Two systems for cluster control and adminis-
tration, that have been experimented with at
ORNL, are Managing Multiple Clusters (M3C)
and Cluster Control GUI (C2G). M3C uses a
Java Servlet in conjunction with a Java applica-
tion server to handle communications between
a remote user and the head node. C2G takes
an alternate approach and uses the sshd to han-
dle these messages. Another important issue to
consider is the mechanism that is used to han-
dle communications between compute nodes.

A new system that is under construction at
ORNL is designed to allow a user to easily
keep track of software that is loaded on a node.
This system has two components, a node man-
ager daemon and a package services back-end
that is basically a database. Multiple soft-
ware configurations for a compute node can be
stored and loaded on a node with this system.

∗Research supported by the Mathematics, Informa-
tion and Computational Sciences Office, Office of Ad-
vanced Scientific Computing Research, Office of Sci-
ence, U. S. Department of Energy, under contract No.
DE-AC05-00OR22725 with UT-Battelle, LLC.

1 Introduction

This paper generally addresses software that
is being used on High Performance Comput-
ing (HPC) clusters. The goal of such a clus-
ter is running computational code. However,
this does not preclude the software from being
used to manage or monitor server farms or even
groups of desktop workstations.

The control of clusters is a large research area
with a wealth of problems to be addressed. The
goal of this work is to make clusters easier to
install, administrate, and use. There are several
inherent problems with designing tools that at-
tempt to meet these goals.

Installation tools that install cluster software
have to be simple enough for a beginner to use,
and also flexible enough for the expert. This
can create the problem of having a tool at the
end of the day that pleases neither category of
user. Administration tools suffer similar design
difficulties, and the problem of differing user
skill levels remains. Most administration tools
that are available today are command line tools
with GUI interfaces. Not many have been de-
signed from the ground up as GUI only tools.
User level tool sets have some of the same is-
sues, as users have wide margins of skill when
it comes to basic UNIX/clustering knowledge.
Also, its difficult to provide a generic system
that can handle the wide range of tasks that

Ottawa Linux Symposium 2002 384

cluster users perform.

Additionally, representing a cluster with a GUI
is not a trivial task. So far, representing 64
machines or even 128 is possible with conven-
tional techniques. When the number of ma-
chines starts exceeding this margin, represent-
ing cluster nodes with individual icons starts to
fail. This is the issue of scalability, and it is a
real problem in GUI design for large clusters.
Yet scalability must be addressed in order to
have modern GUI tool sets for clusters.

The intent of this paper is to summarize ongo-
ing efforts at ORNL at designing and imple-
menting tools to make clusters easier to use.
Additionally, the next section surveys some
systems that have been developed in other
places. Like most software, each tool set has
both advantages and disadvantages.

2 Related Work

In order to design new interfaces for clusters, it
is important to understand what has been built
in the past, and what is in use today. Several
tool sets have been developed to help run com-
mands across clusters. These tools are typi-
cally command line oriented and are general
purpose in nature.

These tool sets basically give a cluster user
or administrator the power to easily run com-
mands across an entire cluster. Several differ-
ent approaches have been taken, and both new
software and revisions to existing software are
appearing rapidly. The following subsections
survey three different tools that are available
and in use today.

2.1 Cluster Command and Control (C3)

The C3 set of command line tools from Oak
Ridge National Laboratory (ORNL) is up to
version 3.x. C3 started life as a collection of

Perl scripts and has been re-written in Python.
C3 allows a user to run commands either se-
quentially or in parallel across a cluster. The
basic set of commands that C3 provides and
their general functionality is listed below [1, p-
5]:

• cexec: This is the command that C3 of-
fers, and can be thought of as the basis for
most of the other commands. This com-
mand enables the execution of any com-
mand across an entire cluster.

• cget: Enables file movement from the
compute nodes of a cluster to the head
node.

• ckill: Kills or terminates a process across
clusters.

• cps: Can do a ps command across an en-
tire cluster and produce output for each
node. The results are usually stored in a
text file.

• cpush: Utilizes rsync to push files or
whole directories from the head node of
a cluster to all of the compute nodes.

• cpushimage: Uses Systemimager to push
an operating system image to a cluster
node, or to all of the nodes at once.

• crm: Deletes a file or directory across an
entire cluster.

• cshutdown: Can shutdown an entire clus-
ter with one command.

C3 leverages quite a few existing applications
to accomplish its work. It uses either SSH
or RSH for communication. Additionally, it
uses rsync to help speed cpushimage, cget, and
cpush, as only the difference between the old
and the new image must be transferred.

Ottawa Linux Symposium 2002 385

Another key feature of C3 is its ability to
handle multiple clusters from a remote host.
C3 uses a c3.conf file to specify both clusters
and nodes within clusters. This is currently a
unique feature among execution environments
for clusters, which is the ability to run the same
command across multiple clusters. Addition-
ally a user can use a personal configuration file
instead of the default on the host, or even spec-
ify a different configuration file when using the
tools.

2.2 Scalable Unix Tools (SUT)

This collection of utilities by Argonne National
Laboratory, leverages the MPI communication
environment to achieve scalability. This set
of programs is basically a reimplementation of
common UNIX tools to be useful in a paral-
lel environment. The commands are named the
same as most UNIX utilities, but are prefaced
by a pt[8, p-2,3], such as ptcp, the replacement
for cp. Additionally, all of the commands pro-
duce output in text, so this extends the UNIX
command line to a parallel environment. All
of the output can be piped to other common
UNIX utilities.

Four new utilities have been produced that
have no traditional UNIX counterpart, and it
is worth listing them here [8, p-3]:

• ptfps: A parallel implementation of the
classic UNIX find command with the
same syntax.

• ptdistrib: This command is used to basi-
cally run a complex task over a set of files
on a remote node. It can also retrieve the
results of its operation.

• ptexec: Executes a command on all the
nodes in a parallel fashion.

• ptpred: Runs a test to see if a file is present

on compute nodes, and returns a one if it
is there, a zero otherwise.

The tools also make use of MPD, or the multi-
purpose daemon, that can quickly start up jobs
across an entire cluster, although MPI must be
installed to run with MPD to make use of this
feature. MPD was created specifically for fast
command startup across clusters of computers.

2.3 Ganglia Execution Environment GEXEC

A new system that has been recently been re-
leased (April 23, 20002) is the Ganglia Exe-
cution Environment, or GEXEC. This system
is really a building block for other tools. It is
comprised of both a daemon/server and a client
that has access to the daemons. Additionally, a
library is offered as part of the package, so that
new applications can be written and directly
use the system. The daemons arrange them-
selves into a n-ary tree for scalabilityGEXEC

An authd must be run with the system, that ver-
ifies who a user is that wants to run a command.
This forces security by making a job authenti-
cate on the host on which it is trying to run.
The authd system makes use of RSA based en-
cryption via OpenSSL[2].

The client half of this system, uses the gexec
command on the command line. Real time
node information can be provided by the Gan-
glia monitoring core, which can prevent trying
to run jobs on nodes that are not responsive [2].

3 GUI interface tools

This section of the paper surveys some past
work at Oak Ridge National Laboratory, and
summarizes current work and development.
The last section of the paper dealt with some
toolkits that can expand a users control of one
cluster, with the notable exception of C3. This

Ottawa Linux Symposium 2002 386

is an important task, but control of multiple
clusters is becoming increasingly important. It
is common to leverage more than one cluster
in todays computing world. Splitting up large
clusters into multiple systems for better con-
trol or just simply segregation for various users
is also increasingly common. The notion of us-
ing multiple clusters within one domain gives
rise to the term federated cluster.

At ORNL, we are defining a federated cluster
to be one or more groups of clusters. Com-
mand line tool sets are probably not capable
of handling situations like this, when the num-
ber of clusters can rise to the hundreds and the
number of nodes to the thousands. Some type
of graphical user interface system will have to
developed to handle a system of this nature.

3.1 Managing Multiple Clusters

Managing Multiple Clusters or M3C, was a
system that was originally conceived to han-
dle multiple clusters. It was designed to be a
distributed application having several distinct
pieces. This consisted of a client application in
the form of a java applet, a server application
in the form of a cgi program running on a web
server, and a proxy [6, p2].

To use the system, a user would initiate an
action on the client, and pass a message via
HTTP to either the proxy or directly to the cgi
script. The action would be a request for a clus-
ter to do something. To perform an action on
a cluster, the cgi script, running on the head
node of a cluster, would write to a file or pos-
sibly send a message to a back end process.
The back end process would fulfill the request,
and provide some form of output back to the
cgi script. The cgi script would then send a
message back to the client and the client would
update the applet in the browser. The proxy
was the means by which a client could com-
municate with more than one cgi script, thus

the multiple cluster aspect of M3C [6, pp 3-4]
[5].

M3C was designed as a framework first and a
package of services second, although six ap-
plications were designed in the initial package.
A significant advantage of this system was the
ability to accept plug-ins. The intent being that
many different applications could be written to
make use of the system. A plug-in would be
provided to the applet, the cgi script, and also
to the proxy to make this work.[6, p-2]

3.1.1 M3C: A Different Approach

M3C went through several design changes and
modifications. The last prototype of M3C re-
volved around a major design change. The
applet was bypassed in favor of a standalone
java client application. The proxy was dropped
completely, and the client was designed to be
enhanced to take over its responsibility in com-
municating with multiple clusters.

This simplified the system quite a bit. All com-
munication was still performed via HTTP. The
CGI script evolved into a Java Servlet, run-
ning on Tomcat which is an open source server
designed for running Java Servlets. A simple
GUI was constructed to be the client and hard
coded with the necessary instructions to run C3
commands on the back end. After implement-
ing and testing this simpler prototype of M3C,
it was decided that most of the goals of the sys-
tem could be met by a standalone client.

3.2 Cluster Control GUI (C2G)

The C2G system has been designed and is be-
ing implemented using most of the key ideas of
M3C, but with much less infrastructure. The
idea of extensibility and using plug-ins to ex-
tend a basic system has been kept. In fact,
the current design of C2G has been vastly sim-

Ottawa Linux Symposium 2002 387

plified to a standalone client. Since there is
such a problem representing large clusters, this
new approach tries to avoid the notion of a
strict GUI framework altogether. The design
approach has evolved to these basic goals:

1. Provide a framework for loading pro-
grams that are in the form of python
scripts, and provide some form of gen-
eral GUI interface that ties the system to-
gether.

2. Provide secure communication services,
or access to such services, that allow
these scripts to have access to cluster head
nodes. Provide some mechanism so that
information about available clusters can
be readily determined.

3. Give a script or plug-in writer the abil-
ity to provide for their own display of re-
sults. Avoid forcing a developer to use the
default style of GUI or inherit provided
classes.

4. Provide a simple default GUI and API for
displaying the output of simple programs.

5. Provide an API for communicating with
common cluster execution environments.

The guiding principal behind this system is
simplicity. While it might be possible to antic-
ipate some needs of some small subset of clus-
ter users and administrators, it is completely
impossible to predict how to support very many
cases within a rigid GUI framework.

A GUI does not have to be fast or scalable, it
must be responsive to a user. It is reasonable to
believe that a C2G client can be run by itself on
a user’s desktop, and thus computational over-
head is not so important. It is up to the GUI to
rely on scalable back ends and communication
packages to achieve the overall desired goal of
increased cluster throughput.

Initially, SSH is being used to pass the mes-
sages from the C2G client to the headnode. A
configuration file that supports the notion of
federated clusters is being used, so that clusters
can be defined in a uniform fashion. This file
is an XML format and a schema has been pro-
duced to describe the file. A basic GUI system
has been implemented using Python/tk, and a
prototype API is currently being constructed
and evaluated. The initial back end execution
environment is SSH or RSH, as C2G needs to
be able to run some basic commands without
reliance on any back end package. The sys-
tem is still a prototype, but initial results are
encouraging.

4 Node Manager/Package Services

As part of the SciDAC:SSS [4] initiative, new
software is being designed and written with
the purpose of creating scalable clustering soft-
ware. The goal is to design and implement a
complete system that has interoperability be-
tween all the pieces. A message passing API
has been agreed upon by the participating or-
ganizations, based upon XML over sockets.
This ensures that the independent pieces can
communicate with each other. At this juncture
the SciDAC:SSS working groups are princi-
pally concerned with identifying and publish-
ing these component interfaces. At Oak Ridge
National Laboratory, two components are cur-
rently under development Node Manager and
Package Services.

4.1 Node Manager

The Node Manager(NodeMgr) is a general-
ized administration component that oversees
most static characteristics of the cluster, (e.g.
OS, installed software). The current design
has NodeMgr providing a select set of func-
tions which can be requested through the pre-
scribed XML/socket interface. These functions

Ottawa Linux Symposium 2002 388

include reboot, halt, power (cycle), getimage,
setimage, rebuild, setstateand getstate. The
initial prototype leverages C3 [1], OSCAR [7]
and the current prototype of Package Services.

NodeMgr uses services provided by other com-
ponents like Package Services to determine
what software is available on a given node.
The state information is also currently main-
tained by the Package Services prototype but
may be transferred elsewhere as the system
evolves. NodeMgr delegates dynamic aspects
such as CPU load, available memory, etc. to
the monitoring components. When consider-
ing the example of rebuilding a compute node
there are obvious interactions among all these
components, which is performed through the
published component XML/socket interface.

4.2 Package Services

Package Services (PS)is the back end database
to NodeMgr. PS is currently a PostgresSQL
database which is intended to run on the head
node of a cluster. PS has been designed to be
as general as possible, and merely stores infor-
mation. In the current implementation of PS,
tables are in place to store information about
the nodes and the software that runs on a clus-
ter. A few highlights of PS include:

• The ability to have an image associated
with a host or group of hosts. An image is
defined as a collection of software pack-
ages. Currently an rpm is considered to
be a package, but tarballs and other types
of packages will also be supported.

• The ability to further tune your software
bookkeeping by having software groups.
A software group is defined as a collection
of compatible packages.

• An image may be defined to be made up
of both software groups and images.

• The notion of a hardware group is also
available. A hardware group may be asso-
ciated with an image or collection of im-
ages.

PS is still in the design and prototype phase.
There are several issues that remain with PS.
The first is that it must be able to support large
numbers of nodes, and scale well. In its current
form this may not be possible, at least to the
extent that SciDAC:SSS envisions. It may be
necessary to build a front end to the database
that is capable of communicating with other
PS’s as necessary. This is somewhat dependent
on the functionality of NodeMgr and the topol-
ogy of a supported cluster.

The second modification/addition that may be
necessary is to provide PS with message pass-
ing ability. It has not been decided if NodeMgr
will provide all the necessary communications
with PS, if another SciDAC:SSS component
wants to talk with it.

5 Summary

This paper has summarized three general pur-
pose parallel execution environments that are
appropriate for High Performance Computing.
These environments are suited to many tasks
that administrators and users perform on clus-
ters everyday. A general Graphical User Inter-
face that allows general access to tools of this
type is a desired item, and an active area of re-
search.

ORNL is working on a tool named M3C/C2G
to satisfy this need, and it is thought that this
system can become an interface to many back
end clustering tools. The earlier efforts at de-
signing and implementing M3C, helped bring
about many of the current design decisions.
Like many pieces of widely used software,
C2G tries to solve the problem of a general

Ottawa Linux Symposium 2002 389

GUI interface by implementing a fairly small
utility, that is good at one thing, and interfaces
well with other software such as communica-
tions software and parallel execution environ-
ments.

Additionally, a system consisting of a pair of
services for controlling the software that is
loaded on compute nodes was discussed. The
design of this system is a direct result of work-
ing with the Scidac:SSS project. Cluster dis-
tributions like NPACI Rocks [9] and OSCAR,
have produced software that can do an initial
cluster installation, but the need for modifying
and managing compute nodes after the initial
installation is still apparent.

References

[1] M. Brim, R. Flanery, A. Geist, B. Luethke,
and S. Scott. Cluster Command & Control
(C3) tools suite. InTo be published in
Parallel and Distributed Computing
Practices, DAPSYS Special Edition, 2002.

[2] Brent Chun. Ganglia cluster toolkit.
http://www.cs.berkeley.edu/˜bnc/gexec/.

[3] Scyld Computing Corporation. Scyld
beowulf clustering for high performance
computing. Technical report, Scyld
Corporation, April 2001.

[4] Al Geist et al. Scalable Systems Software
Enabling Technology Center, March 7,
2001. http://www.csm.ornl.gov/scidac
/ScalableSystems/.

[5] R. Flannery, A. Geist, B. Luethke,
J. Schwidder, and S. Scott. The scalable
system administrator: via c3 and m3c
tools. InThe Second International
Workshop on Cluster-Based Computing,
2000.

[6] Al Geist and Jens Schwidder. Managing
multiple pc clusters. Technical report,
Oak Ridge National Laboratory, 2000.
http://www.csm.ornl.gov/˜geist.

[7] Thomas Naughton, Stephen L. Scott,
Brian Barrett, Jeff Squyres, Andrew
Lumsdaine, and Yung-Chin Fang. The
Penguin in the Pail – OSCAR Cluster
Installation Tool. InThe 6th World Multi
Conference on Systemics, Cybernetics and
Informatics (SCI 2002), Invited Session of
SCI’02, Commodity, High Performance
Cluster Computing Technologies and
Applications, Orlando, FL, USA, 2002.

[8] Emil Ong, Ewing Lusk, and William
Gropp. Scaleable unix commands for
parallel processors: A high-performance
implementation. Technical report,
Argonne National Laborotory, 2002.
http://www-fp.mcs.anl.gov/sut.

[9] Philip M. Papadopoulis, Mason J. Katz,
and Greg Bruno. Npaci rocks: Tools and
techniques for easily deploying
manageable linux clusters. InCluster,
2001. http://www.cacr.caltech.edu.

Improving Linux Block I/O
for Enterprise Workloads

Peter Wai Yee Wong, Badari Pulavarty, Shailabh Nagar, Janet Morgan,
Jonathan Lahr, Bill Hartner, Hubertus Franke, Suparna Bhattacharya

IBM Linux Technology Center
{wpeter,pbadari,nagar,janetinc,lahr,bhartner,frankeh}@us.ibm.com, bsuparna@in.ibm.com

http://lse.sourceforge.net/

Abstract

The block I/O subsystem of the Linux kernel
is one of the critical components affecting the
performance of server workloads. Servers typ-
ically scale their I/O bandwidth by increasing
the number of attached disks and controllers.
Hence, the scalability of the block I/O layer is
also an important concern.

In this paper, we examine the performance of
the 2.4 Linux kernel’s block I/O subsystem on
enterprise workloads. We identify some of
the major bottlenecks in the block layer and
propose kernel modifications to alleviate these
problems in the context of the 2.4 kernel. The
performance impact of the proposed patches
is shown using a decision-support workload, a
microbenchmark, and profiling tools. We also
examine the newly rewritten block layer of the
2.5 kernel to see if it addresses the performance
bottlenecks discovered earlier.

1 Introduction

Over the past few years, Linux has made re-
markable progress in becoming a server oper-
ating system. The release of Version 2.4 of
the Linux kernel has been heralded as helping
Linux break the enterprise barrier [5]. Since

then, the kernel developer community has re-
doubled its efforts in improving the scalabil-
ity of Linux on a variety of server platforms.
All major server vendors such as IBM, HP,
SGI, Compaq, Dell and Sun not only support
Linux on their platforms, but are investing a
considerable effort in improving Linux’s enter-
prise capabilities. The Linux Technology Cen-
ter (LTC) of IBM, in particular, has been a ma-
jor contributor in improving Linux kernel per-
formance and scalability. This paper highlights
the efforts of the LTC in improving the perfor-
mance and scalability of the block I/O subsys-
tem of the Linux kernel.

Traditionally, the kernel block I/O subsystem
has been one of the critical components af-
fecting server workload performance. While
I/O hardware development has made impres-
sive gains in increasing disk capacity and re-
ducing disk size, there is an increasing gap
between disk latencies and processor speeds
or memory access times. Disk accesses are
slower than memory accesses by two orders
of magnitude. Consequently, servers running
I/O intensive workloads need to use large num-
bers of disks and controllers to provide suffi-
cient I/O bandwidth to enterprise applications.
In such environments, the kernel’s block I/O
layer faces a twofold challenge: it must scale
well with a large number of I/O devices and

Ottawa Linux Symposium 2002 391

it must minimize the kernel overhead for each
I/O transfer.

This paper examines how the Linux kernel’s
block I/O subsystem handles these twin goals
of scalability and performance. Using version
2.4.17 of the kernel as a baseline, we system-
atically identify I/O performance bottlenecks
using kernel profiling tools. We propose solu-
tions in the form of kernel patches, all but one
of which has been developed by the authors.
The performance improvements resulting from
these patches are presented using a decision-
support workload, a disk I/O microbenchmark
and profiling data. In brief, the I/O perfor-
mance bottlenecks addressed are as follows:

• Avoiding the use of bounce buffers: The
kernel can directly map only the first gi-
gabyte of physical memory. I/O to high
memory (beyond 1 GB) is done through
buffers defined in low memory and in-
volves an extra copy of the data being
transferred. Capitalizing on the ability of
PCI devices to directly address all 4GB,
the block-highmem patch written by Jens
Axboe can circumvent the need to use
bounce buffers.

• Splitting the I/O request lock: Each I/O
device in the system has an associated re-
quest queue which provides ordering and
memory resources for managing I/O re-
quests to the device. In the 2.4 kernel,
all I/O request queues are protected by
a singleio_request_lock which can
be highly contended on SMP machines
with multiple disks and a heavy I/O load.
We propose a solution that effectively re-
places the io_request_lock with per queue
locks.

• Page-sized raw I/O transfers: Raw
I/O, which refers to unbuffered I/O done
through the/dev/raw interface, breaks

I/O requests into 512-byte units (even if
the device hardware and associated driver
is capable of handling larger requests).
The 512-byte requests end up being re-
combined within the request queue before
being processed by the device driver. We
present an alternative that permits raw I/O
to be done at a page-size granularity.

• Efficient support for vector I/O : I/O in-
tensive applications often need to perform
vector (scatter/gather) raw I/O operations
which transfer a contiguous region on disk
to discontiguous memory regions in the
application’s address space. The Linux
kernel currently handles vectored raw I/O
by doing a succession of blocking I/O op-
erations on each individual element of the
I/O vector. We implement efficient sup-
port for vector I/O by allowing the vector
elements to be processed together as far as
possible.

• Lightweight kiobufs : The main data
structure used in raw I/O operations is the
kiobuf. As defined in 2.4.17, the kiobuf
data structure is very large. When raw I/O
is performed on a large number of devices,
the memory consumed by kiobufs is pro-
hibitive. We demonstrate a simple way to
reduce the size of the kiobuf structure and
allow more I/O devices to be used for a
given amount of system memory.

Most of the kernel performance bottlenecks
listed above stem from the basic design of the
2.4 block I/O subsystem which relies on buffer
heads and kiobufs. The need to maintain com-
patibility with a large number of device drivers
has limited the scope for kernel developers to
fix the subsystem as a whole. In the 2.5 devel-
opment kernel, however, the challenging task
of overhauling the block I/O layer has been
taken up. One of the goals of the rewrite
has been addressing the scalability problems of

Ottawa Linux Symposium 2002 392

earlier designs [2]. This paper discusses the
new design in light of the performance bottle-
necks described earlier.

The rest of the paper is organized as follows.
Section 2 presents an overview of the 2.4 ker-
nel block I/O subsystem. The benchmark en-
vironment and workloads used are described
in Section 3. Sections 4 through 8 describe
the performance and resource scalability bot-
tlenecks, proposed solutions and results. The
newly written 2.5 kernel block layer is ad-
dressed in Section 9. Section 10 concludes
with directions for future work.

2 Linux 2.4 Block I/O

For the purpose of this paper, our review of
the 2.4 kernel block I/O subsystem will be lim-
ited in scope. Specifically, it will focus on the
“raw” device interface, which was added by
Stephen Tweedie during the Linux 2.3 devel-
opment series.

Unix has traditionally provided a raw interface
to some devices, block devices in particular,
which allows data to be transferred between a
user buffer and a device without copying the
data through the kernel’s buffer cache. This
mechanism can boost performance if the data
is unlikely to be used again in the short term
(during a disk backup, for example), or for ap-
plications such as large database management
systems that perform their own caching.

To use the raw interface, a device binding must
be estabished via the raw command; for exam-
ple, raw /dev/raw/raw1 /dev/sda1 .
Once bound to a block device, a raw device can
be opened just like any other device.

A sampling of the kernel code path for a raw
open is as follows:

sys_open

. raw_open

. . alloc_kiovec

Notice the call toalloc_kiovec to allocate
a kernel I/O buffer, also known as a kiobuf.
The kiobuf is the primary I/O abstraction used
by the Linux kernel to support raw I/O. The
kiobuf structure describes the array of pages
that make up an I/O operation.

The fields of a kiobuf structure include:

// number of pages in the kiobuf
int nr_pages;

// number of bytes in the data buffer
int length;

// offset to first valid byte
// of the buffer
int offset;

// list of device block numbers
// for the I/O
ulong blocks[KIO_MAX_SECTORS];

// array of pointers to
// 1024 pre-allocated
// buffer heads
struct buffer_head

*bh[KIO_MAX_SECTORS];

// array of up to 129 page
// structures, one for each
// page of data in the kiobuf
struct page

**maplist[KIO_STATIC_PAGES];

The maplist array is key to the kiobuf in-
terface, since functions that operate on pages
stored in a kiobuf deal directly with page struc-
tures. This approach helps hide the complexi-
ties of the virtual memory system from device
drivers – a primary goal of the kiobuf interface.

Once the raw device is opened, it can be read
and written just like the block device to which
it is bound. However, raw I/O to a block device
must always be sector aligned, and its length

Ottawa Linux Symposium 2002 393

must be a multiple of the sector size. The sector
size for most devices is 512 bytes.

Let us examine the code path for a raw device
read:

sys_read
. raw_read
. . rw_raw_dev
. . . map_user_kiobuf(READ,

&mykiobuf,
vaddr, len)

The result of the call to
map_user_kiobuf() is that the buffer
at virtual addressvaddr of length len is
mapped into the kiobuf, and each entry of
the kiobuf maplist[] is set to the page
structure for the associated page of data. Note
that some or all of the user buffer may first
need to be paged into memory:

. . . map_user_kiobuf

. . . . find_vma

. . . . handle_mm_fault

Once all of the pages of the data buffer are
locked in memory, read processing continues
with a call to brw_kiovec() , where for
each sector-size chunk of the data buffer,
a pre-allocated buffer head associated with
the kiobuf is initialized and passed down to
__make_request . __make_request()
calls create_bounce() to create a
bounce buffer as needed, acquires the
io_request_lock , and uses buffer head
information to merge/enqueue the request onto
the device-specific request queue.

. brw_kiovec(READ, num_kiobufs=1,
&mykiobuf,dev,
mykiobuf->blocks,
sector_size=512)

. . submit_bh

. . . generic_make_request

. . . make_request(&request_queue,
&buff_head)

. create_bounce

. generic_plug_device

. <elevator processing>

. add_request (enqueue)

. kiobuf_wait_for_io

Requests are dequeued when the
scheduled tq_disk task calls
run_task_queue() which invokes
generic_unplug_device() . In the case
of SCSI, generic_unplug_device()
invokes scsi_request_fn() which de-
queues requests and sends them to the driver
associated with the request_queue/device.

run_task_queue
. generic_unplug_device
. . q->request_fn(scsi_request_fn)
. . . blkdev_dequeue_request(dequeue)
. . . scsi_dispatch_cmd

The read() system call returns once the I/O
has completed; that is, after all buffer heads as-
sociated with the kiobuf have been processed
for completion.

3 Workload and experimental
setup

We have been using a decision support bench-
mark and a disk I/O microbenchmark to study
the performance of block I/O. The decision
support workload (henceforth called DSW)
consists of a suite of highly complex queries
accessing a 30GB database. We use IBM DB2
UDB 7.2 as the database management system.

The disk I/O microbenchmark (henceforth
called DM) is a multi-threaded disk test. There
are a total of 32 raw devices which are mapped
to 32 physical disks. DM creates 32 processes.
For the read test, each process issues 4096
reads of 64KB each to a raw device. The readv
test issues the same number of reads, but uses
16 iovecs of 4KB each.

For both benchmarks, the system was rebooted
before each set of runs. For DSW, each set con-
sisted of a sequence of queries run back to back
three times. For DM, each set consisted of the
read/readv runs performed back to back three

Ottawa Linux Symposium 2002 394

times. We took the average of three runs for
the score and CPU utilization.

The benchmarks were run on an 8-way
700MHz Pentium III machine with 4 GB of
main memory. The system used for DSW had
a 2 MB L2 cache and 6 RAID controllers. The
system used for DM had a 1 MB L2 cache
and 4 RAID controllers. Each controller was
connected to two storage enclosures with each
enclosure containing 10 9.1 GB, 10000 RPM
drives. The large number of attached disks
allowed a high degree of parallel data access
and is typical of the environments in which
decision-support workloads are run.

Our baseline (henceforth called Baseline)
was Linux 2.4.17 with Ingo Molnar’s SMP
timer patch applied, plus a number of
resource-related changes. In addition, readv
was used by the database management sys-
tem for I/O prefetching. The four main
patches discussed in subsequent sections are
block-highmem, io_request_lock, rawvary and
readv/writev. To measure their performance
impact incrementally, we used 4 kernels:
SB for Baseline+block-highmem, SBI for
SB+io_request_lock, SBIR for SBI+rawvary
and SBIRV for SBIR+readv/writev.

As a first step towards identifying I/O bot-
tlenecks, the Baseline kernel was profiled us-
ing the Kernprof tool [4]. Table 1 shows the
percentage of time spent in the most time-
consuming kernel functions running a DSW
query on the Baseline kernel. We see that
bounce_end_io_read() is the most ex-
pensive function of non-idle time. This func-
tion is used when the kernel performs I/O us-
ing bounce buffers. The problem caused by
bounce buffers and its resolution is described
in the next section.

Kernel Function % Total
Time

default_idle 52
bounce_end_io_read 8

do_softirq 7
tasklet_hi_action 6
__make_request 3

Table 1: Profiling data showing percentage of
time spent in different kernel functions while
running a DSW query on the Baseline kernel.

4 Avoiding the use of bounce
buffers

To explain the bounce buffer problem we first
take a look at how the Linux 2.4 kernel ad-
dresses physical memory. The discussion as-
sumes an x86 architecture though most of the
concepts apply to all 32-bit systems. The 4 GB
address space defined by 32 bits is divided into
two parts: a user virtual address space (0-3GB)
and a kernel virtual address space (3-4GB).
The physical memory of a system (which is not
limited to 4 GB) is divided into three zones:

• DMA Zone (0-16 MB): ISA cards with
only 24-bit DMA space use this zone.

• Normal Zone (16 MB-896 MB): Mem-
ory in this range is directly mapped into
the kernel’s 1 GB of virtual address
space starting at PAGE_OFFSET (nor-
mally 0xC0000000).

• High Memory Zone (896 MB-64 GB):
Page frames in this zone need an explicit
mapping into kernel virtual address space
(via thekmap() system call) before they
can be used by the kernel.

DMA operations on memory by I/O devices
use physical addresses. Since the kernel can-
not address high-memory DMA buffers di-
rectly while setting up a buffer for DMA, it

Ottawa Linux Symposium 2002 395

Kernel Increase CPU Utilization (%)
in MOI (%) user kernel idle

Baseline — 16 43 41
SB 37 22 71 7
SBI 78 41 37 22
SBIR 16 47 34 19
SBIRV 18 55 9 36

Table 2: Performance impact of various patches on the metric of interest (MOI) and CPU uti-
lization for the decisions support workload (DSW). Increases are reported w.r.t the kernel on the
previous line.

Kernel I/O transfer rate CPU Idle Time
Value Increase Value Increase

(MB/s) (%) (%) (%)
Using read

Baseline 54 — 64 —
SB 133 147 21 -68
SBI 235 77 61 192
SBIR 240 2 94 55
2.5.17 kernel 243 — 97 —
Using readv
SBIR 104 — 41 —
SBIRV 241 132 94 130
2.5.17 kernel 150 — 61 —

Table 3: Performance impact of various patches on the I/O transfer rate and CPU utilization for
the disk I/O microbenchmark (DM). Increases are reported w.r.t the kernel on the previous line.
Results are also shown for the 2.5.17 kernel.

allocates an area in low memory called the
bounce buffer. It then supplies the buffers
physical address to the I/O device. Conse-
quently, data transfer between the device and
the high-memory target buffer necessitates an
extra copy through the bounce buffer. This de-
grades system performance by using up low
memory (for the bounce buffer) and adding the
overhead of a memory copy for each I/O trans-
fer.

The bounce buffer is unnecessary for 32-bit
PCI devices, which can normally address 4
GB of physical memory directly. Such devices
can access high memory directly even though

the kernel cannot. The block-highmem patch
from Jens Axboe utilizes this property to per-
mit high-memory DMA to occur without the
use of bounce buffers.

To make use of the block-highmem patch, most
device drivers require a few changes which are
documented in the I/O Performance HOWTO
[9].

The elimination of bounce buffers is illus-
trated by Table 4 which again shows the most
time-consuming kernel functions while run-
ning DSW using theSBkernel. Comparing the
entries to those shown in Table 1, we find that

Ottawa Linux Symposium 2002 396

Kernel Function % Total
Time

__make_request 35
default_idle 17

scsi_dispatch_cmd 4
do_ipsintr 4

scsi_request_fn 4

Table 4: Profiling data showing percentage of
time spent in different kernel functions while
running a DSW query on theSBkernel

bounce buffers are no longer being used.

The second row of Table 2 indicates the perfor-
mance improvement seen by DSW using the
block-highmem patch. The metric of interest
(MOI) increases by 37%. Similar trends are
seen in the performance of DM in Table 3 with
the I/O throughput of the read test increasing
from 54 MB/s to 133 MB/s (corresponding to
a 147% improvement).

Eliminating bounce buffer usage causes an-
other I/O bottleneck to appear. Comparing Ta-
bles 4 and 1 we find that__make_request
is now the most expensive kernel function and
the idle time has been reduced from 64% to
around 21% under DM, 41% to 7% under
DSW. Both these changes are due to the I/O
request lock which is the next bottleneck dis-
cussed.

5 Splitting the I/O request lock

As mentioned in the last part of the previous
section, Tables 1 and 4 indicate a large fraction
of time spent in __make_request and a large
drop in idle time when DSW is run onSB. Us-
ing the Lockmeter [3] profiling tool allows us
to investigate whether there are any highly con-
tended locks (spinlocks or reader/writer locks).
Table 5 shows the lockmeter statistics for the
io_request_lock when DSW is run onSB. It

shows that 66.2% of 8 CPUs are consumed by
spinning on the globalio_request_lock
and the function in which the lock sees high
contention also corresponds to the most expen-
sive kernel function in Table 1.

The io_request_lock , which is a global
serialization device, imposes system-wide se-
rialization on enqueuing block I/O requests.
The request enqueuing functions use the lock
to protect all request queues collectively which
means that only one request can be queued at a
time.

During normal I/O operations, request queues
are accessed and modified by enqueuing and
dequeuing functions. Since multiple threads
execute these functions, queue integrity must
be protected. Code analysis shows that queu-
ing operations on a given queue involve ac-
cess to queue-specific data, request list anchor
(queue_head), request free list (rq), plug state
(plugged), but do not require access to data
used by queuing operations on other queues.
This means that maintaining queue data in-
tegrity does not require serialization of queu-
ing to different queues. Queuing operations on
different queues are logically independent and
can execute concurrently. Of course, multiple
queuing operations to the same queue must still
be serialized.

To implement concurrent enqueuing, we
replaced io_request_lock in en-
queuing functions with per queue locks
(request_queue.queue_lock). This
serializes enqueuing to the same queue while
allowing concurrent enqueuing to different
queues. With this change dequeuing functions
can no longer rely onio_request_lock to
serialize with enqueuing functions. To restore
this serialization, dequeuing functions were
modified to acquirequeue_lock in addition
to io_request_lock when accessing
queues.

Ottawa Linux Symposium 2002 397

Kernel function Lock Mean Lock Lock Spin Time Number of lock
holding lock Utilization (%) Hold Time (µs) Mean (µs) % CPU acquisitions
All spinlocks 3.7 62.0 66.8 68774051
io_request_lock 50.2 5.2 65.0 66.2 15640659
. __make_request 23.5 3.8 64.0 42.8 9973270
. do_ipsintr 8.3 20.0 66.0 3.1 660212
. scsi_dispatch_cmd 6.8 13.0 66.0 3.9 877838
. generic_unplug_device 4.5 8.8 65.0 3.2 835530

Table 5: Lockmeter data for io_request_lock with DSW on the SB kernel.

To minimize interlocking between dequeue-
ing and enqueueing functions, we added an-
other level of locks inside dequeueing func-
tions. This allows us to maintain our focus on
enqueuing and avoid the impact of further re-
ducing the scope of theio_request_lock .

When the above modifications to the generic
block I/O code were published for comment,
the Linux development community expressed
concern about making such major changes to
the mature 2.4 kernel. Since the patch modified
the locking structure in code which affected
all block I/O devices, many viewed the code
impact as undesirably pervasive. Unforeseen
impacts to other code such as IDE and some
device drivers were also pointed out. Since
SCSI configurations represent a significant part
of our scalability goal and concurrent queu-
ing can be implemented for SCSI without af-
fecting generic i/o code, we decided to isolate
SCSI code for our development purposes. For-
tunately, the block I/O subsystem provides for
such isolation through dynamically assigned
I/O queuing functions stored in the request
queue and indirectly invoked as function point-
ers.

To contain code impact within the SCSI
subsystem, generic enqueuing and dequeuing
functions were copied, renamed, and modi-
fied for concurrent queuing. The following
generic block I/O (ll_rw_blk.c) functions pro-
vided baselines for SCSI functions:

__make_request => scsi_make_request

generic_plug_device =>
scsi_plug_device

generic_unplug_device =>
scsi_unplug_device

get_request => scsi_get_request
get_request_wait =>

scsi_get_request_wait
blk_init_queue => scsi_init_queue

Concurrent queuing is activated for all de-
vices under an adapter driver by setting
the newconcurrent_queue field of the
Scsi_Host_Template structure used for
driver registration. This allows control over
which drivers use concurrent queuing and pre-
serves original request queuing behavior by de-
fault. Drivers which enable concurrent queu-
ing must protect any request queue access with
queue locks.

With the application of the
io_request_lock patch (IORL), the
MOI of DSW improves by 78% over the base-
line SB, as is seen in row three of Table 2. The
transfer rate of DM also increases significantly
from 133 MB/sec to 235 MB/sec (Table 3).
Note that there is a significant increase of
idle time in both cases due to the reduction of
the spin time. Table 6 verifies that the lock
contention seen by the io_request_lock has
been reduced. scsi_make_request()
is shown using a per-queue lock and the
aggregate contention on the per-queue locks is
reduced as well.

Table 7 lists the most expensive kernel func-

Ottawa Linux Symposium 2002 398

Kernel function Lock Mean Lock Lock Spin Time Number of lock
holding lock Contention (%) Hold Time (µs) Mean (µs) % CPU acquisitions
All spinlocks 2.1 15.0 13.9 63777886
io_request_lock 39.6 8.7 32.0 7.6 2490263
. do_ipsintr 16.3 26.0 32.0 1.4 339486
. scsi_unplug_device 11.7 18.0 32.0 1.2 357540
. scsi_dispatch_cmd 8.4 13.0 31.0 1.4 363421
scsi_make_request 15.3 0.9 13.0 0.3 9520872

Table 6: Lockmeter data showing benefits of the IORL patch for DSW on the SBI kernel.

Kernel Function % Total
Time

default_idle 41
schedule 4

ips_make_passthru 4
tasklet_hi_action 3

do_softirq 3
brw_kiovec 3

scsi_back_merge_fn_dc 3
scsi_release_buffers 3

scsi_back_merge_fn_ 2
scsi_dispatch_cmd 2

end_buffer_io_kiobuf 2

Table 7: Kernprof data for DSW on the SBI
kernel.

tions for DSW running onSBI . A signif-
icant fraction of kernel time is spent in
brw_kiovec() and many SCSI mid-layer
functions. One reason for that is the use of 512-
byte blocks for raw I/O as explained in the next
section.

6 Raw I/O optimization patch

This section provides information on the opti-
mization patch that we developed to increase
the block size used for raw I/O. The patch can
significantly improve CPU utilization by re-
ducing the number of buffer heads needed for
such operations.

As explained in Section 2,rw_raw_dev calls
map_user_kiobuf to map the user buffer
into a kiobuf, and then invokesbrw_kiovec
to submit the I/O.brw_kiovec breaks up
each mapped page into sector-size pieces (nor-
mally 512 bytes) and passes them one at a
time to make_request . Each sector-size
piece is represented using one of the 1024
pre-allocated buffer heads associated with the
kiobuf. Assuming a sector-size of 512 bytes,
brw_kiovec would use 512 buffer heads and
invokemake_request 512 times to process
a 256K raw read or write.

make_request uses the buffer head
information to enqueue the request
on the device-specific request queue
and returns to brw_kiovec . When
the lesser of all mapped pages or
KIO_STATIC_PAGES of the kiobuf have
been processed in this way,brw_kiovec
calls kiobuf_wait_for_io .
kiobuf_wait_for_io returns after
the I/O completion routine has been called for
all of the mapped buffer heads of the kiobuf.

While the block I/O subsystem will normally
merge buffer heads into larger requests, there
is still overhead incurred with each buffer head.
For example, the interrupt handler for the block
device must invoke theb_end_io method for
each buffer head at I/O completion. The sec-
ond column of Table 8 shows function call fre-
quencies in a call graph trace for 128 reads of
128KB each using a 512-byte block size. The

Ottawa Linux Symposium 2002 399

Kernel function Frequency
Baseline Baseline+rawvary

sys_read 138 138
. raw_read 128 128
. . rw_raw_dev 128 128
. . . brw_kiovec 128 128
. . . . submit_bh 32768 4096
. generic_make_request 32789 4160
. _make_request 32789 4160
. elevator_linus_merge 32659 4029
. scsi_back_merge_fn_c 32641 4013

Table 8: Reduction in frequencies of function calls using the rawvary patch for 128 reads of
128KB each.

large number of calls tosubmit_bh() indi-
cates the severity of the problem.

The patch we developed can reduce 8-fold the
number of buffer heads required for a raw I/O
operation. This was accomplished by chang-
ing brw_kiovec to break up the user buffer
into sector-size pieces only until the buffer ad-
dress is aligned on a page boundary. Once
properly aligned, the remainder of the mapped
pages are submitted tomake_request with
a block size (b_size) of 4 KB instead of
sector-size. Note that the last buffer head may
have ab_size which is neither sector-size
nor 4 KB depending on the total length of the
I/O request.

Since we could not practically determine
whether a given device driver can sup-
port buffer heads of variable-block sizes
in a merged request, the patch enables
the optimization for the Adaptec, Qlogic
SCSI and IBM ServeRAID drivers only.
Other drivers can make use of the patch
by setting the can_do_varyio bit in
theScsi_Host_Template structure before
callingscsi_register .

The third column of Table 8 highlights the re-
duction in kernel overhead as a result of using

the patch. The number of calls tosubmit_bh
are reduced by a factor of 8. The MOI of
DSW improved by 16% over SBI, as seen in
the fourth row of Table 2. The transfer rate of
DM also increased slightly from 235 MB/sec
to 240 MB/sec (Table 3). However, there was
an improvement of 55% in the idle time.

The raw I/O optimization patch, also known
as the rawvary patch, has been integrated into
Andrea Arcangeli’s 2.4.18pre7aa2 kernel and
Alan Cox’s 2.4.18pre9-ac2 kernel.

7 Efficient support for vector I/O

Scatter-gather I/O is needed by an applica-
tion when it needs to transfer data between
a contiguous portion of a disk file and non-
contiguous memory buffers in its address
space. Typically this is done by invoking
the readv()/writev() system calls and
passing an array ofstruct iovec entries.
Each iovec entry represents a contiguous
memory buffer of lengthiov_len located at
iov_base . This entry is henceforth called an
iochunksince the kernel does not define a dis-
tinct name for it and the term iovec suggests
an array rather than an individual element. To
simplify the discussion, we refer only to the

Ottawa Linux Symposium 2002 400

readv operation. For raw I/O operations, writev
differs mainly in the direction of data transfer.

In the 2.4 kernel, the readv system call us-
ing a file descriptor is implemented by calling
the corresponding file’s readv function. When
there is no readv function exported, as is the
case for raw I/O, the kernel defaults to using
repeated invocations of the file’s read func-
tion which is always defined. Each iochunk
of the iovec leads to a separate blocking read
being performed. This imposes a dual penalty
on the application. It imposes the overhead
of multiple calls to various functions in the
entire I/O processing path from the top level
sys_readv() down to the SCSI layer ele-
vator and merging functions. Worse, it seri-
alizes the I/O requests seen by the low-level
device driver. Since a separate read/write is
performed for each iochunk and these calls
block until I/O completes, the kernel’s abil-
ity to take advantage of large DMA opera-
tions is severely limited. The elevator code
invoked by themake_request() function
cannot merge requests from different iochunks
and hence the SCSI device driver cannot create
large scatter-gather lists for the controller.

To reduce this inefficiency, we created a patch
defining readv and writev functions for raw de-
vices. The functions operate in two phases
while processing an iovec. In the first phase,
they map the pages of several iochunk buffers
into a single kiobuf. The number of pages
mapped to a single kiobuf is limited by the
KIO_STATIC_PAGES limit (which is 65 when
the system page size is 4 KB). Once this limit
is reached (or if the entire iovec has been
mapped),brw_kiovec() is invoked to sub-
mit the I/O represented by the kiobuf. As ex-
plained in Section 2,brw_kiovec() is a
blocking function that returns only when the
corresponding I/O is complete or if there is an
error. The two phases are repeated until all
iochunks of the iovec are processed.

The patch relies upon one important modifi-
cation to struct kiobuf . As explained
in Section 2,struct kiobuf has only one
offset and length field. The offset field rep-
resents the offset into the (virtual) memory
buffer. When the pages of multiple memory
buffers are mapped in to the same kiobuf, we
need a per-page offset and length information.
We modifiedstruct kiobuf to add this in-
formation using the following structure:

struct pinfo
{

int poffset[KIO_STATIC_PAGES];
int plen[KIO_STATIC_PAGES];

};

struct kiobuf
{

:
:
struct pinfo *pinfo;

}

There are other approaches to providing
readv/writev support. In an earlier attempt,
we tried to map an iovec onto akiovec con-
sisting of multiple kiobufs. However, that ap-
proach increased memory consumption since
struct kiobuf is quite heavyweight and
also because thebrw_kiovec() function
only submits I/O forKIO_STATIC_PAGES
one at a time. Mapping one iochunk onto one
kiobuf would have resulted in wasted point-
ers in themap_array without increasing the
granularity at which I/O was submitted to the
lower layers. Our current approach fits in well
with the 2.4 kernel’s practice of using only one
kiobuf per file. The issue of the heavyweight
struct kiobuf is discussed in Section 8
though the changes shown there do not war-
rant reexamining our choice to map multiple
iochunks into a single kiobuf.

Using the readv/writev patch improves the
MOI of DSW by 18% (Table 2) and the I/O

Ottawa Linux Symposium 2002 401

transfer rate of DM from 104 MB/s to 241
MB/s (Table 3). CPU utilization also decreases
significantly for both cases.

8 Lightweight kiobufs

In the 2.4.17 kernel, a kiobuf is allocated for
each raw device open. The allocated kiobuf is
saved in thef_iobuf field of the file ob-
ject for the device special file and is used for
doing reads/writes on the raw device. Each
kiobuf is 8792 bytes in size and is allocated
from vmalloc() space which is generally
128 MB. Middleware such as database man-
agers often keep a large number of files open.
For raw I/O, the number of open calls generally
scales with the number of devices (which are
accessed through device special files). In such
cases, a heavyweight kiobuf is a drain on the
kernel’s low memory in general andvmalloc
space in particular.

To enable a large number of raw devices to be
opened simultaneously, we modified the kiobuf
structure to reduce its memory footprint. Much
of the memory consumed by a kiobuf is due to
the two arrays:

struct buffer_head
*bh[KIO_MAX_SECTORS];

unsigned long
blocks[KIO_MAX_SECTORS];

With KIO_MAX_SECTORSbeing 1024, these
arrays consume 8192 bytes.

We changed the kiobuf structure as follows:

1. The buffer head arraybh was replaced
by a linked list. To link the various
buffer heads of a kiobuf together, we
used theb_next_free field of struct
buffer_head. This field is not used in

buffer-head processing in the raw I/O
path.

2. Theblocks array was replaced by a sin-
gle number. Normally, theblocks array
contains the physical disk block numbers
corresponding to the logical blocks of a
file. For accesses which don’t go through
a filesystem, the logical and physical disk
blocks are the same. Hence, for raw I/O,
the blocks array contains sequential num-
bers. We replaced the blocks array by a
single number indicating the starting disk
block and modified the code doing raw
I/O to generate the remaining sequence of
disk block numbers.

Together these modifications reduced the size
of the kiobuf to 608 bytes and allowed them
to be allocated usingkmalloc() instead of
vmalloc() .

A further reduction in the memory footprint of
the kiobuf was enabled by the use of the raw-
vary patch described in Section 6. Since I/O
is done 4KB at a time, a kiobuf needs only
KIO_STATIC_PAGES (65) buffer heads in-
stead ofKIO_MAX_SECTORS(1024) to rep-
resent the maximum I/O that can be done using
a single kiobuf.

9 2.5 changes – tackling the root of
the problem?

In part, the block layer rewrite in 2.5 was mo-
tivated by some of the well known shortcom-
ings of the 2.4 block layer that we came across
in the earlier sections. Of major concern was
the suboptimal performance and resource over-
head in the case of large I/O requests, I/O on
high memory addresses, and I/O operations
that do not originate directly from the buffer
cache like raw/direct I/O and page I/O.

Ottawa Linux Symposium 2002 402

Most of these problems stemmed from the use
of the buffer head as the unit of I/O at the
generic block layer, and the basic limitations
on the size and nature of I/O buffers that could
be represented by a single buffer head. It
could only be a contiguous chunk at a vir-
tually mapped address, of size one blocksize
unit, which could not exceed a page and had
to be aligned at a block boundary (as per the
block size used). This led to the described in-
efficiencies in handling large I/O requests and
readv/writev style operations, as it forced such
requests to be broken up into small chunks so
that they could be mapped to buffer heads be-
fore being passed on one by one to the generic
block layer, only to be merged back by the I/O
scheduler when the underlying device is capa-
ble of handling the I/O in one shot. Also, using
the buffer head as an I/O structure for I/Os that
didn’t originate from the buffer cache unnec-
essarily added to the weight of the descriptors
which were generated for each such chunk.

At the same time, one of the good things about
the original design was that splitting and merg-
ing of requests was a simple matter of break-
ing or chaining pointers, without requiring any
memory allocation or move.

In the context of raw or direct I/O, a second as-
pect of concern was the weighty nature of the
higher level kiobuf data structure as discussed
in earlier sections. One of the shortcomings of
the kiobuf is that a single kiobuf can represent
only a contiguous user address range, which
makes it unsuitable for user space memory
vectors of the form supplied by readv/writev.
While arrays of kiobufs, namely kiovecs, are
defined, they are too heavyweight for use in
readv/writev.

Another crucial issue addressed in the rewrite
was the matter of the single global I/O request
lock bottleneck, especially in the case of inde-
pendent/parallel I/Os to multiple disks.

9.1 The origin of BIO

The solution implemented in 2.5 by Jens
Axboe [2] addresses these inefficiencies at a
fundamental level by defining some new data
structures. A flexible structure called BIO has
been created for the block layer instead of
using the buffer head structure directly, thus
eliminating any associated baggage and restric-
tions. The abstraction is sector oriented and is
unaware of filesystem block sizes.

The BIO structure uses a generic vector rep-
resentation pointing to an array of tuples of
<page, offset, len> to describe the
I/O buffer and has various other fields describ-
ing I/O parameters and state that needs to be
maintained for performing the I/O. The core
memory vector representation is capable of de-
scribing a set of non-page aligned fragments in
a uniform manner across various layers includ-
ing zero copy network I/O, and kernel asyn-
chronous I/O [1]. This makes it possible for
the same descriptor to be passed across sub-
systems and be useful for things like streaming
I/O from network to disk and vice-versa. Such
a descriptor can directly refer to user space
buffers in a process context independent way,
and forms an I/O currency similar to that pro-
posed in [7].

The new scheme enables large, as well as vec-
tored I/Os, to be described as a single unit
within the limits of the device capabilities and
is adequate for specifying high memory buffers
as well since it doesn’t require a virtual address
mapping. The underlying DMA mapping func-
tions have been modified to work with this rep-
resentation. Bounce buffers become necessary
only where the device does not support I/O into
high memory buffers. In situations where the
driver needs to access the buffer by virtual ad-
dress, it performs a temporary kmap (e.g. if
falling back to PIO in IDE).

Ottawa Linux Symposium 2002 403

A low level request structure may consist of a
chain of BIOs (potentially arising from mul-
tiple sources or callers) for a contiguous area
on disk, a concept which retains some of the
goodness of the original design in terms of ease
of request merging, and treatment of individual
completion units. The BIO structure maintains
an index into the vector to help keep track of
which fragments have been transferred so far,
in case the transfer or a subsequent copy hap-
pens in stages. Notice also, that potentially, a
single entry in the vector could describe a frag-
ment greater than a page size, i.e. across con-
tiguous physical (or perhaps more accurately,
logical) pages. Splitting an I/O request in-
volves cloning the BIO structure and adjusting
the indices to cover the desired portions of the
original vector.

Using a separate structure introduces a level of
allocation and setup in some cases as a BIO has
to be constructed for each I/O (e.g. rather than
directly utilizing a bh in the case of buffered
I/O). Typically BIOs are allocated from a des-
ignated BIO mempool, where mempool refers
to Ingo Molnar’s new memory pool infrastruc-
ture in 2.5. The allocation scheme is designed
to avoid deadlocks as in a scenario when the
I/O in question is a writeout issued under mem-
ory pressure. A caller avoids possibilities of
holding on to a BIO without initiating any ac-
tion (like starting low level I/O) that would
eventually recycle it back to the pool. The sit-
uation gets tricky if further BIO allocations be-
come necessary in order to proceed with the
request (e.g. a bounce BIO in situations where
the device doesn’t support highmem I/O, or
BIO allocations required for splitting the I/O in
the case of lvm/md/evms). To avoid any pos-
sibility of a deadlock, multiple allocations held
at a time from the same pool by a thread ought
to be atomic or pipelined. Alternatively, the al-
locations could be spread across multiple pools
in an established order.

9.2 Elimination of IORL

Another major improvement in 2.5 is the re-
moval of the global I/O request lock present
in 2.4. Instead, every queue is associated
with a pointer to a lock, which is held dur-
ing queuing. This enables per-queue locks or
shared locks across queues depending on the
level of concurrency supported by the under-
lying mid/driver layers. The SCSI mid-layer,
for example, sets the lock pointer to the same
per adapter value for all request queues asso-
ciated with the devices connected to a given
host adapter. Unlike our patched 2.4 SCSI mid-
layer which serializes enqueuing per device,
this locking scheme serializes at a coarser per
adapter granularity.

A notion of command pre-building outside of
the queue lock and ahead of request processing
by the device has been considered for its po-
tential to improve throughput and interrupt re-
sponses, but it has not been explored entirely.
Choosing the right moment to prebuild is not
trivial—done too early, it would require re-
building on every subsequent merge; done too
late, e.g. at the time of actually scheduling a re-
quest, it takes up cycles in request processing
context which dilutes the desired effect.

9.3 Better per-queue tuning

Improved modularization at the generic block
level now enables better per-queue level tun-
ing and consideration of higher level attributes
for I/O scheduler performance under specific
configurations and workloads. There is support
for efficient I/O barriers in cases where corre-
sponding hardware support exists, which could
be useful for transaction oriented I/O.

9.4 A job to do – utilizing the framework

At this point, work remains to be done in terms
of modifying higher levels in the OS to make

Ottawa Linux Symposium 2002 404

optimum use of this new infrastructure. Pre-
liminary experiments running DM show that
the 2.5.17 kernel outperforms SBIR for reads
but does worse than SBIRV when readv is used
(Table 3. This is consistent with the current
state of implementation of the new block layer
where the readv path has not seen the bene-
fits of the bio structure. In fact, we can even
expect a slight degradation for small I/Os be-
cause the memory vector structure is inherently
a little more complex than the simple virtually
mapped buffer in 2.4. For small single segment
I/O the drivers end up with an added check for
the end of the array, and many of the BIO fields
become almost redundant.

Therefore, intelligent pre-merging at higher
levels makes sense in this context. A 1:1
mapping between buffer heads and BIOs is
not quite efficient. There is ongoing work
to rewrite some of the filesystem interfaces
to move in this direction. Andrew Morton’s
multi-page read and writeout patches [8] as-
semble large BIOs for pagecache pages (for as
many corresponding blocks that are contiguous
on disk) and submit them directly to the request
layer, bypassing buffer heads altogether.

From the perspective of raw/direct I/O, which
are the main areas of consideration in the cur-
rent paper, the relatively heavyweight kiobuf
infrastructure would have to be replaced by
something like the lighter kvec data structures
in Ben LaHaise’s asynchronous I/O patches
[6], which can support readv/writev operations
efficiently.

A kvec is pretty close to a bare abstraction of
a memory vector array of the form used in a
BIO, each tuple of the vector being referred to
as a kveclet. It is usually more useful to pass
around akvec_cb structure which refers to a
kvec and its associated callback data for I/O
completion purposes.

struct kveclet {
struct page *page;
unsigned offset;
unsigned length;

}

struct kvec {
unsigned max_nr;
unsigned nr;
struct kveclet veclet[0];

}

struct kvec_cb {
struct kvec *vec;
void (*fn)(...);
void *data;

}

A kvec can be mapped to BIO structures
for block I/O and similarly to equivalentskb
fragment structures in the case of network
I/O. A single kvec may be split across multi-
ple BIO structures (each pointing to the corre-
sponding section of thekvec), each of which
acts as a distinct completion unit when more
than one low level device requests are involved
in serving the I/O. A large user space buffer
(especially in the case of vectored I/O), might
even be mapped to a bigkvec a section at
a time, and appropriately pipelined for I/O
through multiple BIO requests to potentially
enhance throughput and latencies for partial
completions.

In the case of direct I/O, extents of non-
contiguous blocks would have to be mapped to
separate BIO units.

There also has been some discussion on the
maximum size of BIOs that may be pushed
down to the block layer, from the perspective
of avoiding chopping up an I/O unless it vi-
olates the underlying device limits. Because
this decision is more complex than just a mat-
ter of absolute size, and may even depend on

Ottawa Linux Symposium 2002 405

request queue state, Linus Torvalds has sug-
gested that drivers could supply agrow_bio
helper function to handle this. Further com-
plications arise in the case of layered drivers
like lvm/md/evms. Andrew Morton has pro-
posed a dynamicget_max_bytes interface
exported by drivers (cascaded down layered
drivers if required), to help build up appropri-
ately sized BIOs to avoid splitting by the lower
layers.

Observe that in 2.4 with fixed size (small)
buffer heads, the approach was to never split
a buffer, but include it as part of the request or
create a new request depending on whether it
could be fitted within the limits allowable for
the device in question. In 2.5, the BIO rep-
resents larger variable sizes, having variable
number of segments. Such a simplistic ap-
proach could result in underutilization of re-
quest slots when merging I/Os from different
sources. If a buffer exceeds the request size
which the device can handle, it breaks up the
request. However, splitting up a BIO for a cor-
rect fit requires an additional memory alloca-
tion. Some points of caution with regard to
such allocations at the block layer level have
been discussed in an earlier subsection. This is
why the question of constructing BIOs of right
size arises.

A suitable solution would have to take into
account that splitting is expected to be rel-
atively infrequent. Since the general di-
rection is to move towards merging early,
get_max_bytes() could turn out to be a
useful hint even for the corresponding cluster-
ing decisions. At the same time, it may not
always be feasible or efficient in practice to ab-
solutely guarantee elimination of the need to
split I/Os. Thus, a provision for splitting may
be required with due caution possibly with a
structured use of multiple (layered) mempools
and pipelined piecewise submissions to avoid
deadlocks.

10 Conclusion and Future Work

In this paper we have highlighted some of the
scalability and performance limitations of the
2.4 Linux kernel’s block I/O subsystem. Using
a decision-support benchmark that is represen-
tative of real-world enterprise workloads, we
have shown that the 2.4.17 kernel sees I/O re-
lated performance bottlenecks when large I/O’s
are done on raw devices. We systematically in-
vestigated these bottlenecks and proposed so-
lutions (as kernel patches) to alleviate them. As
a result of using these patches, the decision-
support workload sees an 233% improvement
in its metric of interest. The benefits of these
patches, all but one of which were written by
the authors, are further demonstrated through a
disk I/O microbenchmark and profiling data.

Most of the problems that we demonstrated
are seen because of the use of the buffer head
and kiobuf data structures. The new block I/O
layer being written for the 2.5 kernel looks very
promising as it addresses almost all the prob-
lems outlined here. Much work remains to be
done to efficiently utilize the new data struc-
tures introduced in 2.5. We will continue to
actively participate in the kernel community’s
efforts to improve the performance of both the
2.4 and 2.5 kernels for enterprise workloads.

11 Acknowledgments

We would like to thank the many people on the
lse-tech@lists.sourceforge.net
mailing list who provided us with valuable
comments and suggestions during the de-
velopment of these patches. In particular,
we would like to thank Ruth Forester for
helping resolve numerous issues with the
decision-support workload and Helen Pang for
collecting data on the disk I/O microbench-
mark. We also appreciate the excellent DB2
performance analysis provided by John Tran,

Ottawa Linux Symposium 2002 406

Karen Sullivan and James Cho.

This work was developed as part of the Linux
Scalability Effort (LSE) on SourceForge
(sourceforge.net/projects/lse).
All the patches mentioned in this paper can be
found in the “I/O Scalability Package” at the
LSE site.

This work represents the view of the authors,
and does not necessarily represent the view of
IBM.

References

[1] Suparna Bhattacharya. Design Notes on
Asynchronous I/O (aio) for Linux.
http://lse.sourceforge.net/io/aionotes.txt.

[2] Suparna Bhattacharya. Notes on 2.5
Block I/O Layer Changes.
http://lse.sourceforge.net/io/bionotes.txt.

[3] R. Bryant and J. Hawkes. Lockmeter:
Highly-Informative Instrumentation for
Spin Locks in the Linux Kernel. InProc.
Fourth Annual Linux Showcase and
Conference, Atlanta, Oct 2000.

[4] John Hawkes et. al (Silicon
Graphics Inc.). Kernprof. Available at
http://oss.sgi.com/projects/kernprof
/index.html.

[5] InfoWorld Test Center K. Railsback.
Linux 2.4 breaks the enterprise barrier.
http://www.infoworld.com/articles/tc/xml
/01/01/15/010115tclinux.xml.

[6] Benjamin LaHaise. Kernel Asynchronous
I/O Patches.
http://www.kvack.org/˜blah/aio.

[7] Larry McVoy. The Splice I/O Model.

[8] Andrew Morton. Multi-page writeout and
readahead patch. http://www.zip.com.au
/˜akpm/linux/patches/2.5/2.5.8.

[9] Sharon Snider. I/O Performance HOWTO.
http://www.tldp.org/HOWTO/IO-Perf-
HOWTO/index.html.

Trademarks

The following terms are trademarks or regis-
tered trademarks of International Business Ma-
chines Corporation in the United States, other
countries, or both:

IBM, DB2, ServeRAID

Pentium is a trademark of Intel Corporation in
the United States, other countries, or both.

Linux is a trademark of Linus Torvalds.

UNIX is a registered trademark of The Open
Group in the United States and other countries.

Other trademarks are the property of their re-
spective owners.

A Comparative Study of Device Driver APIs
Towards a Uniform Linux Approach

Wadih Zaatar and Iyad Ouaiss
Lebanese American University

Byblos, Lebanon
iyad.ouaiss@lau.edu.lb

Abstract

Linux Application Program Interfaces (APIs)
lack stability and standardization. There is
a need for a standard API for Linux device
drivers that allow backward compatibility
while easing the development of new drivers.
The advantage of standardizing the API is
to make the kernel core more robust and the
development of new drivers easier; however
the main challenge is performance-based. This
work starts by carefully studying the available
APIs for Linux as well as for other platforms.
Current solutions studied include the Uniform
Driver Interface (UDI), the Intelligent I/O
architecture (I2O), WinDriver, and APIs
implemented in Solaris, and Windows XP.
By listing the strengths and weaknesses of
available APIs, a proposal for a new Linux
API is constructed that defines a standard
interface, provides backward compatibility,
ensures kernel security, and handles errors,
uniform block sizes, buffering, etc.

1 Introduction

Device driver implementations have always
been an important field of study in the world
of operating systems from proprietary mod-
els of companies such as Sun and Microsoft

to providers of open source technologies such
as RedHat, Mandrake, Suse, essentially tar-
geted towards the Linux platform or NewBus
toward the Unix platform [OpSys] [LinDriv]
[NTDriv] [DrivDes]. Other solutions proposed
by some companies such as WinDriver, would
allow you to get a shareware Graphical User
Interface (GUI) to build your set of drivers with
prewritten code to get you started. Recently,
an interesting approach with a mixed hardware
and software solution named I2O comes with
another innovative concept that would be ex-
plained later in Section 3.1. Therefore, we can
see that there exists a multitude of different so-
lutions for the problem, each with its own set
of advantages and disadvantages.

This paper does not pretend to give a final so-
lution to the problem; it simply tries to clas-
sify all the currently available models into cat-
egories and proposes a draft of a work matrix
for an improved device driver interface. But
proposing a solution requires a small introduc-
tion on how device drivers operate in general
and Linux in particular:

A device driver is essentially a kernel com-
ponent, but is developed independently form
the rest of the kernel. Therefore, there should
be some kind of interfacing service between
the driver and the host operating system. A
standard implementation would have two in-
terfaces: The first one would communicate

Ottawa Linux Symposium 2002 408

with the hardware itself, namely the Driver-
Hardware interface and the second one would
take care of communicating with the operat-
ing system and of course the user, called the
Driver-Kernel interface. This is where the
problem really resides: Due to several causes
(architecture, OS and hardware differences), it
is really rare to find a piece of software to be bi-
nary portable between two different machines,
and thus nearly impossible to have some device
driver (which is after all just a small specialized
program) to run on different computers, run-
ning different operating systems. This is where
layering and abstraction come handy: by an-
alyzing all common components of devices,
one could come up with a standard, platform-
independent API that would group all repeti-
tive system calls. This solution has two main
advantages: unify device driver implementa-
tion, which will lead to faster development and
better code reuse, but also would guarantee on
the long run platform independence; and, in the
case of API upgrade would allow old device
drivers to benefit from the new API.

The following sections describe the currently
available API implementations, starting with
proprietary API with Microsoft and Sun, inde-
pendent implementations with WinDriver and
UDI, and finally, a new approach towards solv-
ing the problem with the I2O architecture that
encompasses both hardware and software com-
ponents. The final section will recapitulate all
advantages and disadvantages of every API im-
plementation, giving a skeleton for a work ma-
trix and proposing a primary set of steps that
will guide the development of a Linux device
driver API that meets the requirements set forth
in this paper.

2 Review of Software Approaches

The following section describes the different
API implementations for the most widely used

NtCreateFile

System Service Table

KiSystemService

Kernel Mode

User Mode

A
pplication

K
ernel32.dll

N
T

dll.dll

NtReadFile

Nt Close

Figure 1: Windows API Model

operating systems, namely Microsoft Windows
and Linux/Unix main implementations along-
side some third-party commercial and public
license developers.

2.1 Microsoft Windows API

Microsoft’s device driver API [MSModel1]
[MSModel2] were gradually enhanced with
every new OS release, reaching a good level of
stability due to two important factors: the first
being software maturity starting from Win-
dows 3.0 until the latest release of Windows
XP based on NT technology, and second due
to Microsoft’s device driver compliance pro-
gram that would take every device driver for
any new hardware, run it and make sure that it
is stable enough to be released with a “Certifi-
cate of Compliance” for it to be properly inte-
grated with the latest OS release. This signifi-
cantly reduced erratic OS crashes and restarts
that made Windows platforms untrustworthy
amongst the IT community. This model is de-
picted in Figure 1.

To be Microsoft-certified, a device driver has
to have the following features:

• Handle I/O requests in standard format.

Ottawa Linux Symposium 2002 409

• Be object-based following the Windows
model.

• Allows plug and play devices to be dy-
namically added or removed.

• Allow power management.

• Be configurable in terms of resources.

• Be multiprocessor code reentrant.

• Be portable across all Windows platforms.

From these major points, we can draw the fol-
lowing advantages:

• Windows drivers are portable between all
platforms, as part of their requirements.

• Customizable as they are object based.

• Support new technology such as PnP and
Power Management.

Are these really applied in reality? According
to Microsoft themselves, their device model
suffers the following:

• System instability: since they are run in
kernel mode, and thus not isolated from
one another or from the operating system,
a failure in any device driver would result
in system instability or a blue-screen.

• Little abstraction: the device driver inter-
face is very low level and as such, there is
little abstraction of the inner workings of
the exported functions. This means that
the device driver developer has to under-
stand more about the workings to the in-
terface than probably necessary.

• Plug and Play implementation: the PnP
implementation is entirely set on the pro-
grammer’s shoulders, requiring additional
synchronizations and thus extra overhead.

2.2 Sun Solaris API

In System V Release 4 (SVR4), the in-
terface between device drivers and the rest
of the UNIX kernel has been standard-
ized and completely documented [SunModel1]
[SunModel2]. These interfaces are divided into
the following subdivisions:

• The Device Driver Interface/Driver Ker-
nel Interface (DDI/DKI) that includes
architecture-independent interfaces sup-
ported on all implementations of System
V Release 4 (SVR4).

• The Solaris DDI that includes
architecture-independent interfaces
specific to Solaris.

• The Solaris SPARC DDI that includes
SPARC Instruction Set Architecture
(ISA) interfaces specific to Solaris.

• The Solaris x86 DDI that includes x86 In-
struction Set Architecture (ISA) interfaces
specific to Solaris.

• The Device Kernel Interface (DKI)
that includes DKI-only architecture-
independent interfaces specific to SVR4.
These interfaces may not be supported in
future releases of System V.

The Solaris 2.x DDI/DKI allows platform-
independent device drivers to be written for
SunOS 5.x based machines. These drivers
would allow third-party hardware and software
to be more easily integrated into the OS. Fur-
thermore, it is designed to be architecture in-
dependent and allow the same driver to work
across a diverse set of machine architectures.
The following main areas are addressed:

• Interrupt handling.

Ottawa Linux Symposium 2002 410

WinDriver
UserMode Library

User Application

User Driver Code

Kernel PlugIn

WinDriver

Kernel Plug−In

User
Performance

Critical

Functions

WinDriver − Kernel User Hardware

User Mode

Kernel Mode

Figure 2: WinDriver Model

• Accessing the device space from the ker-
nel or a user process (register mapping
and memory mapping).

• Accessing kernel or user process space
from the device (DMA services).

• Managing device properties.

2.3 WinDriver

The WinDriver API is a commercial, OS in-
dependent approach toward a common device
driver API [WDModel]. WinDriver has the fol-
lowing important features:

• Source code compatibility between all
supported operating systems: Windows,
Linux, Solaris and VxWorks.

• Binary code compatibility between all
Windows flavors (95, 98, Me, NT4, 2000,
XP).

• Supports numerous architectures (PCI,
E/ISA, and USB).

• Rapid device driver programming through
the availability of many wizards. These
wizards allow the device driver program-
mer, through a series of GUI-oriented
steps to build the skeleton of the driver

I/O RequestsApplication Programs

Drivers

Portable
Device

Hardware I/O Interface

UDI Environment

Operating System

Interfaces
System I/O

Configuration
Diagnostics
Error Handling
System Services
Interrupts

Computer CPU and I/O Hardware Interrupts

Figure 3: Uniform Device Driver Interface
Model

source code with initial procedure defini-
tion, global variables and program entry-
points and basic calls.

From these features, we can deduce the follow-
ing list of advantages:

• Cross platform compatibility and code
reuse: No need for re-writing new drivers
for the same hardware when porting to
different architectures.

• M inimal performance hit: WinDriver of-
fers a plug-in that would run performance
critical parts right into the kernel, thereby
achieving kernel mode performance.

• Easy drivers programming: WinDriver
supports generic code generation in sev-
eral programming languages, namely
C/C++ and Delphi.

2.4 Uniform Device Driver Interface

The Uniform Device Driver Interface (UDI) is
another initiative to create an architecture, plat-

Ottawa Linux Symposium 2002 411

form, and OS independent solution for device
drivers [UDIModel]; it is depicted in Figure 3.
Similar to WinDriver, UDI has the following
features:

• Platform neutrality, it abstracts all PIOs,
DMAs, and interrupt handling through a
set of interfaces that hide all architectures’
variations.

• Drivers are written in ISO standard C and
do not use any compiler specific exten-
sions.

• UDI imposes shared memory restrictions,
allowing system isolation of the driver
code from the remainder of the OS, im-
proving reliability and debuggability.

• Strict versioning allows evolution of the
interfaces while preserving full binary
compatibility of existing drivers.

The UDI device driver implementation is very
much similar to WinDriver; therefore one
could expect the following advantages:

• Cross platform compatibility, noting that
UDI supports a narrower range of operat-
ing systems.

• Performance is comparable to native I/O
drivers due to the fact that the code ex-
ecutes in kernel space, allowing minimal
performance degradation.

3 Review of Mixed Approaches

The following section presents a new approach
towards solving the device drivers’ incompati-
bilities: By proposing a software and hardware
components instead of a unique software ap-
proach.

OSM
* OS Specific
* OS Revision

Independent

Implementation−
Specific OS

Driver Code

Implementation−
Specific

(Host or IOP)
Code

Hardware

Traditional

Communication Layer

* Implementation−

Indepedent Layer

* Enables Node−Node
Communication

HDM

Hardware

Host

* OS Independent

* I/O Software

IOP

I2O Architecture

Figure 4: I2O Architecture Model

3.1 The I2O Architecture

The I2O Architecture model is depicted in Fig-
ure 4.

Contrary to the standard implementation that
relies on the host CPU to process all inter-
rupt requests, the I2O eliminates processing
bottlenecks by alleviating these tasks from
the processor and taking care of them di-
rectly [I2OModel].

The I2O defines three software layers:

• The OS Services Module (OSM), that
handles the communication between the
host CPU operating system and device
class.

• The I2O Messaging Layer that handles
communication between the OSM and
HDM in as standard way (see Figure).
The standard I2O messaging layer does
away the current requirement for OEMs
to develop multiple drivers for the same
device.

• The Hardware Device Module (HDM)
handles the communication between the
peripheral device and the I2O messaging

Ottawa Linux Symposium 2002 412

layer. The HDM is unique for each de-
vice. However, unlike a traditional device
driver, only one HDM is required because
it is independent of the host CPU operat-
ing system.

The I2O implementation offers the following
improvements over traditional I/O processing:

• Standardized extensible architecture that
is OS independent.

• Increased reliability and fault isolation to
improve stability.

• Provides optimized I/O and system per-
formance because the I/O process can be
managed directly.

4 Analysis

Based on the previous sections, we can draw
comparative measures that encompass all cur-
rently available solutions. The work matrix is
shown in Table 1.

The following criteria were selected to distin-
guish between all available solutions:

• Performance: It is an essential compo-
nent in any comparative study; however
the measurement factor was much debated
during the analysis of every solution. The
number of interrupts per second that could
be processed was finally selected. But due
to the difficult nature of the task, this work
is still taking an important amount of time
and still not completed. One important
note: The I2O group ceased operation and
it was not possible to get access to any I2O
based chips for testing.

• Security: This parameter describes the
various security-related issues in every so-
lution, memory-protection, and recover-
ability after a driver crash, etc. All four

software solutions specify in their imple-
mentation the need for memory protec-
tion.

• Compatibility: Despite the Microsoft re-
quirement that drivers should be upward
compatible. Some tests performed on
Microsoft Windows 2000 based drivers
would erratically crash the system if in-
stalled on Windows XP, which would
prove that these drivers still have compat-
ibility issues. WinDriver and UDI drivers
are still under test. The I2O alternative
seems excellent on paper but for the same
reason as described above, no tests were
performed.

• Portability: WinDriver is the most versa-
tile as it would run under most operating
systems and is fully source compatible, a
simple recompilation being enough. This
would be ideal for multi-OS based solu-
tions. UDI follows the lead with fewer
but still promising implementations. The
Windows and Solaris API models are pro-
prietary and as such are not portable.

5 Conclusion

This paper represents the results of a data col-
lection operation performed in order to ana-
lyze available device driver implementations
for several operating systems. Many parame-
ters still have to be exploited and carefully in-
vestigated. Most importantly, the performance
factor that would gear towards choosing one
solution over another is still being debated.
With a better understanding of device driver
APIs, the qualities and importance of each fea-
ture in the API and its role in the operating sys-
tem can be analyzed. The next step in this re-
search effort is to select a set of features that
can be bundled together in order to form a com-
pact, robust, and efficient Linux device driver
API.

Ottawa Linux Symposium 2002 413

Security Compatibility Portability Notes
Windows Microsoft Problems Windows, Generic

API Binary
Solaris Sun Yes SunOS Generic

API Binary
Win To be Yes All, Commercial

Driver tested Source
UDI To be Yes Most, Freeware

tested Source
I2O Hardware Hardware All, Discontinued

Independent

Table 1: Comparison Matrix

6 Acknowledgments

The authors would like to thank the students
who participated in this work: Jamal Maalouf,
Fady Matar, Naji Charbel, Francois Nader, and
Elie Hajj.

References

[OpSys] Andrew S. Tanenbaum,Modern
Operating Systems, 2nd Edition, Prentice
Hall. (2001).

[LinDriv] Alessandro Rubim and Jonathan
Corbet,Linux Device Drivers, 2nd
Edition, OReilly. (2001).

[NTDriv] Edward N. Dekker and Joseph M.
Newcomer,Developing Windows NT 4.0
Device Drivers, Addison Wesley
Longman. (1998).

[DrivDes] Introduction to Device Driver
Design. http://www.itpapers.com

/cgi/PSummaryIT.pl?paperid=

9103&scid=264

[MSModel1] Windows Driver Model:
Compatible Drivers for Microsoft
Windows Operating Systems.
http://www.itpapers.com/cgi

/PSummaryIT.pl?paperid=

20024&scid=273

[MSModel2] Windows Device Drivers
Architecture.
http://www.itpapers.com/cgi

/PSummaryIT.pl?paperid=

13052&scid=273

[SunModel1] Porting to Solaris 2.X, Sun
Whitepaper.
http://sunsite.nstu.nsk.su/sun

/inform/whitepapers.html

[SunModel2] An Engineering Tutorial on
Porting your Device Driver to Solaris
2.0, Sun Whitepaper.
http://sunsite.nstu.nsk.su/sun

/inform/whitepapers.html

[WDModel] Jungo Ltd.
http://www.jungo.com

/windriver.html

[UDIModel] Uniform Driver Interface,
Official Specification Documents
http://www.project-UDI.org

/specs.html

[I2OModel] Pauline Shulman,Overview of
the I2O Architecture. PC Developer
Conference. (1998).

GConf: Manageable User Preferences

Havoc Pennington
Red Hat, Inc.

hp@redhat.com, http://pobox.com/˜hp

Abstract

GConf is a system for storing user prefer-
ences, being deployed as part of the GNOME
2.0 desktop. This paper discusses the ben-
efits of the GConf system, the strengths and
weaknesses of the current implementation, and
plans for future enhancements.

1 Introduction

GConf started out very simply in late 1999, as
my first project at Red Hat. It was a straightfor-
ward response to concrete problems encoun-
tered while creating the GNOME desktop, and
designed to be implementable in a few months
by a programmer with limited experience (i.e.,
by me). Much of the current implementation
(let’s call it Phase One) was created at that
time.

GConf saw some limited use as part of the
GNOME 1.4 platform—specifically in Nau-
tilus and Galeon—but it wasn’t widely adopted
until recently, as part of GNOME 2.0. It has
been quite successful as a GNOME 2.0 com-
ponent, both as a labor-saving device for pro-
grammers and as a foundation for some of
GNOME’s UI enhancements.

This paper first presents an overview of Phase
One from a conceptual standpoint; then dis-
cusses the Phase One implementation. Then it
goes on to briefly describe some other systems
for managing user preferences, such as Intel-

liMirror and ACAP. Finally, it presents some
initial ideas for a Phase Two version of GConf.
Phase Two is very much a work-in-progress.

2 Motivation

Several years ago it was becoming obvious that
GNOME’s initial approach to storing prefer-
ences (a simple API for writing key-value pairs
to files) had a lot of limitations:

• It did not work for preferences that af-
fected or were manipulated by multiple
applications, because there was no way
for applications to know a setting had
changed. GNOME 1.x contains numerous
hacks to work around this, and apps have
to be restarted before certain preferences
take effect.

• Administration features were missing,
such as applying different defaults to dif-
ferent groups of users, or storing defaults
for many machines on one network server.

• From a programmer standpoint, ap-
plications were usually designed with
load_prefs() and save_prefs()
routines, and had a number of bad hacks
to update parts of the application when
preferences were modified. To avoid
this mess, a model-view design would be
ideal.

• We wanted features such as “Undo” and

Ottawa Linux Symposium 2002 415

“Revert To Defaults” that were compli-
cated to implement manually.

• We wanted a way to document each con-
figuration option, and present the docu-
mentation in generic tools for managing
preferences.

• To change the default setting for a prefer-
ence, it was necessary to edit each code
path that loaded the setting, and modify
its fallback in the case that the setting was
not present.

Some of these issues can be avoided by sim-
ple elaborations to the trivial file-based API,
but others require a more elaborate solution.
GConf set out to decide on the right thing to
do and then do it.

3 Phase One: Design

The first principle of the GConf design was to
keep it simple; it had to be implemented in only
a short time, and had to be comprehensible to
application developers.

The second principle of the design was to make
GConf a system for storing end user prefer-
ences. Support for system configuration (e.g.
Apache or networking) was explicitly excluded
from the list of requirements. Support for stor-
ing arbitrary data was also excluded.

3.1 Key-Value Hierarchy

From an application point of view, GConf
looks like a hierarchy of key-value pairs. Keys
are named as UNIX-file-like paths. Here are
the default settings for the GNOME CD player
for example, listed using thegconftool-2
utility:

$ gconftool-2 -R /apps/gnome-cd

theme-name = red-lcd
on-stop = 0
on-start = 0
device = /dev/cdrom
close-on-start = false

The key/apps/gnome-cd/theme-name
has a string valuered-lcd , the key
/apps/gnome-cd/close-on-start
has the boolean valuefalse , and so forth.

Each key may be writable or not writable; ap-
plications are expected to disable the GUI for
modifying a writable key. That is, if a setting
is locked down and not available to a particu-
lar user, it should be made insensitive (“grayed
out”).

The API for interacting with the key hierarchy
has a model-view design. That is, applications
receive a notification message when a key has
a new value; code in the application whichsets
a value need not have any relationship to code
which is affected bythe value.

The key hierarchy is process transparent; that
is, a change to the hierarchy made by one pro-
cess will be seen immediately by any other in-
terested processes as well. This avoids ad hoc
hacks for propagating settings changes across
the desktop, and is an essential feature when
writing single applications made up of multi-
ple processes.

A “symlinks” feature for the GConf hierar-
chy has been suggested several times, but links
(hard or symbolic) were deliberately left out of
the design because they create implementation
complexity. For example, notifying interested
applications when a key changes value would
require the ability to locate all symlinks point-
ing to the key that was modified.

Ottawa Linux Symposium 2002 416

3.2 Values

Values are limited to a fixed set of simple prim-
itive types: integer, double, UTF-8 string, and
boolean. Lists of each type are also allowed
(list of integer, etc.). Recursive lists (lists of
lists) are not allowed. Lists must be homoge-
neous in type. Phase One also supports pairs
of primitive types (as in Lisp pairs, withcar
andcdr), but applications have universally ig-
nored the pair type and in retrospect it was not
a useful feature.

The limitations on value types caused a lot of
controversy in the GNOME community. Some
developers wanted the ability to push structs
or other complex data structures into the con-
figuration database, as a programming conve-
nience. There are several reasons why GConf
does not support this feature.

First, serialized structs are essentially binary
blobs, a frequent complaint about the Windows
Registry. All GConf data is human-readable.
While a complex type system such as CORBA
could be used to create a generic serializer, and
a generic un-serializer, the process of manip-
ulating an arbitrary, possibly-recursive serial-
ized CORBA data type is much more complex
than the process of manipulating strings and
numbers. With the current GConf limitations,
it’s very easy to write scripts and tools that can
handle any possible GConf value.

Second, many of the use-cases presented for
storing arbitrary structs imagined using the
GConf API for storing application data, rather
than user preferences. For example, the
GNOME 1.x configuration file API was used
for “.desktop” files and the session manager
save file in addition to user preferences. But
in the requirements phase, GConf was limited
to preferences only, so this was not a concern.
Uses of the API that were storing preferences,
rather than data, rarely benefited from anything

beyond the primitive types.

Third, there are at least two simple
workarounds if you need a “struct” type,
which don’t have the disadvantages of actually
using a serialized struct: do the serialization
yourself and store a string, or use a directory
containing one key for each field in the struct.

Finally, the elaborate type system needed to
handle serialization of arbitrary structs would
mean either binding GConf tightly to a par-
ticular object/type system, or making up Yet
Another Type System, not something anyone
would like to see. This would limit our abil-
ity to “drain the swamp” (Jim Gettys’s words);
broadening the adoption of GConf Phase Two
outside of the GNOME Project will require the
client side library to be dead simple. If we
had a widely-adopted object/type system, as
with COM on Windows, using that object/type
system to store complex types might make
sense. But instead we have XPCOM, UNO,
CORBA/Bonobo, GObject, QObject, ad infini-
tum, and no one is undertaking a serious effort
to fix this problem.

I believe that the lack of a “struct serializa-
tion” API was a good decision on the whole.
It places slightly more burden on application
developers, but a good kind of burden; it forces
them to describe their application’s preferences
in clear, human-readable terms. And it de-
ters people from storing non-preferences data
in GConf.

3.3 Schemas

Each key in the GConf hierarchy is associated
with a schema. A schema contains metainfor-
mation about the key, including the following:

• The expected type of the key’s value.

• A short one-sentence description of the
key.

Ottawa Linux Symposium 2002 417

• A longer paragraph documenting the key
and its possible values.

• The name of the application that provides
the schema and uses the key.

• A default value to be used when the key is
not set.

The documentation strings and default values
can be localized.

The main schema-related design question was:
where are they stored, and how are the de-
fault values located by applications at runtime?
We went with the simplest solution: store the
schemas in the configuration hierarchy itself.
In addition to the normal primitive types (in-
teger, string), GConf keys can store a schema
value, containing the above metainformation.

Schemas are then associated with another key
by name. That is, each key in the hierarchy
may have the name of the key containing its
schema value associated with it. By conven-
tion, schemas are stored under a “/schemas ”
toplevel, using names that parallel the main
key hierarchy. So/schemas/foo/bar
might be the schema name associated with
/foo/bar .

When an application requests the value of
/foo/bar , the GConf system first checks
for a value at/foo/bar ; if none is found,
it checks whether a schema key is associ-
ated with /foo/bar ; finding the schema
key /schemas/foo/bar , it then looks
up the value of/schemas/foo/bar . If
/schemas/foo/bar stores a schema value,
the default value is read from the schema value,
and returned as the value of/foo/bar .

3.4 System Administrator’s View

The system administrator sees a somewhat
more complex picture of the GConf key/value

hierarchy than the application does. To appli-
cations, GConf appears to be a single hierar-
chy of key-value pairs. Moreover, applications
have no idea how the data in the hierarchy is
stored.

From an administrator standpoint, GConf gen-
erates its hierarchy by merging a list ofcon-
figuration sources. A configuration source is a
concrete storage location, with three important
attributes:

• abackend, i.e. which configuration source
implementation should be used. For ex-
ample, you might have a backend that uses
XML files, or one that uses ACAP.

• flags, most importantly “read-only” or
“read-write.”

• theaddress details, for a file-based back-
end this might be the location to write
files, for a network backend it might be
the server’s hostname.

Configuration sources are listed in a config-
uration file, /etc/gconf/2/path . Each
time an application asks for the value of a
key, GConf searches the configuration sources
in order until it finds a value, or runs out of
sources. When an application sets a new value,
that value is stored in the first writable source.
However, the set will fail if a non-writable
source earlier in the search path sets the value
already. This allows administrators to impose
mandatorythree settings.

The default GConf search path has three el-
ements: one read-only systemwide configu-
ration source intended to contain mandatory
settings, one read-write configuration source
in the user’s home directory intended to store
changes made by the user, and finally one
read-only configuration source at the end of
the search path intended to contain both sys-
temwide default values and schema values.

Ottawa Linux Symposium 2002 418

To impose a mandatory value, the administra-
tor sets that value in the read-only source at the
front of the search path; to provide a system
default, the administrator sets the default in the
read-only source at the end of the search path.
Factory defaults are kept in the schemas, so are
separate from site defaults.

The documentation strings found in schemas
are intended to assist administration tools in
presenting a reasonable interface for perform-
ing these kind of tasks.

4 Phase One: Implementation

Even with a fairly simple design, there were
some challenging implementation issues that
had to be addressed for Phase One. In sum-
mary:

• Process transparency; how to make all ap-
plications see the same hierarchy and de-
liver dynamic notification of changes?

• Caching; the GConf hierarchy contains
a fairly large amount of data in total, it
would be bad if each application had to
maintain its own cache of this data.

• Storing the hierarchy; a filesystem-like
data structure is fairly complex to store on
disk, balancing efficiency, robustness, and
so forth.

• Locking; you can’t have two processes
trying to modify the same file at the same
time.

4.1 Per-Home-Directory CORBA Server

The implementation of Phase One is to have
a small per-user daemon communicating with
applications via CORBA. CORBA was used

as a prebuilt IPC mechanism, for speed of de-
velopment. The definition of “user” in per-
user was “home directory”; the GConf dae-
mon holds a lock in the user’s home directory,
and if the user logs in to two machines at the
same time, the same daemon instance will be
shared between those machines (one machine
connects to the daemon on the other).

The per-user daemon has three functions:

• it serves as a global shared cache

• it serves as a global lock on the configura-
tion data

• since it processes all changes to the data,
it can notify applications of said changes

CORBA was not a great match for the network-
ing needs of the GConf daemon. All com-
munication between client and server needs
to be nonblocking; this can only be achieved
through the use of ORBit-specific nonstandard
CORBA features. CORBA is pretty much
overkill for this very simple IPC, and discour-
ages the adoption of GConf outside of the
GNOME Project.

Scoping the daemon per-home-directory
wasn’t the best decision either. One problem
is that fcntl() file locking doesn’t work so
well; most Linux distributions are shipping
buggy versions of nfs-utils that will leave
stuck locks in some situations, and some com-
binations of NFS client OS and NFS server
OS don’t work quite correctly. Due to rumors
of problems like this, the original GConf
implementation tried to use a home-brew
locking solution; but while that was portable,
it was also non-working, and duplicate copies
of the GConf daemon would often be created.

The per-home-directory solution was also un-
popular because it involves remote TCP/IP

Ottawa Linux Symposium 2002 419

connections (and open ports) between all ma-
chines where a user might log in using the same
home directory. This turned out to be inap-
propriate for many sites, especially those us-
ing AFS. It also involves enabling TCP/IP for
ORBit, meaning that a lot of programs are sud-
denly listening on open ports.

On a higher level, Owen Taylor pointed out that
definining “per-user” as “per-home-directory”
isn’t correct anyway; a user may have multiple
home directories, for example one on their lap-
top and one at work. You want preferences to
be associated with a real world human user, not
a specific login on a specific computer.

4.2 XML Backend

The GConf daemon dynamically loads back-
end modules that know how to read and write
configuration data to some persistent storage
location. Two backends were implemented for
Phase One, an XML backend and a Berkeley
DB backend. The DB backend was never en-
abled by default, and few users have tried it to
my knowledge. It stores the GConf hierarchy
in a single DB database file.

The XML backend stores a directory hierar-
chy on the filesystem that corresponds to the
GConf hierarchy, and in each filesystem direc-
tory stores an XML file containing GConf val-
ues. The general idea was to split the hierarchy
into multiple files (for robustness, and to avoid
having to parse a singe huge file on startup,
when relatively little of it might be used).

The XML backend’s approach is a little bit
messy, and inode-intensive. It’s also surpris-
ingly complicated to implement and has been a
noticeable source of GConf bugs.

However, in practice the XML backend has
worked reasonably well, now that it’s been de-
bugged; it is fairly scalable, assuming that a
single directory never contains a huge amount

of data. The problems of the XML backend
seems difficult or impossible to avoid while us-
ing human-readable text files—the alternative
design is to have one big file, which would re-
quire oceans of RAM to parse, and would put
all the user’s eggs in one basket.

5 Prior Art

GConf is hardly the first system for storing
preferences ever invented. It’s worth survey-
ing some of the other notable systems along-
side the Phase One design, to aid in planning
Phase Two.

5.1 Windows 95 Registry

The much-maligned registry really isn’t any-
thing complicated; it’s pretty much just a big
hash table. Though at least one entire book has
been written about it ([Petrusha]).

People like to compare GConf to the registry.
While GConf also stores key-value pairs, it has
little else in common with the registry:

• The registry stores systemwide configu-
ration, GConf contains only user prefer-
ences.

• The registry typically contains binary data
blobs, GConf goes out of its way to avoid
those.

• GConf keys are documented and clearly
named.

• The GConf design and application-visible
semantics do not expose a specific format
or location for the persistent data store.

• GConf provides mechanism for sys-
tem/workgroup defaults and mandatory
settings; the registry does not (but see the
next section on IntelliMirror).

Ottawa Linux Symposium 2002 420

• The registry lacks change notification; if
one application changes the registry, ad
hoc hacks must be used to notify other ap-
plications. Or the user has to reboot.

(Some of the above information may no longer
be accurate for newer versions of Windows; the
above is based on Ron Petrusha’s book.)

5.2 Windows 2000 IntelliMirror and Group
Policy

While the registry is boring, IntelliMirror at
least has good hype. Microsoft’s white paper
([Microsoft]) on IntelliMirror cites three prob-
lems addressed by the feature:

• “User Data Management”

• “Software Installation and Maintenance”

• “User Settings Management”

“User Data Management” means that Intel-
liMirror keeps a copy of a user’s documents
in a central network location. When the user
connects a machine to the network, their doc-
uments are copied to the local system. If the
user edits a document while disconnected, the
new document becomes the master copy and is
synced to the network later. This means that
documents are automatically backed up, and
available on any machine the user logs on to.

“Software Installation and Maintenance”
means that when a user logs on to a machine,
the software appropriate for that user gets
installed automatically. So users always have
the same applications available in their menus.

“User Settings Management” means that user
preferences (registry settings presumably) are
automatically synced to/from network storage
in the same way that documents and other
data are synced. Also, certain settings may be

locked down, and defaults may be established
for particular groups of user.

These three features are most useful in combi-
nation, because providing all three allows users
to easily move between machines, or switch to
a new machine when their old machine breaks.
Support for disconnected operation is a truly
useful feature of IntelliMirror that can’t be
achieved using NFS on UNIX. If you take your
laptop home, edit your preferences or a docu-
ment, then reconnect it to the network at work,
your changes will be automatically synced to
network storage.

The IntelliMirror process is driven by directory
services; Active Directory stores the informa-
tion about a user, including what software they
are supposed to have, where their data lives,
and so forth. Policies can be established for
particular workgroups and applied to all users
in those groups.

GConf needs to be part of an IntelliMirror-style
solution for Linux and UNIX operating sys-
tems, rather than an impediment to such a solu-
tion. Other existing components of the solution
might include Red Hat’s Kickstart, and filesys-
tems such as InterMezzo. For situations where
disconnected machines aren’t important, NFS
and AFS might also be useful solutions.

5.3 ACAP

RFC 2244 defines ACAP, or Application Con-
figuration Access Protocol. It seems that
ACAP never caught on, and is more or less
dead; the only server implementation is writ-
ten in ML, few if any applications support it,
and the web page doesn’t seem to have been
updated in years. ACAP was an attempt to do
almost exactly what GConf is supposed to do,
however, and is worth looking at. The RFC de-
scribes ACAP’s design goal thusly: “ACAP’s
primary purpose is to allow users access to

Ottawa Linux Symposium 2002 421

their configuration data from multiple network-
connected computers.” ACAP is a text-based
protocol similar to IMAP.

The ACAP RFC is somewhat vague, and
there’s not much in the way of implementation
code to look at, so some of my descriptions of
the system may be inaccurate.

Like GConf, ACAP defines a filesystem-like
hierarchical namespace. However, the con-
tents of a “directory” are (a lot) more compli-
cated than they are in GConf. A GConf direc-
tory contains entries, each of which is a name
and a primitive value. An ACAP “directory”
contains a difficult-to-explain object called a
“dataset.” [Troll] tries to explain datasets, as
the ACAP RFC itself isn’t very clear. They are
roughly speaking Yet Another Hash Table, but
with some twists.

A dataset can inherit from another dataset.
This feature allows system or workgroup de-
faults to be set up, much like GConf’s config-
uration source search path. However, it’s ap-
parently necessary to configure inheritance on
a per-dataset basis, which seems cumbersome.

ACAP datasets can have a “subdataset” asso-
ciated with them; as far as I can tell, the RFC
never explains the purpose or semantics of sub-
datasets.

ACAP has ACLs for settings, and quotas for in-
dividual users. ACLs allow settings to be made
read-only, in order to impose mandatory set-
tings. Quotas are useful for obvious reasons.

The concept of multiple users is visible to the
ACAP client application. ACAP also exposes
the inheritance chain (search path) for look-
ing up values. GConf keeps this information
purely in the configuration of the server; the
client sees only a single hierarchy.

ACAP provides server-side sorting and search-
ing, allowing clients to search through data

stored in ACAP without downloading all the
data.

Unlike GConf, the ACAP design goals include
storage for “lightweight data,” such as an ad-
dress book, in addition to preferences. GConf
is not intended to be used in this way; the as-
sumption is that users will have somewhere to
put documents and such anyway. By limiting
GConf to preferences only, a GConf configu-
ration source can realistically be locked down
entirely (no writable locations), and the GConf
design can assume that sending the value of a
key over the wire is a fairly fast operation. The
GConf implementation can be simple (does not
need to scale to large data values), and the de-
sign need not support a rich type system.

ACAP does not have a standard concept like
GConf’s schemas, though arbitrary attributes
can be added to a dataset. Keys in ACAP don’t
come with documentation as GConf keys do.

ACAP supports IMAP-like authentication
(SASL), so works nicely with Kerberos and
such.

The article ACAP vs. Other Protocols
([Wall2]) summarizes ACAP’s design as fol-
lows:

The key characteristics of ACAP
are:

• ACAP is designed to accom-
modate disconnected use

• ACAP is designed to allows
server data (and data structures)
to be writable by user/clients

• ACAP is designed to handle po-
tentially (though not necessar-
ily) large sets of data

• ACAP is designed to allow
granularity in access to data
through an Access Control List
mechanism

Ottawa Linux Symposium 2002 422

• ACAP is designed to allow per-
user storage of information (ac-
commodating problems of mo-
bile, disconnected, and "kiosk"-
model users)

• ACAP is designed to allow
client definition of data fields,
allowing user-side flexibility

• ACAP is designed with per-
user security and authenticated
operation states

• ACAP is structured to enable
server-side searching.

GConf needs to be modified to support many
of these design features. However, I would
not advocate using ACAP as-is; ACAP doesn’t
seem quite right, it is not compatible with the
current GConf client API, and because no one
else uses ACAP there’s little or no value to fol-
lowing an existing RFC. If a reasonable free
ACAP server implementation existed (vs. an
old one written in ML), it might be interesting
to use as the backend for GConf Phase Two.

6 Phase Two

6.1 Design Changes

The application-visible GConf model
has worked reasonably well so far. The
model/view architecture, process transparency,
filesystem-like hierarchical namespace, and so
forth are straightforward yet powerful. The
current architecture seems roughly correct in
terms of balancing simplicity and feature set;
much more complex, and people would not be
able to use it correctly, much simpler, and it
would not address all the problems that need
addressing.

However, the current GConfimplementation
needs a lot of work to scale beyond single-

user systems. Like ACAP, it should be client-
server oriented. Like IntelliMirror, it should
provide for disconnected operation. In gen-
eral, the Phase One implementation’s equation
of “user” with “home directory” was wrong;
users may have multiple machines, including
a laptop.

6.2 Implementation Changes

Phase Two should be mostly invisible to ap-
plications, in fact it could conceivably be done
without modifying the GConf ABI as shipped
with GNOME 2.0. The changes will all be in
the implementation.

6.2.1 Client-Server Architecture

In short summary, here is what I envision:

• The GConf daemon will become per-
user-login rather than per-home-directory.
(Side bonus: it can use a guaranteed-not-
to-be-on-NFS directory for locking.) It
will listen on a UNIX domain socket and
communicate with a simple, fast custom
protocol designed for “oneway” mode
(avoiding round trips).

• The client side of GConf will become as
trivial as possible; it will not use GLib or
CORBA, just a tiny custom protocol. The
current GConf client library will exist as
a GNOME-friendly API but will wrap the
more general API.

• More of the daemon’s functionality will
be moved to the loadable backends; in
particular, change notification will come
from the backend, instead of from the dae-
mon.

• The default backend will know how to
store data in two places; a local filesys-

Ottawa Linux Symposium 2002 423

tem cache, and a remote server. The lo-
cal cache will be used when disconnected.
On connection to the network, the lo-
cal cache is fully synced with the remote
server. While connected, it will sync on
a regular basis. For standalone systems,
the local cache is simply never synced.
(The name “cache” is somewhat mislead-
ing, since the cache never expires.)

• The remote server used by the default
backend has to be implemented. It will be
a system daemon, and will serve requests
from multiple users. It should support au-
thentication via SASL (and thus Kerberos,
etc.). The remote server is heavily in-
spired by ACAP.

The general goals are to move to a more se-
cure client-server architecture, support discon-
nected operation, encourage adoption outside
of the GNOME Project, increase robustness,
and improve performance.

One outstanding question is how to improve on
the current tree of XML files for storing the
GConf database. The tree of XML files is ro-
bust, but complex to implement and fairly inef-
ficient in terms of both space and speed.

6.2.2 Small Tweaks

In addition to the big-picture rearrangement,
there are a number of smaller features to be
creeped.

• Hints for interpreting values. This feature
adds a simple descriptive string such as
“keybinding” to a key, indicating that the
key’s value is to be interpreted in a partic-
ular standardized way. Generic configura-
tion tools can then provide a nicer UI for
editing the key.

• Atomic change sets. This feature allows
a block of changes to be made as a unit,
without exposing the intermediate state to
applications.

• Prompting for authentication. This fea-
ture means that backends have a way to
ask the user for passwords and other au-
thentication information.

• Clean up the C API a bit. The API has
various historical artifacts and just plain
mistakes, and better ideas have appeared
as it has become clearer how real applica-
tions use it. Most likely a new API will
be introduced alongside the old, and both
will be supported for a while.

• Convenience widgets for preferences di-
alogs. It’s nice to have “data-aware wid-
gets” for GConf, such as a text entry
box associated with a string value in the
GConf hierarchy.

• The server will probably need to enforce
a space quota on individual users to avoid
denial-of-service attacks.

• It might be nice to allow admins to de-
fine a separate configuration source search
path for a particular subtree of the GConf
hierarchy, instead of defining a single
search path for the whole thing.

• Searching through data needs to be imple-
mented on the server side, so that admin
tools can efficiently provide a search func-
tion.

7 More Information

For more information about GConf, including
an online copy of this paper (perhaps an up-
dated version), seehttp://www.gnome.org

/projects/gconf/ . To report bugs, see
http://bugzilla.gnome.org . To discuss
GConf, joingconf-list@gnome.org .

Ottawa Linux Symposium 2002 424

8 Acknowledgments

Many people have contributed to GConf. All
the hackers at Red Hat, especially Owen Tay-
lor and Jonathan Blandford, have given valu-
able feedback and design suggestions. Red
Hat deserves credit for supporting the initial
development of GConf when I first arrived at
“RHAD Labs” several years ago; Labs direc-
tor Michael Fulbright gave me the freedom to
work on GConf. Thanks are also due to Colm
Smyth at Sun for his contributions of code and
ideas, and to Sun Microsystems in general.

Dave Camp (now at Ximian) and Kjartan
Maraas tie for the honor of being the first out-
side contributors to GConf, according to the
ChangeLog. Since then many people have
helped out, too many to list here. Thanks to
everyone.

References

[ACAP] RFC 2244
http://asg.web.cmu.edu/rfc

/rfc2244.html (1997)

[Microsoft] Microsoft, Inc. White Paper,
Introduction to IntelliMirror
Management Technologies

[Petrusha] Ron Petrusha,Inside the Windows
95 Registry, O’Reilly and Associates.
(1996)

[Troll] Ryan Troll, ACAP Dataset Model
http://www.ietf.org/proceedings

/99nov/I-D

/draft-ietf-acap-dataset-

model-01.txt (1999)

[Wall] Matthew Wall,The Application
Configuration Access Protocol and User
Mobility on the Internet
http://asg.web.cmu.edu/acap

/white-papers

/acap-white-paper.html (1996)

[Wall2] Matthew Wall,ACAP vs. Other
Protocolshttp://asg.web.cmu.edu

/acap/white-papers

/acap-vs-others.html (1996)

A Directory Index for Ext2

Daniel Phillips

Abstract

The native filesystem of Linux, Ext2, inherits
its basic structure from Unix systems that were
in widespread use at the time Linus Torvalds
founded the Linux project more than ten years
ago. Although Ext2 has been improved and
extended in many ways over the years, it still
shares an undesireable characteristic with those
early Unix filesystems: each directory opera-
tion (create, open or delete) requires a linear
search of an entire directory file. This results in
a quadratically increasing cost of operating on
all the files of a directory, as the number of files
in the directory increases. The HTree direc-
tory indexing extension was designed and im-
plemented by the author to address this issue,
and has been shown in practice to perform very
well. In addition, the HTree indexing method
is backward and forward-compatible with ex-
isting Ext2 volumes and has a simple, compact
implementation. The HTree index is persis-
tent, meaning that not only mass directory op-
erations but single, isolated operations are ac-
celerated. These desirable properties suggest
the the HTree index extension is likely to be-
come part of the Ext2 code base during the
Linux 2.5 development cycle. hotel & travel
press photo archive audio key signing 2002
2001 2000 1999

1 Introduction

The motivation for the work reported in this
paper is to provide Linux’s native filesystem,
Ext2, with directory indexing, one of the stan-
dard features of a modern filesystem that it

has lacked to date. Without some form of
directory indexing, there is a practical limit
of a few thousand files per directory before
quadratic performance characteristics become
visible. To date, an applications such as a mail
transfer agent that needs to manipulate large
numbers of files has had to resort to some strat-
egy such as structuring the set of files as a
directory tree, where each directory contains
no more files than Ext2 can handle efficiently.
Needless to say, this is clumsy and inefficient.

The design of a directory indexing scheme to
be retrofitted onto a filesystem in widespread
production use presents some interesting and
unique problems. First among these is the need
to maintain backward compatibility with exist-
ing filesystems. If users are forced to recon-
struct their partitions then much of the con-
venience is lost and they might as well con-
sider putting in a little more work and adopt-
ing an entirely new filesystem. Perhaps more
importantly, Ext2 has proved to be more reli-
able than any of new generation of filesystems
available on Linux, in part due to its maturity,
but also no doubt partly due to its simplicity.
Ext2 has proved to be competitive with any of
the new filesystems in manipulating the rela-
tively small files and filesets (by today’s stan-
dards) that are common on typical installations.
Ext2’s suite of filesystem utilities which in-
cludes e2fsck for performing filesystem check-
ing and recovery, and debugfs for performing
manual filesystem examination and repair, is
particularly mature and capable. Finally, Ext2,
being Linux’s native filesystem, almost by def-
inition is the filesystem that gives the broadest
range of support for Linux’s many features.

Ottawa Linux Symposium 2002 426

The simplicity of Ext2’s design places a special
burden on the designer of a directory index-
ing extension to strive for a similar degree of
simplicity. The idea of adding BTree directory
indexing to Linux’s Ext2 filesystem has been
much discussed but never implemented, more
probably due to an aversion to complexity than
any laziness on the part of developers. Unfor-
tunately, a survey of implementations of direc-
tory indexing strategies in existing “big iron”
filesystems shows that the directory indexing
code by itself, is comparable in size to all of
Ext2. So a simple port of such code would not
achieve the desired results, and that would still
leave open the question of how to make the new
indexing facility backward compatible with ex-
isting Ext2 volumes.

In the event, with some luck, determination and
expert advice, I was able to come up with a
design that can be implemented in a few hun-
dred lines of code and which offers not only
superior performance with very large directo-
ries, but performance that is at least as good
as traditional Ext2 with small directories, and
not only backward compatibility with existing
Ext2 volumes, but forward compatibility with
pre-existing versions of Linux as well. In fact,
the new design uses the same directory block
format as Ext2 has traditionally used, and to
earlier versions of Linux, an indexed directory
appears to be a perfectly valid directory in ev-
ery detail.

2 Background

The earliest versions of Linux used the
Minix filesystem.[1] Recognizing its limita-
tions, Remy Card designed and implemented
the Extended Filesystem, BSD’s UFS. That de-
sign was improved and became the Second Ex-
tended Filesystem, or Ext2.

Ext2’s design is characterized by extreme sim-

plicity, almost to a fault. For example, certain
features that were planned for Ext2 were never
implemented, such as fragment support mod-
eled on UFS, and BTree directory indexing. In-
stead of adding features, Ext2 maintainers have
tended to concentrate on making the existing
features work better. Today Ext2 is well known
for its high degree of stability, and ruggedness
in the face of abuse. To some extent, the per-
haps subconscious philosophy of minimalism
can be credited for this. Nonetheless, as Linux
evolves it encounters ever-rising expectations
from its users, including those who have tra-
ditionally worked with “big iron” variants of
Unix and tend to measure the worth of Linux
by that yardstick. Pressure has increased to
address those areas where Ext2 does not scale
very well into enterprise-class applications.

Although there is a new crop of enterprise-
class filesystems appearing in Linux this
year—XFS and JFS, which were ported from
SGI’s Irix and IBM’s OS/2 respectively—there
exists a strong sentiment that Ext2 should
retain the role of Linux’s native filesystem,
both for pragmatic reasons such as its feature
set—by no accident well matched to Linux’s
requirements—and its stability. Perhaps there
is also an element of pride, since if anything
can be said to be the heart of Linux, it would
be its filesystem, Ext2. Whatever the rea-
son, motivation is strong to address the remain-
ing weaknesses that separate Ext2 from a true
enterprise-class filesystem. One of the most
obvious is the lack of any kind of directory in-
dexing: simple linear search is used, as it was
in the earliest days of Unix.

For some common operations, a linear direc-
tory search imposes anO(n2) performance
penalty where n is the number of files in a
directory. With n in the thousands, the ob-
served slowdown is very noticable. Typically,
enterprise-class filesystems use some form of
balanced tree indexing structure, which gives

Ottawa Linux Symposium 2002 427

O(Log(n)) performance for individual direc-
tory operations, orO(nLog(n)) across all the
files of a directory. Ext2 was expected even-
tually to adopt such a scheme and in fact some
provision was made for it in internal structures,
but none was ever implemented. That this was
never done should be ascribed to an aversion
to complexity rather than any laziness on the
part of Ext2 maintainers. After all, Ext2 in its
entirety consists of about 5,000 lines of code
and an implementation of a standard BTree al-
gorithm could easily double that.

At the Linux Storage Management Workshop
last year in Miami, Ted Ts’o described to
me some design ideas he had for a simpli-
fied BTree implementation. At the time, there
still seemed to be unresolved design issues
that could lead to significant complexity, so
implementation work was not begun at that
time. Some months later while describing
Ted’s ideas in a posting to a mailing list,
a fundamental simplification occurred to me,
namely that we could use logical addressing
for the BTree instead of physical, thus avoiding
any change to Ext’s existing metadata struc-
ture. Thus inspired, I went on to discard
the BTree approach, and invented a new type
of indexing structure whose characteristics lie
somewhere between those of a tree and a hash
table. Since I was unable to find anything simi-
lar mentioned in the literature I took the liberty
of giving this structure the name HTree, a hash-
keyed uniform-depth index tree.

After a week of intense development, and with
the assistance of my coworker Uli Luckas, I
managed to produce a prototype implementa-
tion with enough functionality to perform ini-
tial benchmarks. The measured results, which
Uli prepared for me in the form of a chart,
were described in a post to the Linux Ker-
nel mailing list that same day.[8] Aided by
the lopsided relationship betweenO(n2) and
O(nLog(n))complexity, I was able to show a

spectacular 145-times improvement[5] against
standard Ext2, for a test case which I had of
course chosen carefully. Whatever my bias, the
performance improvements in practice were
real and measurable. Suddenly Linux’s vener-
able Ext2 no longer seemed to be on the verge
of extinction in the face of competition from a
new crop of enterprise-class filesystems.

The original prototype achieved its perfor-
mance gains using a degenerate index tree con-
sisting of only a single block. In the follow-
ing months I carried on further development,
incorporating many suggestions from Andreas
Dilger, Ted and others, to finalize the disk for-
mat and bring my prototype to the a stage
where it could be tested in live production test-
ing. At this time, I, together with members of
the Ext3 development team (Stephen Tweedie,
Andrew Morton and Ted Ts’o) am preparing to
incorporate this feature into Ext3, which task
should be completed by the time this paper is
published.

3 Data Structures and Algorithms

HTree Data Structure

A flag bit in a directory’s inode indicates
whether a directory index is indexed or not. If
this bit is set then the first directory block is to
be interpreted as the root of an HTree index.

Given the design goal that HTree-indexed di-
rectories appear to preexisting versions of
Linux as normal, unindexed directory files, the
structure of an HTree every directory block is
dictated by the traditional Ext2 directory block
format. If this were not the case, then a vol-
ume with directories created with HTree in-
dexes would appear to have garbage in direc-
tories if mounted by an older version of Linux.
Fortunately, it is possible to place an empty di-
rectory entry record in a block which is actu-

Ottawa Linux Symposium 2002 428

ally an HTree index constructed so that the en-
tire block appears to be free when interpreted
as an Ext2 directory block, yet only the first 8
bytes are actually used. This leaves the remain-
der of the block free for HTree-specific struc-
tures.

The root of an HTree index is the first block of
a directory file. The leaves of an HTree are nor-
mal Ext2 directory blocks, referenced by the
root or indirectly through intermediate HTree
index blocks. References within the directory
file are by means of logical block offsets within
the file. The possibility of using direct physi-
cal pointers was considered for reasons of ef-
ficiency, but abandoned due to the onerous re-
quirement of incorporating special handling for
such pointers in many parts of Ext2 outside the
directory handling code. Luckily, it turned out
that with Linux’s recent change to logical in-
dexing of file data, logical block pointers are
no less efficient than physical ones.

An HTree uses hashes of names as keys, rather
than the names themselves. Each hash key ref-
erences not an individual directory entry, but a
range of entries that are stored within a single
leaf block. An HTree first level index block
contains an array of index entries, each con-
sisting of a hash keys and a logical pointer to
the indexed block. Each hash key is the lower
bound of a all the hash values in a leaf block
and the entries are arranged in ascending or-
der or hash key. Both hash keys and logical
pointers are 32-bit quantities. The lowest bit of
a hash key is used to flag the possibility of a
hash collision, leaving 31 bits available for the
hash itself.

The HTree root index block also contains an
array of index entries in the same format as a
first level index block. The pointers refer to
index blocks rather than leaf blocks and the
hash keys give the lower bounds for the hash
keys of the referenced index block. The HTree

root index also contains a short header, provid-
ing information such as the depth of the HTree
and information oriented towards checking the
HTree index integrity and such other functions
as specifying which of several possible hash
functions was used to create the directory.

Each index entry requires 8 bytes, so allowing
for a 32 byte header, a single 4K index block
can index up to 508 leaf blocks. Assuming
that each leaf block can hold about 200 entries
and each leaf block is 75% full, a single index
block can index about 75,000 names. A second
index level is required only for very large di-
rectories, which can accommodate somewhat
more than 30 million entries. A third level
would increase capacity to over 11 billion en-
tries. Such a large number of directory entries
is unlikely to be needed in the near future, so
the current implementation provides a maxi-
mum of two levels in the index trees.

Hash Probe

The first step in any indexed directory opera-
tion is to read the index root, the first block of
the directory file. Then a number of tests are
performed against the header of the index root
block in an attempt to eliminate any possibility
of a corrupted index causing a program fault
in the operating system kernel. It is intended
that the detection of any inconsistency would
cause the directory operation to revert to a lin-
ear search. In this way the user is given the best
possible chance to access data on a corrupted
volume. This mechanism also allows for cer-
tain changes to be made to the index structure
in the future; for example, more than two lev-
els might be allowed in the tree, while still al-
lowing earlier versions of the directory index
code to access the directory. Should such an
inconsistent index be detected an error flag is
set in the filesystem superblock so that appro-
priate warnings can be issued and the directory
index can be automatically rebuilt by the fsck

Ottawa Linux Symposium 2002 429

utility.

Next the hash value of the target name is com-
puted, and from that a determination is made
of which leaf block to search. The desired leaf
block is the one whose hash range includes the
hash of the target entry name. Since index en-
tries are of fixed size and maintained in sorted
order, a binary search is used here. The format
of an index entry is the same whether it refer-
ences a leaf block or an interior index node, so
this step is simply repeated if the index tree has
more than one level.

As the hash probe descends through index en-
tries an access chain is created, for use by the
lookup and creation operations described be-
low. Finally, the target block is read.

Entry Lookup

Once a target leaf block has been obtained
lookup proceeds exactly as without an index,
i.e., by linearly searching through the entries in
the block. If the target name is not found then
there is still a possibility that the target could
be found in the following leaf block due to a
hash collision. In this case, the parent index is
examined to see if the hash value of the succes-
sor leaf block hash has its low bit set, indicat-
ing that a hash collision does exit. If set, then
the hash value of the target string is compared
for equality to the successor block’s hash value,
less the collision bit. If it is the same then the
successor leaf block is read, the access chain
updated, and the search is repeated.

If the leaf block happens to be referenced by
the final index entry of an index block then the
successor hash value is obtained from the par-
ent index block, which has already been read.
If the possibility of a collision with the target
exists then the successor index block will be
read as a prelude to reading the successor leaf
block.

Although it sounds messy, the resolution of
hash collisions described here is accomplished
in just a few lines of code. Furthermore, it is
very efficient to determine whether a hash col-
lision with the target string could exist. There-
fore, the common case where no collision ex-
ists can be checked for without any significant
overhead. With a hash range of 31 bits colli-
sions will occur very rarely even in large direc-
tories, and collisions that lie on either side of a
block boundary will be rarer yet.

In summary, once the hash probe step has iden-
tified a leaf block to search, the target name
will always be found in that block if it exists,
except in the unlikely event its hash collides
with that of an entry in a successor block. Typi-
cally, then, the number of blocks that need to be
accessed to perform a lookup is two—the index
and the leaf —or three, for extremely large di-
rectories. Because the index tree consists of a
very small number of blocks, even for large di-
rectories, it is a practical certainty that they will
all be retained in cache across multiple opera-
tions on the same directory.

Entry Creation

Except for the leaf splitting operation—
described separately below—creation of en-
tries is simpler than lookup. The target leaf
block in which the entry will be created is lo-
cated as for a lookup operation (and with ex-
actly the same code) then, if there is sufficient
space, the entry is created in that block as in
unindexed Ext2. If the target block has insuf-
ficient space then the block is first split, as de-
scribed below, and the entry is created in either
the original block or the new block, according
to its hash value.

Entry Deletion

Deletion of a directory entry is accomplished
in exactly the same way as with no index: the

Ottawa Linux Symposium 2002 430

entry is located via a lookup operation, and
marked as free space, merging it with the pre-
ceding directory entry record if possible.

It is possible that, after a large number of dele-
tions and creations in a directory, a significant
amount of free space could accumulate in the
blocks which are indexed by only a narrow
range of hash values. In such a case, it is
would be desirable to coalesce some adjacent
blocks. So far, no form of directory entry coa-
lescing has been implemented in Ext2 and this
has caused few problems, if any. However, it
is unknown at this time how prone the HTree
algorithm is to fragmentation so it may turn
out to be necessary to implement coalescing
sooner rather than later, as opposed to relying
on the fsck utility.

Splitting Leaves and Index Blocks

Splitting a leaf block is the most complex step
in the HTree algorithm, accounting for some-
what more than half the lines of code in the im-
plementation. Nonetheless, there is little here
that is subtle or difficult.

Splitting a leaf block requires moving approx-
imately half the contents of the original to a
newly created block such that the original en-
tries are partitioned into two ranges of hash val-
ues. The two ranges are distinct, except that the
highest hash value of the lower range may be
the same as the lowest hash value of the upper
range. This exception is made necessary by the
possibility of hash collisions.

Since entries are stored unsorted in leaf nodes,
the first step of the partitioning is a sort. First,
all the entries in the block are scanned and a
hash value is computed for each one. The entry
locations and hash values are stored in a map,
and this map is sorted rather than the entries
themselves. The sort (a combsort) executes in
O(nLog(n)) time wheren is the number of en-

tries. It has been suggested to me that the par-
titioning could be done inO(n) time, but this
is true only if we are willing to pick ana pri-
ori pivot value for the partition. In any event,
the splitting occurs relatively rarely—for 4K
blocks, less than once per hundred creates—
and the sort is efficient.

In the current implementation, leaf blocks are
always split at the halfway point in terms of
number of entries, which is not entirely opti-
mal. At the expense of somewhat more com-
plexity the split point could be chosen in terms
of total data size and could take account of
the knowledge of which of the two blocks a
new entry will be inserted into. Currently, the
lowest hash value in the upper range is always
chosen as the lower bound of that range. An
improved strategy would use the hash value
which is exactly between the lower bounds of
the two adjoining hash ranges whenever pos-
sible, dividing up the hash space more evenly.
These two improvements would allow the the-
oretical 75% average fullness of leaf blocks to
be more closely approached.

After choosing the split point the entries of the
upper hash range are copied to the new block
and the remaining entries are compacted in the
original block. This is done with the aid of the
sort map described above. Some complexity in
the step arises from the desire to carry out this
operation within the space of the two blocks
involved plus a small amount of stack space,
so no working storage needs to be allocated.

Having split the entries, a new index entry con-
sisting of a pointer to and lower hash bound of
the new leaf block is inserted into the parent
index. This may require that the parent index
block be split or, if the index block is the root,
a new level is added to the tree. Since only
two levels of index are supported the recursion
does not go further than this in the current im-
plementation.

Ottawa Linux Symposium 2002 431

The lowest bit of the hash value of the new
leaf block is used to flag the relatively rare case
where the split point has been chosen between
two entries with the same hash value. This bit
forms part of the new leafs hash value and is
carried naturally through any recursive split-
ting of index blocks that is required. So, as far
as entry creation is concerned, just two lines
of code are required to handled the messy-
sounding problem of hash collisions in entry
creation. (A few more lines are required to
handle collisions on lookup.) As a side note, I
did manage to conceive and implement a much
more complex and hard to verify solution to
this hash collision problem, which attempted
to avoid splitting apart entries with equal hash
value. Then I realized that the rarity of the
event meant that the simple approach could
be used with no significant impact on perfor-
mance. In general, it is impossible to guarantee
that colliding entries will never have to be split
between blocks, since we may be so unlucky
as to have a large number of strings hash to the
same value.

Splitting an index block is trivial compared
to splitting a leaf. Half the index entries are
copied to a newly allocated index block, the
count fields of block blocks are updated, and
an index entry is created for the new block in
the same way as for a new leaf block. Adding
a new tree level is also trivial: the entries con-
tained in the root index are copied to a new
block and replaced by an index entry for the
new block. In the current implementation,
should the root of a two level tree be found
to be full then the index is deemed to be full
and the create operation will fail. At this point
the directory would contain several tens of mil-
lions of entries or the index would have be-
come badly fragmented. Though neither pos-
sibility is considered likely, both can be ad-
dressed by generalizing the implementation to
N levels, and the second could be corrected
by adding an index-rebuilding capability to the

fsck utility, or by implementing a coalesce-on-
delete feature as described in the penultimate
section of this paper.

After all necessary splitting and index updating
has been completed, and appropriate working
variables updated, a new directory entry is cre-
ated in the appropriate leaf block in the same
way as for unindexed Ext2.

4 Comparison to Alternatives

In this section I briefly examine three alterna-
tive directory index implementation techniques
that offer similar functionality to HTrees. All
three of these techniques have been used suc-
cessfully in other filesystems, but each of them
has some flaw that makes it less than perfect for
Ext2’s requirements and design philosophy.

BTrees

The BTree (“balanced tree”) algorithm offers
good average and worst case search times with
reasonably efficient insertion and deletion al-
gorithms. Some variation on the BTree struc-
ture is typically the choice for a directory in-
dexing design, and indeed BTree indexing is
used in at least a number of Linux’s supported
filesystems.

Linux’s ReiserFS[9] uses B*Trees which of-
fer a 1/3rd reduction in internal fragmentation
in return for slightly more complicated inser-
tions and deletion algorithms. Keys in Reis-
erFS BTrees are fixed-length hashes of the in-
dexed strings, therefore duplicate keys are al-
lowed to accommodate key collisions. and the
B*Tree algorithms are modified accordingly.
SGI’s XFS uses B+Trees with hashed keys.
IBM’s JFS (now ported to Linux) uses B+Trees
with full-length key strings in the leaf nodes
and minimal prefixes of the keys in the interior
nodes. This variant is called a Prefix BTree.

Ottawa Linux Symposium 2002 432

Though directory performance is seldom
specifically tested, all three of these filesystems
are known for their good performance with
large directories. Two of these three filesys-
tems use hash directory keys for the same rea-
son HTree uses them: the small fixed key size
gives a high branching factor and thus a shal-
low tree.

The main difference between an HTree and a
BTree is that the leaves of an HTrees are all at
the same depth. Leaf nodes do not have to be
specially marked and rebalancing is unneces-
sary, saving considerable complexity. A sec-
ond distinction is the an HTree has one index
entry for each leaf block whereas a BTree has
one index entry for each directory entry. This
means that an HTree has far fewer index blocks
than a BTree and is therefore roughly one level
shallower than a BTree with the same number
of entries. In fact, the high branching factor
and block granularity together make it improb-
able that an HTree will ever need to have more
than two index levels, which are sufficient to
contain several tens of millions of entries.

As names are inserted into and deleted from
a BTree it may happen that some of the leaf
nodes end up significantly further from the root
than others. If such imbalance becomes too ex-
treme then average search times may begin to
suffer. To combat this, BTree algorithms incor-
porate rebalancing steps that detect excessive
imbalance resulting from an insert or delete op-
eration and correct it by rearranging nodes of
the tree. Such rebalancing algorithms can be-
come complex in implementation, especially
when hash key collisions or additional require-
ments of B+Trees and B*Trees need to be han-
dled.

In summary, the various forms of BTrees have
all the functionality required for a directory in-
dex, but because of the rebalancing algorithms,
are more complex to implement than HTrees.

No clear advantage is offered in return.

Hash Tables

A normal hash table is a linear array of buckets,
and the hash key directly indexes the bucket
which is to be searched. Thus, finding the cor-
rect bucket to search is very fast. The chief
drawback is that the hash table’s size be cho-
sen to be neither too large nor too small. A
hash table that is too large will waste space and
one that is too small will cause many collisions.
Filesystem directories tend to vary in size by
many orders of magnitude, so choosing an ap-
propriate size for a hash table is problematic.
This problem can be solved by allowing the
hash table to grow as the number of strings in
the hash table increases. When the hash table
passes a certain threshold of fullness its con-
tents are transfered to a larger table, an oper-
ation called “rehashing.” If an integral factor
is used for the expansion then hash values do
not need to be recomputed and the process is
efficient.

A linear hash table with a rehashing opera-
tion is thus seems a promising avenue to ex-
plore for a directory index. The rehash opera-
tion is mildly unappealing for filesystem use—
how to store the hash table—how to represent
collisions—can’t use pointers in the objects—
interaction with collisions and rehashing . . .

Cached Index

The above-mentioned structural problems with
hash tables can all circumvented neatly if the
hash table is not persistent on disk but is in-
stead constructed each time the directory is
opened. This approach has been tried with
good results by Ian Dowse[7].

Although the index can be maintained incre-
mentally it must be initially constructed in its
entirety so that the file creation operation can

Ottawa Linux Symposium 2002 433

provide the necessary guarantee of uniqueness.
This gives rise to two problems. First, starting
with a cold cache the first access to any direc-
tory forces all blocks of the directory be read,
even if only a single entry needs to be accessed.
Thus, randomly accessing files in a large vol-
ume containing a large number of directories
will be significantly slower than with a persis-
tent index, until the cache has been fully ini-
tialized. This could visibly affect latency for an
application such as a web server. Second, there
is the requirement to cache hash tables for all
directories accessed. It is not difficult to con-
struct a case where a single file is accessed in
each directory of a volume, cyclically. With a
sufficiently large volume this must cause cache
thrashing. Either of these problems could be
exploited by a malicious user, and either could
cause spikes of performance degradation on
certain applications.

An advantage of the cached index approach
is that the implementor is relieved of respon-
sibility for maintaining structural compatibil-
ity of the index format across future revi-
sions. A persistent index can be added at
a later date, buying time to study and per-
fect design alternatives. The disadvantages of
a cached index—cache thrashing and latency
problems—do not affect the common cases un-
duly. Most users will be pleased with the af-
forded performance increase as compared to
linear directory searching. However, if a per-
sistent index design is available which per-
forms well and does not have the disadvantages
of a cached index, then it is hard to see why it
should not be adopted.

In summary, the cached index approach is con-
sidered to be a worthwhile acceleration strat-
egy, the value of which lies in providing per-
formance enhancement for common cases over
the short term.

5 Hashing

Hashing, in its specific application to directory
indexing, is a subject to which an entire paper
should be devoted. Here, I will merely touch
on a few of the relevant details.

The most important goal of a hash function is
to distribute the output values across the out-
put range. Secondary goals are speed and com-
pactness.

Uniformity of distribution is especially impor-
tant to the HTree algorithm. A nonuniform
hash function could lead to very uneven split-
ting of the hash key space, which could dra-
matically increase the danger of directory frag-
mentation. It should be noted that some di-
rectory index designers have sought to exploit
nonrandomness in hash functions, with a view
to improving cache coherency for operations
applied across entire directories. It is my opin-
ion that such a goal is difficult to attain and
in any event imposes a needless burden on the
user. A better strategy is design the directory
operations to be essentially as efficient with a
random hash as with a favorably chosen non-
random hash.

As part of the development process of the
HTree indexing code I examined many hash
algorithms, with the assistance of a number
of others. Surprisingly, I found most hash al-
gorithms in common use to be flawed in fun-
damental ways. The most common flaw I
found is a reliance on randomness in the in-
put string for randomness of the resulting hash
value. When tested with nonrandom input
strings such as names varying only in their last
few characters, such hash function tend to pro-
duce very poorly distributed results. Unfortu-
nately, nonrandom strings are all too common
in directory index applications.

As anad hoctest of the effectiveness of var-
ious hash functions I implemented a small

Ottawa Linux Symposium 2002 434

userspace program that creates a large number
of directory entries with nonrandom names;
specifically, names that are identical in their
first N characters, with a linearly increasing
counter appended. After creating the entries
I computed statistics on the leaf nodes to de-
termine how evenly filled they were. In gen-
eral, only one statistic matters: average full-
ness. In theory, perfectly uniformly distributed
hash values would result in all leaf nodes being
75% full. In practice, I have seen as high as
71% average fullness and as low as 50%, the
worst possible result.

As a result of this testing process I made the
following empirical observations:

• If any step in a hash algorithm loses in-
formation then a final “mixing” step that
attempts to improve randomness cannot
repair the damage, and the result will be
a poor distribution. The hash algorithm
must attempt to use all information in the
input string as fairly as possible.

• Where the hash value is built using a byte
at a time from the input string, it is desir-
able that each byte affect the full range of
bits of the intermediate result.

• CRC32 produced relatively poorly dis-
tributed results, apparently by design: it
is not supposed to produce uniformly dis-
tributed results, but to detect bursts of bit
errors.

• The best performing algorithms where
based on theoretically sound pseudoran-
dom generators, where at each step the
random value is combined with a portion
of the input string and used as the seed
value for the next step.

After a number of marginally succesful exper-
iments I hit on the idea of using a linear shift

feedback register to generate a pseudo-random
sequence to combine progressively with the
input string. At each step, a character is
taken from the input string, multiplied by a
relatively prime constant andxored with the
current value of the pseudorandom sequence,
which forms the seed for the next step. What-
ever its theorectical basic, or lack thereof, this
hash function produced very good and uniform
results.

Later I invested some time surveying hash
functions from the literature and around the
web. None that I tested was able to outper-
form my early effort, to which I gave the name
“dx_hack_hash”. Interestingly, the hash func-
tion that came nearest in its ability to generate
consistently uniform random results was ob-
tained from the source code of Larry McVoy’s
BitKeeper source code management system. It
too, is based on a pseudo-random number gen-
erator, although of a slightly different kind.
The performance of various hash functions and
associated theorectical basis needs to be inves-
tigated further.

The HTree index currently relies on the
dx_hack_hash hash function. It is necessary
to subject this apparently well performing hash
function to rigorous testing before the Ext2
HTree directory extension enters production
use, because, in a sense, the hash function re-
ally forms part of the ondisk data structure. So
it must perform well right from the start.

To accomodate the possibility that the initially
adopted hash function might prove to be in-
adequate in the long run, either because weak
spots in its performance are discovered or a
superior hash function is developed, a simple
scheme was devised whereby a new hash func-
tion could be added to the HTree code at a
later date, and the old one retained to be used
with any directories originally created with that
hash. The newly incorporated hash function

Ottawa Linux Symposium 2002 435

would assigned an ID number, one higher than
the hash function before it, and each directory
created thereafter would have the ID of the new
hash function recorded in its header, so that
any subsequent accesses to the same directory
would use the same hash function.

Security: Guarding Against Hash Attacks

Modern computer systems must be proof not
only against failure in normal course of oper-
ation, but when manipulated by a determined
attacker with malicious intent. Where a hash
algorithm is being used, if the attacker knows
the hash algorithm then they might be able to
induce a system to create a large number of di-
rectory entries all hashing to the same value,
thus forcing long linear searches in the direc-
tory operations. It is conceivable that an ef-
fective denial of service attack could be devel-
oped by this means. Or perhaps the attacker
would be able to fragment an HTree directory
intentionally by creating a series of names all
hashing to a given value until the block splits,
then deleting the names and repeating with a
new series hashing to an immediately adjacent
value.

It turned out to be possible to devise a method
that prevents an attacker from predicting the
hash values of strings, even if the attacker has
access to the source code and knows the al-
gorithm. This method relies on the hash al-
gorithm having at least one variable parame-
ter that can be randomly generated at the time
the directory is first created. This generated
parameter is stored in the root index block
and used for every operation on that directory.
Since the attacker cannot predict the value of
the random parameter, they cannot carry out
the attack.

It is open for consideration whether this level
of paranoia is justified.

6 Further Work

Further work is planned in number of areas in-
cluding coalescing of partially empty directory
blocks, improvements to cache efficiency for
directory traversal operations on very large di-
rectories.

Coalescing

Traditionally, Ext2 has never performed any
kind of coalescing on partially empty directory
blocks. On the other hand, Ext2 directories are
seldom very large, in part due to its poor per-
formance on large directories. The larger di-
rectories made practical by efficient indexing
make the issue of coalescing more important.

Coalescing presents a problem in that it is an
inherently nonlocal operation. It is not desir-
able to impose a requirement of examining sev-
eral neighboring blocks at each deletion step
to see if they can be coalesced. I felt that the
operation could be made much more efficient
by recording some information about the full-
ness of each leaf block, directly in the index. It
would then be possible to test neighbor blocks
for suitability for coalescing without having
the leaf blocks themselves in memory. To be
effective, just a few bits of descriptive infor-
mation would be needed. At the same time, it
is clear that 32 bits is a far larger range than
will ever be required for the logical blocks of a
directory. Accordingly, I set aside the top 8 bits
to be used as hints to help accelerate directory
block coalescing, should this feature be imple-
mented.

For forward compability these high order bits
are masked off by the current code. This
means that, should a volume with indexes cre-
ated by a later version of the indexing code
be remounted by an earlier version that knows
nothing about coalescing, the advisory bits will
simply be ignored. The later code will have to

Ottawa Linux Symposium 2002 436

accommodate the possibility that the advisory
bits may be wrong, but since this is just an op-
timization that does not present a serious prob-
lem.

Coalescing applies to the hash bucket divisions
as well as to the data of leaf blocks. In other
words, if enough insertions and deletions were
performed in a directory the hash space could
be cut into many small fragments. In turn, leaf
blocks corresponding to the small fragments of
hash space would likely be underfilled. This
could lead to significant growth in the size of
a directory. In practice, this has not been ob-
served. Accordingly, further work on coalesc-
ing has been deferred for the time being.

Cache Efficiency

Tests using a directory of one million files on a
machine with 128 MB of memory showed that
mass file deletion was slower than mass file
creation by roughly a factor of four, whereas
for smaller directories (below a few hundred
thousand entries) deletion was roughly as fast
as creation. After some investigation the differ-
ence was found to be due to the mismatch be-
tween the storage order of directory entries and
inodes. Inodes are 128 byte records, packed 32
per 4K block. During creation, inode numbers
tend to be allocated sequentially so that after
each inode blocks fills completely it is never
referenced again. On the other hand, mass
deletion is performed in the order in which
directory entries are stored in directory leaf
blocks. This is random by design. Unfortu-
nately, each delete operation requires not only
that the directory entry be cleared but that the
inode be marked as deleted as well. Thus, the
inode table blocks are touched in random or-
der. This does not present a problem if suf-
ficient cache is available, but if that is not the
case then sometimes a block with undeleted in-
odes will have to be written out to make room
for some other block on which an inode is to be

deleted. In other words, thrashing will result.

To confirm this theory I wrote a test program
that would first read all the directory entries,
sort them by inode number, then delete then
in the sorted order. The thrashing effects dis-
appeared. While this served to prove the the
problem had been correctly identified, it is not
a practical solution since we cannot in general
control the order in which user programs will
carry out mass deletion: it will normally be in
the order that directory entries are retrieved via
a readdir operation. The source of the problem
thus identified, it became apparent that not only
deletion, but any directory traversal involving
inode operations would be affected.

Next I wished to establish the worst case per-
formance impact of this type of thrashing. This
is obtained when every single deletion requires
two inode table block disk transfers, resulting
in a 32 times increase in IO operations. This
worst case result can only be approached if
available cache memory is very small in rela-
tionship to directory size, which might in turn
be due to competition for cache from parallel
processes.

Inode table thrashing can be controlled by
adding memory. For example, the inode ta-
ble blocks for one million files will fit comfort-
ably in cache on a machine with 256 MB of
memory, assuming half the memory was avail-
able for caching. At worst, the slowdown ob-
served is only linear, not at all comparable to
the quadratic slowdown caused by linear direc-
tory searching. However, cache efficiency re-
mains a desirable goal. I carried out prelimi-
nary analysis work suggesting it is possible to
reduce the cache footprint logarithmically, by
carefully controlling the allocation policy of
inode numbers. This approach is attractive in
that it does not require changes in the underly-
ing directory index structure. It is considered
practical to defer this work for the time being.

Ottawa Linux Symposium 2002 437

For completeness, I examined alternative in-
dex designs to determine whether there exists
an equivalently good indexing strategy which
is not susceptible to inode table thrashing for
common operations. Such an index would nec-
essarily record directory entries in the same
order as the corresponding inodes. Recalling
that the HTree design uses one index entry per
block, this hypothetical design would multi-
ply the number of index entries by the aver-
age number of directory entries per block, a
factor of 200, conservatively. Since index en-
tries are small, this is not as bad as it sounds.
In effect, this would increase the size of the
index to somewhat less than half the size of
the leaf blocks, in total. Again this is not as
bad as it sounds, because there would be no
slack space in the leaf blocks. This would
narrow the HTree method’s size advantage to
about 30 percent. However, the individual-
index method imposes a new requirement: free
space in each leaf block must be tracked. Some
kind of persistent free space map would be
needed and updating this map would require
extra IO operations. The speed of fsck would
be decreased measurably by the requirement
to examine more index blocks. These size
and performance disadvantages considered to-
gether leads to the conclusion that the fine-
grained index approach’s cache advantage in
mass directory operations is not sufficient rea-
son to prefer it over the method presented in
this paper.

Nonlocal Splitting

A with HTrees, BTree blocks must be split as
they become full. A B*Tree is a BTree vari-
ant that reduces the amount of unused space in
split blocks by splitting groups of two blocks
into three. This leaves each block approxi-
mately two thirds full, compared to half full in
a normal BTree.

This same technique could be used with an

HTree, and in fact the implementation is sim-
pler because rebalancing is not required. The
expectation would be to improve average block
fullness from 3/4 to 5/6. It is for consideration
whether this improvement warrants the addi-
tional complexity and slightly increased cost of
the split operation.

7 Conclusions

The HTree—a uniform-depth hash-keyed
tree—is a new kind of data structure that
has been employed with apparent success
to implement a directory index extension for
Linux’s Ext2 filesystem. Besides offering good
performance and a simple implementation,
the HTree structure allows Ext2’s traditional
directory file format to be retained, providing
a high degree of both backward and forward
compatibility. After a period of further refine-
ment and testing, it is considered likely that
the HTree directory indexing extension will
become a standard part of Linux’s Ext2 and
Ext3 filesystems.

8 Acknowledgements

My heartfelt thanks to all those who helped
make this work possible, especially:

innominate AG for employing me to help make
Linux better

Uli Luckas for surviving many hours of code
walkthroughs and debugging sessions

Andreas Dilger, for whom no detail was too
unimportant to go uninvestigated

Mathew Wilcox, for being the first to proofread
this paper

Stephen Tweedie for generally being encourag-
ing, knowledgable and an all round nice guy

Ottawa Linux Symposium 2002 438

Ted Ts’o for putting me up to this in the first
place

Anna just for being Anna

9 References

References

[1] Design and Implementation of the Second
Extended Filesystem,
http://e2fsprogs.sourceforge.net

/ext2intro.html

[2] Analysis of the Ext2fs structure,
http://step.polymtl.ca/~ldd

/ext2fs/ext2fs_toc.html

[3] [rfc] Near-constant time directory index
for Ext2,http://search.luky.org

/linux-kernel.2001

/msg00117.html

[4] [RFC] Ext2 Directory Index - File
Structurehttp://lwn.net/2001

/0412/a/index-format.php3

[5] HTree Performance:
http://nl.linux.org/~phillips

/htree/performance.png

[6] Journal File Systems, Juan I. Santos
Florido,
http://www.linuxgazette.com

/issue55/florido.html

[7] BSD Dirhash:
http://groups.yahoo.com/group

/freebsd-hackers/message/62664

[8] XFS White Paper:
http://oss.sgi.com/projects/xfs

/papers/xfs_usenix/index.html

[9] ReiserFS Resources:
http://www.namesys.com/

A Distributed Security Infrastructure for Carrier
Class Linux Clusters

Makan Pourzandi, Ibrahim Haddad, Charles Levert
Miroslaw Zakrzewski, Michel Dagenais

Open Systems Lab, Ericsson Research Canada
8400 Décarie Blvd, Town of Mount-Royal (QC) Canada H4P 2N2

Makan.Pourzandi@ericsson.ca, Ibrahim.Haddad@ericsson.com, Charles.Levert@ericsson.ca

Miroslaw.Zakrzewski@ericsson.ca, Michel.Dagenais@polymtl.ca

Abstract

Traditionally, the telecom industry has used
clusters to meet its carrier-class requirements
of high availability, reliability, and scalability,
while relying on cost-effective hardware and
software. Efficient cluster security is now an
essential requirement and has not yet been ad-
dressed in a coherent fashion on clustered sys-
tems. This paper presents an approach for dis-
tributed security architecture that supports ad-
vanced security mechanisms for current and fu-
ture security needs, targeted for carrier-class
application servers running on clustered sys-
tems.

Keywords: Linux, Security, Carrier Class
Clusters, Distributed Infrastructure, IPSec,
LSM.

1 Introduction

The interest in clustering from the telecom-
munication industry originates from the fact
that clusters address carrier-class characteris-
tics such as guaranteed service availability, re-
liability, and scaled performance, using cost-
effective hardware and software. There are
several efforts on going to use Linux as ba-

sic block for building next generation telecom
clusters [12, 7]. These carrier-class character-
istics have evolved and now include require-
ments for advanced levels of security. How-
ever, there are few efforts to build a coherent
distributed framework to provide advanced se-
curity levels in clustered systems.

Our work targets implementing security mech-
anisms for soft real-time distributed carrier-
grade applications running on large-scale
Linux clusters. These clusters are dedicated
to run only one application. They must pro-
vide five nines availability (99.999% uptime)
that includes hardware upgrade and mainte-
nance and operating system and applications
upgrades. In such clusters, software and hard-
ware configurations are under the tight control
of administrators. The communications be-
tween the nodes inside the cluster and to ex-
ternal computers are restricted.

In this paper, we present the rationale behind
developing a new architecture, named Dis-
tributed Security Infrastructure (DSI). We de-
scribe the main elements of this architecture,
and discuss our preliminary results. DSI sup-
ports different security mechanisms to address
the needs for telecom application servers run-
ning on clustered systems. DSI provides ap-

Ottawa Linux Symposium 2002 440

plications running on clustered systems with
distributed mechanisms for access control, au-
thentication, integrity of communications, and
auditing.

The paper is organized as follows: Section 2
illustrates the need for a new approach to se-
curity requirements for carrier-class clustered
servers. Sections 3 and 4 discuss the DSI archi-
tecture and its characteristics. Sections 5 to 12
present the main elements of the design. Sec-
tion 13 compares our approach to other related
work. Section 14 presents some preliminary
results. Section 15 concludes with our ongoing
work and future plans.

2 The need for a new approach

There exist many security solutions for Linux
clustered servers ranging from external to clus-
ter solutions, such as firewalls, to internal so-
lutions such as integrity checking software.
However, there is no solution dedicated for
clusters. The most commonly used security ap-
proach is to package several existing solutions.
Nevertheless, the integration and management
of these different packages is very complex,
and often results in the absence of interoper-
ability between different security mechanisms.
Additional difficulties are also raised when in-
tegrating these many packages, such as the ease
of system maintenance and upgrade, and the
difficulty of keeping up with numerous secu-
rity patches and upgrades.

Carrier-class clusters have very tight restric-
tions on performance and response time.
Therefore, much pressure is put on the system
designer while designing security solutions. In
fact, many security solutions cannot be used
due to their high resource consumption.

Currently implemented security mechanisms
are based on user privileges and do not support
authentication and authorization checks for in-

teractions between two processes belonging to
the same user on different processors. How-
ever, for carrier-class applications, there are
only a few users running the same application
for a long period without any interruption. Ap-
plying the above concept will grant the same
security privileges to all processes created on
different nodes for a long period of time. This
is due to the fact that the granularity of the
basic entity for the above security control is
the user. For carrier-class applications, some
classes of actions require fine-grained access
control to some resources, or enforcement of
specific security policies, or both. Therefore,
the user-based granularity is not sufficient. By
consequence, DSI is based on a more fine-
grained basic entity: the individual process.

3 DSI characteristics

As part of a carrier-class clusters, DSI must
comply with carrier-class requirements such
as reliability, scalability, and high availabil-
ity. Furthermore, DSI to answer the needs
explained in 2 supports the following require-
ments:

• Coherent framework: Security must be
coherent through different layers of het-
erogeneous hardware, applications, mid-
dleware, operating systems, and network-
ing technologies. All mechanisms must
fit together to prevent any exploitable se-
curity gap in the system. Therefore, DSI
aims at integrating together different se-
curity solutions and adapting them to soft
real-time applications.

• Process level approach: DSI is based on
a fine-grained basic entity: the individual
process.

• Maximum performance: The introduction
of security features must not impose high

Ottawa Linux Symposium 2002 441

performance penalties. Performance can
be expected to degrade slightly during the
first establishment of a security context;
however, the impact on subsequent ac-
cesses must be negligible. It is possible
to disable security by security administra-
tion decision.

• Pre-emptive security: Any changes in the
security context will be reflected imme-
diately on the running security services.
Whenever the security context of a sub-
ject changes, the system will re-evaluate
its current use of resources against this
new security context.

• Dynamic security policy: It must be pos-
sible to support runtime changes in the
distributed security policy. Carrier-class
server nodes must provide continuous and
long-term availability and thus it is impos-
sible to interrupt the service to enforce a
new security policy.

• Transparent key management: Crypto-
graphic keys are generated in order to se-
cure connections. This results in numer-
ous keys that must be securely stored and
managed.

• Framework supports fast detection and re-
action to security incidents.

4 Architecture

DSI targets clusters and, in doing so, intro-
duces original contributions to their security.
Some of its parts, however, such as its Ac-
cess Control Service and its use of security
contexts and identifiers, owe much to existing
propositions, such as Security Enhanced (SE)
Linux [5].

Primary
�

Security
�

Server Node
�

Node 1 Node 2 Node 3

SM
�

SS
�

SM
�

SM
�

Proc123 Proc978 Proc222

K
er

n
el

Secure Communication Channel
�

Secondary
�

Data TrafficIn
si

d
e

th
e

C
lu

st
er

Security
�

and�

O&M/IDS
�

O
u

ts
id

e
th

e
C

lu
st

er

SS
�

Security Server
�

SM
�

Security Manager
�

Authenticated
Encrypted

�

Communications
�

Primary
�

Security
�

Server Node
�

Node 1 Node 2 Node 3

SM
�

SS
�

SM
�

SM
�

Proc123 Proc978 Proc222

K
er

n
el

Secure Communication Channel
�

Secondary
�

Data TrafficIn
si

d
e

th
e

C
lu

st
er

Security
�

and�

O&M/IDS
�

O
u

ts
id

e
th

e
C

lu
st

er

SS
�

Security Server
�

SM
�

Security Manager
�

Authenticated
Encrypted

�

Communications
�

Figure 1: Distributed Architecture of DSI

4.1 Distributed architecture: Inside the cluster

DSI has two types of components: the manage-
ment components and security service compo-
nents. DSI management components define a
thin layer of components that includes a secu-
rity server, security managers, and a security
communication channel (Figure 1). The ser-
vice layer is a flexible layer, which can be mod-
ified or updated through adding, replacing, or
removing services according to the needs of the
cluster.

The security server is the central point of man-
agement in DSI, the entry point for secure op-
eration and management, and alarms coming
from the intrusion detection systems from out-
side the cluster. It is the central security author-
ity for all the security components in the sys-
tem. It is responsible for the distributed secu-
rity policy. It also defines the dynamic security
environment of the whole cluster by broadcast-
ing changes in the distributed security policy to
all security managers.

Security managers enforce security at each
node of the cluster. They are responsible for
locally enforcing changes in the security en-
vironment. Security managers only exchange

Ottawa Linux Symposium 2002 442

Security Context
�

Repository

Security Context
�

Security Manager
�

Security Policy
�

Key Repository

Key Management

Auditing
�

Service
�

Access Control
�

Service
�

Authentication
�

Service
�

Integrity
Service

�

Security Context
�

Repository

Security Context
�

Security Manager
�

Security Policy
�

Key Repository

Key Management

Auditing
�

Service
�

Access Control
�

Service
�

Authentication
�

Service
�

Integrity
Service

�

Figure 2: DSI Services

security information with the security server.
The secure communication channel provides
encrypted and authenticated communications
between the security server and the security
managers. All communications between the
security server and the outside of the cluster
take place through the secure communication
channel. To avoid a single point of failure, the
security services run on an equally hardened
secondary security server as hot swappable ser-
vices. These nodes are security hardened ver-
sions of Linux distributions to maximize secu-
rity. All connections from and to these nodes
are encrypted and authenticated.

The security mechanisms are on widely
known, proved, and tested algorithms.

For the security mechanisms to be effective,
users must not be able to bypass them. Hence,
the best place to enforce security is at the ker-
nel level; all security decisions, when neces-
sary, are implemented at kernel level through
DSI Security Module (DSM) [9]. This module
is loaded on each node by the security manager
upon its initialization.

4.2 Service based approach

The DSI architecture at each node is based on
a set of loosely coupled services (Figure 2).

The security manager controls different secu-
rity services on the node. This service-based
architecture has the following advantages:

• The service implementation is separated
from the rest of the system. By keeping
the same API, the service implementation
can be changed without affecting the ap-
plication. However, an API for access-
ing security services is provided at user
level for applications with special security
needs (Section 10.1).

• It runs only predefined services according
to the needs, performance issues, or se-
curity environment. In addition, services
can be replaced on run time without ma-
jor drawback on the running application.
This enables the architecture to be modi-
fied and to resist changes throughout the
system’s lifetime.

• It is possible to add, remove, or up-
date different services without administra-
tive intervention. This reduces configura-
tion errors due to the numerous security
patches that need to be applied manually.

The security manager discovers the different
services. Each service, upon its creation, sends
a presence announcement to the local security
manager, which registers these services and
provides their access mechanisms to the inter-
nal modules. There are two types of services:
security services (access control, authentica-
tion, integration, auditing) and security service
providers that provide services to security man-
agers.

The security management is implemented at
all levels of DSI. There is a complete chain
of commands from security administrators (hu-
man beings) of the cluster to different DSI
components inside each nodes kernel. The ad-
ministartors access the Security Server through
the SCC. The Security server interprets the
commands and propagate them to the Security
Managers. Security managers translate these to
control settings for different security services.

Ottawa Linux Symposium 2002 443

For example, security administrator detecting a
back door on some software used indicates that
some external IP can not accessed from cluster
nodes. This is sent to the Security Server and
translated as modification in DSP forbidding
all connection to defined IP address. Propa-
gated through SCC to security managers, this
policy decision is enhanced at DSM level.

5 Security Server

The security server is the reference for all secu-
rity managers and has the authority to declare
a node as compromised. It subscribes to all up-
dates to keep its cache of different security con-
texts up to date, which makes it the ideal can-
didate for running Intrusion Detection Systems
(IDSs). It has a local certification authority1

(CA). This last issues the certificates for sec-
ondary certification authorities run by the secu-
rity managers. The primary tasks for security
server include auditing, triggering alarms and
warnings to inside and outside the cluster, man-
aging the distributed security policy, receiving,
interpreting and propagating security manage-
ment operations to security managers.

6 Security Manager

The security manager enforces security on
each node. It is primarily a lookup service
to register different security services and ser-
vice providers and connect them together. The
security manager is instantiated at boot time
with digital signatures to make certain that it
is not replaced with a malicious security man-
ager. Upon its creation, it joins the DSI frame-
work and exchanges keys with the security
server. Each security manager must publish
any change to the security contexts of its lo-
cal entities involved with remote entities and

1We mean that the CA is used for using inside the
cluster.

subscribe to changes in the security contexts of
remote, related entities (see Section 8). The
primary tasks for security managers include
access control, process authentication, audit
management, alarm publication, key manage-
ment, as well as maintenance, and update of
the locally stored distributed security policy.

7 Secure Communication Channel
(SCC)

The secure communication channel provides
secure communications for the security com-
ponents inside and outside the cluster. Within
the cluster, it provides with authenticated
and encrypted communications among secu-
rity components (Figure 3). It supports pri-
ority queuing to send and receive out-of-band
alarms. It is coupled to the security manager
by an event dispatching mechanism. For large-
scale clusters, an event driven approach based
on subscription to events from defined chan-
nels reduces the system load compared to the
polling mechanisms. Further more, the bene-
fits of this approach are:

• It does not present a single point of failure.

• It gives the possibility of event filtering,
therefore less bandwidth used, and less
time used for treating irrelevant informa-
tion before discarding it.

The secure communication channel provides
channels for alarms and warnings, security
management, service discovery, and distribu-
tion of the security policy. It also provides a
portability layer to avoid dependency on the
low-level communication mechanisms.

Ottawa Linux Symposium 2002 444

Secure O&M Channel
�

Alarms Channel
�

Security Zone Y Channel
�

Security Zone X Channel
�

APPLICATION TRAFFIC

K
er

ne
l

SS
�

Primary Security
Server

�
Node 1

Secondary Security
�

Server
�

I N
S

ID
E

 C
 LU

S
T

E
R

O

 U
T

S
ID

E
 C

 LU
S

T
E

R

S
�

ECURITY O&M/IDS

Node 2 Node 3

SM
�

SM
�

SM
�

Su� n�

.

SPARC10S
�

un

SS: Security Server

SM: Security Manager

Authenticatd/Encrypted
Communications

Publish/Subscribe
Events

LEGEND

Figure 3: SCC is based on an event-driven
logic and different channels

8 Security Context

For efficiency, a security identifier (SID) is de-
fined as an integer that corresponds to a secu-
rity context. All entities in the cluster have a
SID. This SID is added at kernel level and can-
not be tampered by users. For example, a struc-
ture containing SID is added to the structure
presenting the process in kernel [9].

We define Cluster SID (CSID) as the pair
of SID associated to the subject and the
node where the subject belongs to. CSID is
transferred across processors by security man-
agers and interpreted through the whole clus-
ter. Once the security context for a subject is
needed outside of the local processor (for in-
stance if this process accesses a remote object),
its CSID is sent to the security manager of the
node containing the object. The CSID prop-
agation inside the cluster is based on SelOpt
open source software implementation [8]. To
avoid retransmissions, security managers rely
on caching mechanisms.

To ensure the pre-emptive access control, the
security manager of the node containing object
subscribes through SCC to the event of a possi-
ble change in the security context of the access
initiator entity.

9 A Coherent Vision: Security
Contexts and the Distributed Se-
curity Policy (DSP)

Security configuration must be kept simple.
Following this approach, DSI relies on a cen-
tralized security policy stored and managed
on the security server. However, to maintain
the cluster’s scalability, read-only copies of the
policy are pushed from the security server to
the individual security managers through the
SCC. This Distributed Security Policy (DSP)
is an explicit set of rules that governs the con-
figurable behavior of DSI. Each node, at secure
boot time, relies on a minimal security policy
that is either stored in flash memory or down-
loaded along with its digital signature. As soon
as the DSP becomes available on a node, it pre-
vails.

DSP allows a configurable behavior for secu-
rity services. The DSI administrator (a human
being) manipulates the primary copy of the
DSP that resides on the security server. Thus,
it must be represented in a human readable for-
mat. The basic update mechanism for DSP is to
push a full copy of each new version of the pol-
icy through the SCC. However, given the mere
size that the policy can take, an incremental up-
date mechanism will be made available.

There can be several possible originating
sources for the security policy rules. Man-
ual configuration by the DSI administrator al-
lows the most flexibility, but it rapidly becomes
cumbersome. Thus, default policy rules are in-
ferred from the very nature of the various soft-
ware packages that are installed and running on

Ottawa Linux Symposium 2002 445

the system. These default rules codify good se-
curity practices. The DSP should only need to
be updated because of events such as the in-
stallation of new software components, but it
should not be updated whenever ordinary re-
curring events occur. A security session man-
ager handles this kind of events by updating the
security context repository. A security context
defines privileges associated with each entity.
It is defined uniquely through the whole clus-
ter, but it is the responsibility of the security
manager who created it.

10 Access Control Service (ACS)

Access control can be defined as the prevention
of unauthorized use of a resource [4]. It re-
lies on the notions of subject (or access request
initiator), object (or target), environment, de-
cision, and enforcement. The Access Control
Service (ACS) assumes that the subjects have
been properly authenticated (see Section 11).
DSI allows verifying the access control priv-
ileges even when subjects and objects are lo-
cated on different nodes in the cluster. In order
to simplify, we handle the access control in two
levels: local when subject and object are on the
same node and remote when they are on differ-
ent nodes.

The local access control at each node is based
on SID added to the structure in the kernel
which, represents each entity (e.g., process,
socket...). For local access control, the ac-
cess rights are the functions of the security IDs
of the subject (SSID) and the object (TSID).
They are enhanced through DSI Secure Mod-
ule, which we implemented [9].

10.1 Remote access control

For remote access control, we extend the lo-
cal access control mechanisms by adding a new
parameter: the security node ID. Therefore, the

access rights are no more just the functions of
the subject and target security IDs, but as well,
the function of the security node ID (NSID).
The SSID along with the NSID are sent to the
node containing the object added to each IP
packet as IP options (Figure 4).

A first level of access control based on SSID is
done at this level, by the security manager on
the source node. This is completely transparent
to the process initiating the communication.

The second level of security check is done by
the security manager on the target node based
on SSID and NSID. This is also transparent to
the process receiving the communication. Till
this point, the access control decision is trans-
parent. It is granted or denied based on SSID
and NSID (i.e., CSID). This level of access
control is enough for majority of the applica-
tions.

For applications with needs for finer grained
access control, DSI provides an API allowing
to take into account the SSID and NSID when
making access decision to resource on target
node.

We believe that it is not possible to implement
an enough flexible and usable fine grained ac-
cess control based only on platform. For fine
grained security the application needs to col-
laborate with the security mechanisms pro-
vided by the platform. The application through
DSI API asks to be set a new SID based on
the SSID and NSID. Notice that the SSID and
NSID are not revealed to the application. The
application asks to change the SID based on
the communication mechanism. For example,
for a server process it means to pass the socket
as an argument to DSI API. The security man-
ager sets the new SID for the server process
based on the original SID of the server (TP-
SID), SSID and NSID contained in each IP
packet.

Ottawa Linux Symposium 2002 446

Proc34Proc12

SMSM

SID Proc123
�

Error

SID CheckSID Check Drop

DSI LSM Module

main(){
.
.
.

connect(sock1,...);
.
}

main(){
.
.
.

accept(sock1,...);
set_delegate_sid(sock1);

.
reset_sid();

}

1
3

�
2

File A

U
se

r L
ev

el

K
er

ne
l L

ev
el

SSID + SNID

IP Packet

Source Node Target Node
�

Figure 4:Secure Remote access control:Fol-
lowing security checks are done: 1) local check
by the security manager (SM), if access agreed
the Node ID (NSID) and Process SID (SSID)
are added to each IP packet sent to the node 2)
Application transparent check by the SM based
on NSID and SSID, if access agreed the con-
nection is established 3) For some applications
with special security needs, the application can
choose to further enhance the security by tak-
ing into account the SSID and NSID. To do
this, the application needs to use DSI API (i.e.,
set_delegate_sid).

Therefore the final access control decision is
based on SSID, NSID, TPSID, and TSID.

Remark that DSI targets the carrier class plat-
forms, with software environment under tight
control with few applications running on the
cluster. Therefore, even if the support of an ad-
ditional API for security is a burden for appli-
cation developers, we believe that only a small
percentage of applications need to be modified.
As for the majority of applications, transparent
support of grant/deny based on SSID and NSID
provided by the security managers is enough.

10.2 ACS architecture

The ACS that runs on the cluster’s processors
is comprised of two parts:

• A kernel-space part: This part is respon-
sible for implementing both the enforce-

ment and the decision-making tasks of
access control. These two responsibili-
ties are separated, as advocated by [3].
The kernel-space part maintains an inter-
nal representation of the information upon
which it bases its decisions. This part is
implemented as a Linux Security Module
(LSM): DSI Security Module (DSM) [6].

• A user-space part: This part has many
responsibilities. It takes the informa-
tion from the Distributed Security Policy
and from the Security Context Repository,
combines them together, and feeds them
to the DSM in an easily usable form. It
also takes care of propagating back alarms
from the kernel space part to the secu-
rity manger, which will feed them to the
Auditing and Logging Service and if nec-
essary propagate to the security server
through SCC.

Both parts are started and monitored by the lo-
cal Security Manager (SM). The SM also intro-
duces them to other services and subsystems of
the infrastructure with which they need to in-
teract.

10.3 ACS principles of operation

The ACS aims to provide fine-grained access
control (at a sub-system call level). It respects
the minimization principles of least privilege
to limit the propagation and damage caused
by eventual security breaches. As such, it
provides defense in depth. The ACS that is
running on a processor must make as little
assumptions as possible about other proces-
sors, including whether they have been com-
promised. For that reason, an ACS instance is
always the one making access decisions about
resources that are local to its processor. For the
initial design of the ACS, only grant/deny de-
cision will be considered. Other more involved

Ottawa Linux Symposium 2002 447

decisions would involve rate limiting and total
usage limiting. Actions other than access con-
trol decision, such as interposition and active
reactions, are not implemented either.

11 Authentication and communi-
cation integrity services

The authentication standard for now is the au-
thentication by assertion. It means that the pro-
gram accessing resources on remote processors
asserts that it does this in behalf of a user. Nei-
ther the user schema nor the assertion only can
be trusted seriously in an environment exposed
to external attacks.

Local authentication in DSI is based on local
verification by the DSM of each subject at node
level.

The remote authentication of a process is the
result of the local authentication of the process
at the source node by DSM and the authenti-
cation of the node containing the subject to the
target node.

IPSec is used for authenticating each node in-
side the cluster.

Developing for carrier class clusters, we have
strong constraints on performance. IPSec has
the advantage of covering both TCP and UDP2.
To avoid applying the same policy to all IP traf-
fic between two nodes (in particular, to avoid
encrypting all data between two nodes), three
IP addresses corresponding to three different
subnetworks are assigned to each node. Each
subnetwork defines a security policy: No secu-
rity, authenticated only (IPSec AH mode), au-
thenticated and encrypted (IPSec ESP mode).
Filtering rules are further more used at net-
works elements (switches. . .) and at network

2The necessity of support of efficient security proto-
col for UDP is one of the main reasons why we have
chosen IPSec.

interfaces of each node to enhance further the
security rules.

The security manager at each node, based on
SID of the sending process and the target node
ID, and the target SID3 according to the DSP
transparently defines the security policy (e.g.,
subnetwork) to use: No Security, AH, or ESP.

Integrity and confidentiality of communica-
tions between two nodes is supported by use
of IPSec ESP mode when necessary.

FreeS/WAN IPSec implementation has been
used between nodes [2], however the support
for IPSec AH mode is an issue. FreeS/WAN
uses opportunistic encryption, which means
that ESP mode is used even when AH mode is
asked for. somehow in some cases for perfor-
mance issues, it is though preferable to support
AH mode without encryption load. At the end,
we hope that the support for certificates will
integrate the FreeS/WAN and will be not only
supported as a patch.

12 Auditing Service

The auditing services are responsible for mon-
itoring and auditing data and reporting secu-
rity related information. This information may
be used for several different purposes: intru-
sion and denial of service attacks detections,
providing evidence in case of litigation or in-
quiries.

Auditing service for each node is responsible
for analyzing the logs, detect the possible at-
tack patterns, trigger the alarms, and propagate
them through SCC. This service is responsible
for functionality related to the lawful intercept.

This service has increase functionality on se-
curity server. It also monitors the internal net-

3Target SID is defined by the port number on the tar-
get node.

Ottawa Linux Symposium 2002 448

work for the cluster and the distributed logs in
order to detect attacks using Snort IDS [13].
This service on security server is related to ex-
ternal IDS through SCC.

The auditing service is connected to external
log servers when needed. The connection be-
tween the auditing service and external loggers
is not through SCC for performance reasons.

The requirements for this service are currently
being defined.

13 Related work

This work distinguishes itself by being focused
on the design of a security infrastructure tar-
geted for clustered servers as compared to pre-
vious work that is focused on single comput-
ers or on clusters of general-purpose Linux ma-
chines. In addition, DSI takes into account all
the issues related to security management start-
ing at the design level. Some of the related
work includes CorbaSec, the CORBA security
service that handles the security issues regard-
ing access control and authentication for inter-
actions between different objects. CorbaSec
does not take into account all aspects of secu-
rity for example detection and reaction mech-
anisms like DSI and guarantees the security at
middleware level independently from platform
considerations.

On the other hand, Security Enhanced (SE)
Linux from the National Security Agency
(NSA) [5] or the Linux Security Module [6]
(LSM) effort run on a single computer; they do
not extend to a cluster.

Finally, Grid Security Infrastructure (GSI) was
subsequently developed, based on existing
standards, to address the security requirements
that arise in Grid environments [1]. The DSI
approach is more fine-grained and is based on
modifying the OS to enhance security mecha-

nism (as explained in Section 10.1). The ap-
proach of DSI is possible because the software
and hardware configuration in the cluster is un-
der tight control. In practice, DSI supports
a coherent vision of security throughout the
whole cluster as GSI supports secure interop-
erable mechanisms between different trust do-
mains for multiple users.

14 Results

We performed preliminary experiments on a
cluster of Linux nodes. The fact that the source
code of the Linux kernel is available and well
documented is a major advantage for develop-
ing DSI on Linux based clusters.

So far, a secure boot mechanism for a disk-
less Linux system was implemented. Using se-
cure boot with digital signatures, a distributed
trusted computing base (DTCB) will be avail-
able as of the boot of the cluster nodes. The
kernel at secure boot is small enough to be
thoroughly tested for vulnerabilities. Further-
more, the use of digital signatures for binaries
and a local certification authority will prevent
malicious modifications to the DTCB.

We also implemented a security module based
on Linux Security Module (LSM) that enforces
the security policy as part of the DSI access
control service [6]. This module is integrated
with SCC and provides distributed access con-
trol mechanisms. DSI currently supports pre-
emptive and dynamic security policy at the
process level throughout the whole cluster for
some operations. As future work, we will ex-
tend these capabilities to all operations on the
cluster.

At this time, we are implementing the dis-
tributed security policy. In order to ease ad-
ministration and maintenance of this policy, we
completed a study to devise methods to reuse
information already contained in package man-

Ottawa Linux Symposium 2002 449

agement systems (such as RPM for Linux) in
order to generate part of the security policy, or
to push such information to the package [10].
Specification of the exact language used to ex-
press the policy and of the compilation and
loading mechanisms remains to be completed.

We implemented a secure communication
channel based on OmniORB, an open-source
implementation of Corba [11]. The implemen-
tation of SCC is independent from the com-
munication middleware used. As mentioned in
Section 7, SCC logics are implemented on top
of a portability layer. This makes the imple-
mentation independent of any communication
middleware used. The choice of CORBA as
communication middleware for SCC was mo-
tivated by the following factors:

• Support from CORBA standard and im-
plementations for distributed real-time
and embedded systems,

• Support for advanced security mecha-
nisms by CorbaSec,

• Interoperability.

15 Conclusions and future works

In this paper, we presented the need for a new
security approach for carrier-class applications
running on Linux clusters. Based on our moti-
vations to develop a coherent solution address-
ing the security needs of carrier-class servers,
we proposed a new design for a secure dis-
tributed infrastructure. We presented the main
elements of this design and discussed some of
the preliminary results. We believe that this de-
sign is a practical approach to enhance security
for large-scale Linux clusters with carrier-class
needs.

To complete DSI, we plan to collaborate with
Open Source projects and initiatives, and other

organizations on the design and development
of this secure infrastructure.

Acknowledgements

We thank David Gordon and Dominic Pellerin
for their contributions to DSI. Also, we thank
Marc Chatel and Bruno Hivert for their sanity
checks on our design and implementation.

References

[1] Foster I., Kesselman C., Tsudik G.,
Tuecke G., A Security Architecture for
Computational Grids, 5th ACM
Conference on Computer and
Communication Security.

[2] Linux FreeS/WAN,
http://www.freeswan.org .

[3] ISO 10181-3: Security Frameworks for
Open Systems: Access Control
Framework, ISO, (1996).

[4] ITU-U Recommendation X.800: Security
Architecture for Open Systems
Interconnection for CCITT Applications,
ITU-T (then CCITT), (1991).

[5] Loscocco P.: Security-Enhanced Linux,
Linux 2.5 Kernel Summit, San Jose (Ca)
USA, (2001),http://www.nsa.gov

/selinux/docs.html .

[6] Linux Security-Module (LSM)
framework, (2001),
http://lsm.immunix.org .

[7] MontaVista Linux Carrier Grade Edition
2.1, http://www.mvista.com

/products/mvl_cge

/mvlcge_overview.html

Ottawa Linux Symposium 2002 450

[8] Morris, J. Selopt: Labeled IPv4
networking for SE Linux,
http://www.intercode.com.au

/jmorris/selopt

[9] M. Zakrzewski. Mandatory Access
Control for Linux Clustered Servers, In
Proceedings of Ottawa Linux
Symposium, June 2002.

[10] C. Levert, M. Dagenais, Security Policy
Generation through Package
Management, In Proceedings of Ottawa
Linux Symposium, June 2002.

[11] omniORB,
http://www.uk.research.att.com

/omniORB/

[12] Open Source Development Lab,
Carrier-Grade Linux Working Group,
http://www.osdl.org/projects

/cgl/

[13] SNORT, http://www.snort.org/

EVMS: A Common Framework for Volume
Management

Steven Pratt
Linux Technology Center

IBM
Austin, TX 78758
slpratt@us.ibm.com

http://evms.sf.net

Abstract

The Enterprise Volume Management System
(EVMS) brings a new model of volume man-
agement to Linux. EVMS integrates all as-
pects of volume management into a single co-
hesive package. By introducing a new plug-
gable architecture, EVMS provides extendibil-
ity while ensuring consistency and cooperation
across multiple volume management schemes.

EVMS consists of two main components, the
Runtime, which resides in the kernel and han-
dles discovery and I/O functions, and the En-
gine, which resides in User Space and han-
dles setup and configuration. Packaged with
the Engine are three user interfaces, a GTK
based GUI, a command line interpreter, and an
ncurses based interface.

EVMS borrows from the existing Linux vol-
ume management technologies, combining
them into a single easy to use package. Imag-
ine being able partition your disk, create mir-
rors and raid devices, define volume groups
and logical volumes, all from one integrated,
easy to use interface. With EVMS you can do
this and more.

EVMS provides immediate benefit to system
administrators who wish to get a handle on

their storage configurations, as well as less
technical users who have not memorized all
of the various commands and config files. No
more scanning through raidtab files or issuing
multiple LVM commands just to find out how a
system is configured. Just bring up the EVMS
GUI and have all of this information at your
fingertips. Not only can you see what disks
or partitions make up which volumes, but you
can also see if these volumes are formatted or
mounted.

1 Introduction

Volume management is an integral part of any
operating system. Every major server oper-
ating system has some form of volume man-
agement capability. The methods vary from
simple DOS partitioning to complex volume
groups and everything in between. What stands
out about each operating system is that they
generally have a single method for perform-
ing volume management and with that a sin-
gle consistent interface for configuring storage.
When we look at Linux we see that, as with
most components, it offers multiple choices for
volume management. In most cases having
competing products that give the user differ-
ent capabilities and functions is good for Linux

Ottawa Linux Symposium 2002 452

as it fosters competition and technical advance-
ment. In the cases where the user chooses only
one of the competing technologies there is re-
ally no downside to this approach. However,
in the case where similar or competing tech-
nologies do not completely overlap, users may
desire to use multiple technologies in order to
get a combination of function not found in any
one technology. In these cases some problems
can arise.

This is the case with volume management in
Linux today. The three major volume manage-
ment schemes available in Linux today (parti-
tions, LVM and MD) each provide exclusive
features which are not available in the other
volume managers. This means that the user, in-
stead of choosing one method of volume man-
agement, may instead use many. This puts the
burden on the user/administrator to learn how
to use each set of tools. Not only that, but he
must figure out any interdependencies that ex-
ist and work around them.

To further complicate the task of managing
storage, it is not enough to define the storage
layout. Usually you must also associate a file
system with the volume. This adds another
layer in which multiple choices are available,
each with slightly different features and inter-
faces. Today there is little to no coordination
between volume managers and the file systems
for operations such as resize, where issuing the
commands in the wrong order can cause data
loss.

EVMS attempts to make sense out of this jum-
ble of components by providing a consistent
architecture and framework in which all of the
varying technologies can exist in harmony with
each other. By providing a consistent set of
APIs and common services, EVMS allows new
technologies to be added to the existing frame-
work while ensuring that they will interact cor-
rectly with all of the current functionality.

2 EVMS Architecture

In EVMS the task of volume management has
been divided into three main components, the
Engine, the Runtime, and the User Interfaces.
EVMS uses a layered, plug-in model in the En-
gine and Runtime to provide flexibility and ex-
tensibility for managing storage. This method
of managing storage allows for easy expansion
or customization of various levels of volume
management. The EVMS framework is fully
64 bit enabled and architecture independent. It
is also endian neutral, except for certain com-
patibility plug-ins for which the original imple-
mentation used native layouts.

Runtime

The EVMS Runtime refers to the in-kernel por-
tion of the system. The Runtime has two pri-
mary purposes:

1. Coordinating the discovery of logical vol-
umes and creating the necessary block de-
vices to represent those volumes in user-
space.

2. Handling I/O to the volumes.

The EVMS kernel component consists of two
parts, the common services and the plug-ins.
The common services provide the framework
which makes up the heart of the EVMS archi-
tecture. This framework coordinates the load-
ing and registration of plug-ins for each of
the four plug-in classes supported and the in-
kernel discovery process. The common ser-
vices also provide IOCTL routing and helper
routines for the plug-ins to use. Before look-
ing at the common services we should first de-
scribe each of the classes of plug-ins and how
they work.

EVMS kernel plug-ins are built as standard
Linux kernel modules and are compiled as part

Ottawa Linux Symposium 2002 453

Xlib

X Server Printer

Application

Toolkit

Pango Pango Core

PS rendering backend X rendering backendLanguage Module

Arabic X Shaper PS X Shaper

Figure 1: EVMS kernel architecture

of the Linux kernel build process. These plug-
ins add functionality to the EVMS runtime by
providing support for specific features of vol-
ume management. The plug-ins register with
the EVMS common services at init or module
load time.

The first class of plug-in is the Device Man-
agers. Device managers are responsible for
determining the available devices on the sys-
tem and presenting them to the EVMS frame-
work. Device managers are also responsible
for determining attributes of the devices (such
as hardsector size) as well as detecting if a de-
vice has been removed or modified. This is the
only class of plug-in which deals directly with
device drivers or device driver queues. There
is currently only one Device Manager imple-
mented (Local Device Manager) which man-
ages all devices found on the gendisk list. It
remains to be seen if other device managers
are required for features such as multipath IO,
NAS, and SAN, or whether the current device
manager is sufficient.

The second class of plug-ins is the Segment
(or Partition) Managers. Segment Managers
are responsible for dividing logical disks into
physically contiguous pieces or Segments. A
separate Segment Manager is required for each

partitioning scheme supported (DOS, S390,
Amiga, ...) and only one Segment Manager
may be assigned to a disk at a time. It is pos-
sible however, to ’stack’ Segment Managers,
which results in one partitioning scheme being
imbedded within a segment created using an-
other partitioning scheme.

The third class of plug-ins is the Region Man-
agers. Region Managers consume disks and/or
segments and produce regions which represent
logically contiguous storage space. The re-
gion layer is the layer in which containers or
groups are implemented, making this the place
where AIX and Linux LVM plug-ins are found.
Also, since this is the last layer before EVMS
specific on-disk data structures are introduced,
and the first which supports logically contigu-
ous space, it is where most of the compati-
bility plug-ins are found, including MD. Re-
gion Managers, like Segment managers can be
stacked, allowing for configurations such as
LVM on RAID.

It should be noted that the Device Managers,
Segment Managers and Region Managers have
no constraints on their size, placement, or for-
mat of metadata. Depending on what the plug-
in is trying to accomplish, such as compati-
bility with DOS partitions or Linux LVM, the
plug-in can layout metadata in any format de-
sired or required. The advantage of this is that
these types of EVMS plug-ins can support any
native metadata format. The downside is that
with some non-EVMS metadata formats, re-
dundancy and error checking may not be as
complete as desired.

The fourth class of plug-ins is Features. This
layer contains plug-ins which are designed
specifically for EVMS and make use of meta-
data layouts provided by and enforced by the
EVMS common code. Features consume one
or more objects created by any of the layers
and produce a new feature object. All features

Ottawa Linux Symposium 2002 454

share some common metadata, called Feature
Headers, on disk. Thus, it is possible to do con-
sistency checking and to even detect if a feature
which was configured on disk is for some rea-
son not compiled into the kernel. The Feature
Header is where common information like the
volume name, volume minor number, feature
id, feature depth or count, and versioning in-
formation is kept.

Kernel Discovery process

EVMS supports in kernel discovery. This
means that each kernel plug-in contains the
code required to probe for and recognize the
metadata on disk and build volumes without
user space intervention. This capability allows
an EVMS enabled kernel to recognize and ex-
port all volumes that exist in a system at boot
time without requiring a RAM disk or any user
scripts to be run. This also means that EVMS
is not dependent on any user space configura-
tion files that could be accidentally deleted or
damaged by file system or other errors. There
is some debate as to whether this function be-
longs in the kernel or in user space. The main
reasons for putting it in the kernel is that it
make boot setup much easier (no scripts or
RAM disks required) and it makes upgrades
easier since the kernel is not dependent on user
tools to discover volumes; thus the kernel can
be upgraded independently of the user tools.

The kernel discovery process starts with the de-
vice manager examining the gendisk list for ac-
ceptable devices. The device manager creates a
object representing each device to be managed
and adds this node to the discover list. This list
is returned to the common services which then
passes it on to each Segment Manager. Each
Segment Manager can examine each node and
remove it from the list if it claims the disk.
Once a Segment Manager claims a device, it
processes this device and creates new objects
for each Segment on the device. These new ob-

jects are placed on the discover list for further
processing. Once each Segment manager has
had a chance to claim devices, if any new ob-
jects were placed on the list, this process is re-
peated with the new list. This allows for nested
partitioning. This process continues until no
new objects are created and then the common
services takes the object list (which now con-
sists of disk and segments) and repeats this pro-
cess with Region Managers.

Once Region discovery is completed, the ker-
nel starts feature discovery. Due to the com-
mon Feature Headers for EVMS features this
process is much more streamlined and effi-
cient. Each object is examined for the exis-
tence of Feature Headers and if one is found,
that object is grouped together with other ob-
jects with the same volume serial number
(found in the Feature Header). Next the Fea-
ture Header depth is checked in each of the ob-
jects for the volume, and the objects with the
deepest or bottom most count are given to the
plug-in which will own the objects. This is
done based on a feature ID stored in the Fea-
ture Header. This process repeats for each level
of the feature stack, or until an error is encoun-
tered.

EVMS has the concept that only volumes and
not intermediate objects are actually exported
from the kernel. This helps prevent acciden-
tal access to objects in the middle of a volume
stack. Additionally, each storage object can be
marked as being a volume or not. If a storage
object is not marked as a volume via a bit in
the Feature Header, then it is not exported for
access from the kernel.

After all features have been applied, the com-
mon services adds the volume to the global
volume list and makes it available through the
EVMS block device using the minor number
and name stored in the Feature Header. For
volumes which do not have EVMS features

Ottawa Linux Symposium 2002 455

applied (compatibility volumes), they are as-
signed their Linux legacy device name (i.e.
hda3, group1/lv1) and are assign the next avail-
able minor number.

IO Path

The IO path in EVMS is slightly different from
many other block devices in Linux due to the
plug-in implementation. The entire EVMS
subsystem, including all plug-ins, functions as
a single block device driver. What this means
is that EVMS does not use the driver queue
interface to drive IOs from one EVMS layer,
or plug-in, to the next. Instead, each EVMS
plug-in exports a function table as part of its
initialization process. In this function table are
read and write entry points. When an IO is re-
ceived by EVMS on a volume via the EVMS
block device, the common services route this
request to the appropriate read (or write) en-
try point of the topmost object in the volume
stack. The plug-in owning that object pro-
cesses the request by modifying (duplicating,
splitting, changing offset, etc.) it and calling
the entry point of the object(s) to which the
request is now destined. This process repeats
for each object or layer in the call stack for
this volume, and only when the request gets
to the Device Manager is it then re-queued to
the device queue of the actual disk driver. This
is possible due to the EVMS framework, and
removes the requirement for each plug-in to
consume valuable system resources such as de-
vice major numbers and thus allows an infinite
number of internal objects such as partitions.

IOCTLs

EVMS supports two types of IOCTLs, global
and volume specific. Global IOCTLs are sent
to the EVMS block device and are for com-
mands which are not specific to any one vol-
ume or plug-in. They are handled entirely by

the EVMS common services. These include
commands used by the Engine such as get ver-
sion, set debug info level, and rediscover. Vol-
ume specific IOCTLs are actually targeted at
the minor number of the volume in question.
These IOCTLs may be processed by the com-
mon services in some cases (such as get block
size) or the IOCTL may be passed down the
volume stack and processed by each plug-in in
the stack (such as delete volume). One Global
IOCTL which is worth mentioning is the direct
plug-in communication IOCTL. This IOCTL
allows for an instance of a plug-in in the En-
gine to communicate with its corresponding
plug-in in the kernel. This allows a plug-in
writer to code whatever communication is re-
quired, although in most cases this support is
not needed by the plug-ins.

3 Engine

The EVMS Engine is the core of the user-
space administration tools. The Engine is im-
plemented as a shared library. Like the kernel
component of EVMS, the Engine implements
the same layered plug-in model. The Engine
itself provides the common services and frame-
work, while plug-ins, which are also shared ob-
jects, provide the real functionality. The En-
gine has three sets of APIs defined. First, the
Engine library provides the front end API set
which is used by the User Interfaces. This ap-
plication interface provides a single well de-
fined set of entry points through which all ma-
nipulation of volumes is done, regardless of the
type of volume being configured. Second, the
Engine defines the Plug-in APIs. This is the
set of functions which must be implemented by
each plug-in. This standard API set for plug-
ins ensures that new plug-in will integrate with
the rest of the system. The third API set is the
common services provided by the Engine to the
Plug-ins to make their job easier.

Ottawa Linux Symposium 2002 456

Changes to a system with EVMS are accom-
plished by using one of the user interfaces to
open and interact with the Engine. When the
Engine is opened, it gets a list of devices via
an IOCTL to the EVMS kernel component.
The Engine then performs a discovery process
which is very similar to that found in the ker-
nel. Each device is probed by the plug-ins and
a complete in memory representation of entire
system is built. As each plug-in discovers de-
vices or objects that it manages, a tree structure
or graph is created.

When reading or writing data to or from de-
vices, the IO request is passed to the plug-in
appearing below the current plug-in in the vol-
ume tree. The IO request is transformed just
as it would be in the kernel IO path. This is
done to allow for a complete virtualization of
new configurations to occur. For example, an
LVM container or group can be created using
a RAID5 array which has not been committed
to disk, nor is running in the kernel. This al-
lows the user to make any number of changes
and configure the system exactly as they would
like it before writing any changes to the actual
on disk metadata or kernel configuration. If the
user decides that they do not like the changes,
they can simply quit the Engine session with-
out saving and nothing will have been mod-
ified. The user may also commit changes at
any point in the configuration process if he so
desires. Changes to the system are done by
writing metadata to disk by calling down the
stack of plug-ins until the device manager is
reached, The device manager then writes the
data to disk by calling a kernel IOCTL. Once
the new metadata is committed to disk, the ker-
nel is told to purge deleted or modified volumes
from memory and to go rediscover them from
changed metadata on disk. During this process
the volumes that have been modified are qui-
esced temporarily by the common services of
the EVMS runtime.

Each plug-in inside the Runtime has a cor-
responding Plug-in inside the EVMS Engine.
These Plug-ins provide administrative capabil-
ities for various kinds of logical volumes. For
example, the DriveLinking plug-in inside the
Runtime is responsible for I/O through Driv-
eLink devices, and the corresponding Driv-
eLinking plug-in inside the Engine handles
creation, modification, and maintenance of
DriveLink volumes.

Plug-ins in the Engine are typically more com-
plex than their counterparts in the kernel. This
is due to the greater number of APIs required
for configuration as well as support for the so-
phisticated user interface. The Engine plug-
ins contain all of the parameter validation code
for creating and modifying storage objects.
The Engine plug-ins must also duplicate the
read/write logic found in the kernel plug-ins in
order to support the complete virtulization of
volume configuration in the Engine.

In addition to the four classes of plug-ins found
in the kernel, there is one additionsl class
which is unique to the Engine. This class
is File System Interface Modules or FSIMS.
FSIMS are a special plug-in class and have
their own unique function table. FSIMS are
used to allow EVMS to communicate with var-
ious File Systems to coordinate changes to vol-
umes. Having an FSIM not only allows ac-
tions like mkfs and fsck to be performed di-
rectly from the EVMS interface, but it also en-
sure that actions such as expanding or shrink-
ing a volume are properly coordinated with the
File System without the user being required to
know the order in which operation must be per-
formed. This capability does not exists any-
where else in Linux.

Ottawa Linux Symposium 2002 457

4 User Interfaces

Because the EVMS Engine provides a pro-
grammatic interface instead of a direct user in-
terface, multiple user interfaces can be writ-
ten or tailored to a particular style or group of
tasks. Currently, four different user interfaces
have been developed:

1. A general command line which is useful
for automating tasks.

2. A graphical user interface (GUI) for easy
administration using a GUI desktop.

3. A text-mode, ncurses-based interface.

4. A set of command line utilities for emulat-
ing the Linux LVM (logical volume man-
agement) command set.

The first three of these interfaces are general
purpose and support all existing plug-ins. The
fourth, the command line utilities that emulate
Linux LVM, is one example of how the En-
gine application programming interface (API)
can be used to create a tailored user interface.
As the name implies, these utilities will only
interact with the LVM plug-in to manage LVM
containers and regions.

All of the user interfaces interact with EVMS
through the Engine application APIs. These
APIs abstract the specific options and param-
eters of each Engine plug-in into a well de-
fined interface known as the task interface. A
set of well known tasks have been defined (cre-
ate, expand, shrink, modify, ...) to allow for a
negotiation to occur between the user interface
and the plug-in. This allows the user interface
to write one set of screens or functions for each
task, but be able to use this code with any plug-
in. It is the plug-in’s responsibility to return to
the user interface all objects that can be used in

a task, and once an object(s) is selected, to re-
turn a list of options to the user interface. Each
option is described by an option descriptor data
structure which allows the user interface to se-
lect the proper display method and entry type
for the particular option. The descriptor also
indicates any restriction or limits on the option
such as minimum or maximum values. As each
option is set by the user interface, the informa-
tion is passed to the plug-in for validation. As
part of the negotiation or validation, the plug-in
can enable or disable other options, or change
the values possible for other options.

One of the additional advantages of this ap-
proach is the ability for the user interfaces to
enforce limits based on actual constraints in-
stead of theoretical ones. For example if there
is only 100M of freespace available for a cre-
ate command, the GUI will not let you enter
any value greater that 100M, rather then letting
you enter a larger value and fail the command.

5 Future Work

Two main work items will affect the EVMS
architecture in the coming year. The first is
a generic move capability. New APIs will be
added to allow the moving of one storage ob-
ject to another while the volume is mounted.
For example this capability will allow for the
moving of data on a mounted partition to be
moved to a LVM region or vise versa. This
same technology will be used within plug-ins
to provide functionality equivalent to the Linux
LVM’s pvmove.

The second, and larger work item is cluster
support. EVMS is currently working on adding
cluster support for configuration of shared stor-
age within a cluster. With this support, plug-
ins such as snapshotting and bad block reloca-
tion will be able to work on volumes backed by
shared storage and access from multiple nodes

Ottawa Linux Symposium 2002 458

in a cluster.

6 References

1. The Home Page for the EVMS Project
http://evms.sf.net

2. EVMS HowTo
http://evms.sf.net/howto

3. Linux Partition HowTo
http://tldp.org/HOWTO/mini

/Partition.html

4. Software Raid HowTo
http://tldp.org/HOWTO

/Software-Raid-HOWTO.html

5. Linux LVM
http://www.Sistina.com

/products_lvm.htm

Automatic Regression testing of network code:
User-Mode Linux and FreeSWAN

Michael C. Richardson
Sandelman Software Works Inc.

mcr@sandelman.ottawa.on.ca http://www.sandelman.ca/mcr

Abstract

The Linux FreeSWAN project (IPsec for
Linux) produces rather complicated network-
ing code. The successful application of the
protocol results in all network data being en-
crypted. The use of dynamic keying means
that it nearly impossible for an observer (even
a trusted one trying to test) to know what is go-
ing on. The need for multiple systems (often
as many as 6) to be properly configured creates
an environment nearly impossible to test regu-
larily.

The emergence of virtual machine technology,
particularly, User Mode Linux, has provided a
solution to the testing problem: create as many
virtual machines as needed and control them
using standard testing scaffolding technology:
expect(1). This paper describes the scaffolding
and the resulting testing regime which is used.

The focus is around a modified network switch
emulator, “uml_netjig” which provides the
ability to play and capture network packets
through a single User-Mode Linux virtual ma-
chine.

A second iteration of this tool is also described,
combining more complicated expect scripts,
and a command mode for uml_netjig, permit-
ting coordination of the multiple virtual ma-
chines that are needed when doing fully nego-
tiated IPsec sessions.

1 Background: What is this about

The Linux FreeS/WAN project is a funded
project. It has the mandate to produce an IPsec
implementation for Linux. The ultimate goal
of this effort is to provide systems and soft-
ware to permit citizens for the world to keep
all of their Internet traffic private.1.

Testing networking protocols is often difficult.
By definition there is at least one network in-
volved and often several independent systems
attached to the network.

With many application layer network proto-
cols (e.g. http) one can cheat—the network is
the virtual “loopback” device, and multitask-
ing permits both ends of a protocol to run on
the same host. It is therefore common to see
people doing all sorts of network development
using a garden-variety notebook.

The situation is not the same for transport and
network layer protocols such as IP, TCP, and
IPsec. These layers of the protocol are more
fundamental. They are typically implemented
inside a system kernel. This makes develop-
ment work as difficult as generic kernel work.

If one is to test them on one’s notebook or
desktop, one risks putting one’s own devel-
opment environment at risk. It is common
experience that doing kernel development is

1See http://www.freeswan.org/2

Ottawa Linux Symposium 2002 460

much easier with at least two machines—one
machine is crashed every ten minutes and the
other machine is used as the development host.
The split between development and testing is
much better understood in embedded system
work—the machine under test is often of a to-
tally different type than the development ma-
chine. Historically, the machine under test (a
VCR or a modem) is incapable of even running
a development environment.

Network protocol development work is further
complicated by the need to have more than one
machine involved.

1.1 eXtreme Programming

The growing discipline of eXtreme
Programming[Bec01] has a number of
fundamental principles

• rapid feedback

• assume simplicitiy

• incremental change

• embracing change

• quality work

[Bec01] goes on to explain that the fundamen-
tal activities are coding, testing, listening, and
designing. XP tries to reach the point where
one writes the test cases before the code. To
do this, the cost (in effort and time) of test-
ing must be reduced such that all tests can be
run frequently—several times a day if possible.
This very rapid feedback reduces the risk of in-
troducing problems—permitting developers to
program more efficiently and with more confi-
dence.

This paper describes the typical requirements
for doing network testing. The reasons why

it is expensive and why it is difficult to auto-
mate are explained. Our solution uses User-
Mode-Linux to turn machines into processes.
The scaffolding is then used to control these
processes, to put them through their paces on a
regular basis.

No solution is perfect on the first pass—XP
actually encourages partial solutions to be im-
plemented and feedback to be received—so we
describe our second pass, which at the time of
writing, is still in the design phase.

2 How to test with physical hard-
ware

sky

WEST EAST

SUNRISESUNSET

router

Figure 1: Basic Physical Network configura-
tion

The basic network is shown in Figure 1. The
taxonomy for our test setup is that the Sun rises
in the east and the sun sets in the west. Thus
one can easily remember where each host is.

EAST andWEST, shown with firewall icons, are
FreeS/WAN IPsec gateway boxes.

SUNRISE and SUNSET are just ordinary hosts
whose traffic will be protected by their respec-
tive gateways.

The machineSKY is used to do network anal-
ysis (“sniff”). There are frequently problems
that occur when trying examine the traffic pro-
duced by a machine itself, so a separate ma-

Ottawa Linux Symposium 2002 461

chine to make unbiased observations if neces-
sary.3

The two gateway boxes are not directly at-
tached, but rather are connected via a router.
There are two reasons for this:

• the current implementation of
FreeS/WAN requires a default route
to operate correctly.

• a common operational issue is with links
where the Maximum Transmission Unit
(MTU) is restricted, and this router pro-
vides a place to cause such an impair-
ment4

This setup is very representative of the typi-
cally deployed scenario for FreeS/WAN sys-
tems in a VPN. It does not cover every sin-
gle situation—most of the most difficult-to-
reproduce bugs have occured in other setups.
More machines are needed to create such se-
tups.

Aside from the space and cost involved in pro-
viding each developer with six machines (it is
often the case thatsky is the developer’s desk-
top), there are a number of other factors that
make this difficult.

The major problem is maintaining this setup.
There are many machines with many files that
must be maintained. The systems must be
kept up-to-date so that the latest kernels can

3In particular, on Linux 2.2 or lower, turning on the
packet capture mechanism changes the control struc-
tures attached to the traffic and causes faults relating
to policy for the keying channels’ control packets.
PR#48 at http://bugs.freeswan.org:81
/bugs/gnatsweb.pl?&database=
freeswan&cmd=view&pr=48 2.4 has solved
this problem

4FreeS/WAN has adopted the term “impairment” to
denote any challenges which are introduced to a system
or network to permit another part of the system to be
tested

be tested, yet at the same time, testing against
older kernels is necessary. Different distribu-
tions need to be tested. The combinatorics are
quite high.

The other major problem is work environment.
Sitting in a room with six computers is a lot of
noise. Getting access to each system’s console
is difficult (one can not rely upon network lo-
gins!). If a monitor is attached to each system
(vs a monitor switch), then the developer prob-
ably gets too much exercise.

One answer to this is serial consoles. See Fig-
ure 2. Terminals attached to serial ports was
the primary way that people used Unix until the
advent of the X-terminal, and Linux continues
this grand tradition.

sky

WEST EAST

SUNRISESUNSET

router

Figure 2: Basic Network with console access

One simply puts the following in
/etc/lilo.conf :

serial=0,38400n
...
image=/boot/vmlinuz-2.4.18-6mdk

label=linux2418
root=/dev/hda1
append="devfs=mount \

console=ttyS0,38400 \

Ottawa Linux Symposium 2002 462

console=tty0"
read-only

The console then appears on both “COM1” and
on the VGA screen. In this situation, the ma-
chines may be located in another room, con-
nected to a console server. One logs in from
one’s (quiet) desktop to the console server, ac-
cessing each machine via a serial port. Serial
interfaces are readily available with either PCI
or USB interfaces. This makes building a 6-
port console server rather easy.

The developer now has ready access to each
machine, can reboot each machine, select dif-
ferent kernels, and can configure it without
even having networking on. In addition, ker-
nel panics (“kernel oops”) or other strange out-
put on the console can be cut and pasted into
emails, etc..

2.1 Still challenging to test

The serial consoles do not solve the other
problems—managing the very many different
configurations, or coordinating the systems to
perform a test case.

The author has used such a setup for many
years with many Unix operating systems. Us-
ing the “expect” program and the serial con-
soles one can automate some of the tests. Some
of tests are harder to deal with—ones that fail
can cause the system to hang—this will require
operator intervention. Further use of more
hardware can solve this problem as well—
relays can toggle reset switches or even power
cycles.

The result, however, is a very complicated test-
ing environment—it can take weeks to config-
ure it, and mere hours to break. There is far
too much specialized hardware involved, not to
mention the software.

There is a better way which will be described,

but first, the requirements for the testing envi-
ronment will be examined in a bit more detail.

3 What do we really need

3.1 A brief primer on IPsec

IPsec[TDG98],[KA98a] consists of three
transport layer protocols: AH[KA98b],
ESP[KA98c] and IPcomp[DNP99].
There is one management pro-
tocol in existence at this time,
ISAKMP[MSST98]/IKE[Pip98],[HC98].

These transport protocols can be applied to up-
per layers of TCP, UDP, or any other trans-
port protocol. When the upper layer is the
“IPIP”[Per96], then the protocol is said to
be in “tunnel” mode. For most Virtual Pri-
vate Network (VPN) usages, tunnel mode is
the preferred method since it hides the ori-
gin source/destination address. VPNs are often
treated as being virtual leased lines.

Each of the transport protocols provide
session-layer encryption. They are referred to
as “security associations.” These are unidirec-
tional concepts—a pair is usually needed for
bidirectional communications.

3.1.1 Authentication Header (AH)

The Authentication Header provides origin au-
thentication and integrity of the headers and of
the data portion. No privacy is provided.

3.1.2 Encapsulating Security Payload
(ESP)

The ESP header provides origin authentication,
integrity and optional privacy of the data por-
tion only. Normally, this privacy option is pro-

Ottawa Linux Symposium 2002 463

vided by encryption, but the specification per-
mits a “null” encryption to be used in some cir-
cumstances.

3.1.3 IP compression header (IPcomp)

A good encryption algorithm produces cypher-
text that is evenly distributed. This makes it
difficult to compress. If one wishes to com-
press the data it must be done prior to encrypt-
ing. The IPcomp header provides for this.

One of the problems of tunnel mode is that it
adds 20 bytes of IP header, plus 28 bytes of
ESP overhead to each packet. This can cause
large packets to be fragmented. Compressing
the packet first may make it small enough to
avoid this fragmentation.

3.1.4 Internet Security Association Key
Management Protocol (ISAKMP)

ISAKMP is a framework for doing Security
Association Key Management. It can, in the-
ory, be used to produce session keys for many
different systems, not just IPsec.

3.1.5 Internet Key Daemon (IKE)

IKE is a profile of ISAKMP that is for use by
IPsec. It is often called simply “IKE.” IKE
creates a private, authenticated key manage-
ment channel. Using that channel, two peers
can communicate, arranging for sessions keys
to be generated for AH, ESP or IPcomp. The
channel is used for the peers to agree on the
encryption, authentication and compression al-
gorithms that will be used. The traffic to which
the policies will applied is also agreed upon.

3.2 Testing KLIPS

In FreeSWAN, the session layer encryption, se-
curity association management and traffic se-
lection is done by a kernel component called
KLIPS (Kernel Level IP Security). This com-
ponent can be built as a loadable kernel module
or statically built in.

As the security associations are unidirec-
tional one can effectively separate the en-
crypt/encapsulate and decrypt/decapsulate op-
erations for testing purposes.

For ease of thinking, the encryption operations
are always done on EAST and the decryption
operations are always done on WEST.

EAST

plaintext

ICMP, TCP

ciphertext

ESP

system
console

KLIPS

PLUTO

Figure 3: How to test KLIPS

As indicated in Figure 3, a source of plaintext
packets is needed, a way to examine the cipher-
text packets is needed, and a way to configure
the system is needed. In the physical setup
of the previous section, the source of plain-
text packets is provided by the machine SUN-
RISE, and the examination of the packets is
provided by SKY.

A typical initialization script for KLIPS is
shown in Figure 4.

The term SPI means “Security Parameters In-
dex.” Each security association is indexed by
a SPI. Note that a separate SPI is setup for

Ottawa Linux Symposium 2002 464

Figure 4: A typical initialization script for KLIPS

#!/bin/sh
TZ=GMT export TZ

ipsec spi --clear
ipsec eroute --clear

enckey=0x4043434545464649494a4a4c4c4f4f515152525454575758
authkey=0x87658765876587658765876587658765

ipsec klipsdebug --set pfkey
ipsec klipsdebug --set verbose

ipsec spi --af inet --edst 192.1.2.45 --spi 0x12345678 \
--proto esp --src 192.1.2.23 --esp 3des-md5-96 \
--enckey $enckey --authkey $authkey

ipsec spi --af inet --edst 192.1.2.45 --spi 0x12345678 \
--proto tun --src 192.1.2.23 --dst 192.1.2.45 --ip4

ipsec spigrp inet 192.1.2.45 0x12345678 tun inet \
192.1.2.45 0x12345678 esp

ipsec eroute --add --eraf inet --src 192.0.2.0/24 \
--dst 192.0.1.0/24 --said tun0x12345678@192.1.2.45

ipsec tncfg --attach --virtual ipsec0 --physical eth1
ifconfig ipsec0 inet 192.1.2.23 netmask 0xffffff00 \

broadcast 192.1.2.255 up

magic route command
route add -host 192.0.1.1 gw 192.1.2.45 dev ipsec0

ipsec look

Ottawa Linux Symposium 2002 465

the ESP operation and for the tunnel operation.
The two are then grouped together.

Theeroute (Extended Route) command then
selects traffic by source and destination ad-
dress for processing by the aforementioned
group. [KA98a] defines other selectors, includ-
ing TCP and UDP port numbers, but those se-
lectors are not implemented in KLIPS at this
time.

The tncfg command attaches the IPsec
pseudo to a physical device. This is necessary
in 2.0 and prior kernels to provide a path for the
resulting packets to actually leave the system.
Otherwise, theroute command at the end can
cause packets to loop internally. Eliminating
this problem—we refer to it as “stoopid rout-
ing tricks™”—is the major goal of revisions to
KLIPS.

The ipsec klipsdebug commands turn
on various debugging output. This debugging
output is important for diagnosing what has re-
ally happened when the system fails.

Finally, theipsec look command produces
a short summary of resulting system setup. The
output of this appears in Figure 5.

At this point, the system is ready to have pack-
ets sent through it. If the packets match the
criteria for the SA, then they will be encrypted
with the provided key.

3.2.1 KLIPS hassles

The observant will notice a number of
numbers in the above output which
were not in the script: the IV field
(0x24a4a14e81ee960e), the lifetime
values (it has been 9 seconds between the SA
was created and the look command occured),
and the date.

These variances cause two problems: the con-
sole output is not consistent on every run, and
the resulting encrypted packets will have dif-
ferent ciphertext on each run.

3.3 Testing Pluto

EAST

plaintext

ICMP, TCP

ciphertext

ESP

system
console

KLIPS

PLUTOPEER

Figure 6: How to test Pluto

4 The first virtual attempt

UML
(east)

eth1 eth0

screenkb

pty

host−test.tcl

(expect − child)

UML_NETJIG
switch + ARP simulator

startup

Figure 7: NetJig interface diagram

Ottawa Linux Symposium 2002 466

Figure 5: Output ofipsec look

east Tue Apr 2 04:32:28 GMT 2002
192.0.2.0/24 -> 192.0.1.0/24

=> tun0x12345678@192.1.2.45 esp0x12345678@192.1.2.45 (0)
ipsec0->eth1 mtu=16260(1500)->1500
esp0x12345678@192.1.2.45 ESP_3DES_HMAC_MD5: dir=out src=192.1.2.23
iv_bits=64bits iv=0x24a4a14e81ee960e alen=128 aklen=128 eklen=192
life(c,s,h)=addtime(9,0,0)
tun0x12345678@192.1.2.45 IPIP: dir=out src=192.1.2.23 life(c,s,h)=addtime(9,0,0)
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192.0.1.1 192.1.2.45 255.255.255.255 UGH 40 0 0 ipsec0
192.1.2.0 0.0.0.0 255.255.255.0 U 40 0 0 eth1
192.1.2.0 0.0.0.0 255.255.255.0 U 40 0 0 ipsec0
192.0.1.0 192.1.2.45 255.255.255.0 UG 40 0 0 eth1
192.0.2.0 0.0.0.0 255.255.255.0 U 40 0 0 eth0
0.0.0.0 192.1.2.254 0.0.0.0 UG 40 0 0 eth1

4.1 How to configure to use “make check”

4.1.1 What is “make check”

“make check” is a target in the top level make-
file. It takes care of running a number of unit
and system tests to confirm that FreeSWAN has
been compiled correctly, and that no new bugs
have been introduced.

“make check” expects to be able to build User-
Mode Linux kernels with FreeSWAN included.
To do this it needs to have some files down-
loaded and extracted prior to running “make
check”. This is described in the FreeSWAN
documentation, under UML testing5.

4.2 Running “make check”

“make check” works by walking the
FreeSWAN source tree invoking the “check”
target at each node. At present there are tests
defined only for theklips directory. These
tests will use the UML infrastructure to test
out pieces of theklips code.

5http://www.freeswan.org/freeswan_snaps
/CURRENT-SNAP/doc/umltesting.html

The results of the tests can be recorded. If the
environment variable REGRESSRESULTS
is non-null, then the results of each test will
be recorded. This is used as part of a nightly
regression testing system.

“make check” otherwise prints a minimal
amount of output for each test, and indicates
pass/fail status of each test as they are run.
Failed tests do not cause failure of the target
in the form of exit codes.

5 The second virtual attempt

This attempt is illustrated in Figure 8.

6 Conclusions

Use of virtual testing environment massively
simplifies automated tests.

Limitations are that one can only test Linux 2.4
and beyond kernels.

It takes a lot of RAM and a lot of CPU, but
still is cheaper than coordinating many physi-

Ottawa Linux Symposium 2002 467

ARP sim
switch

UML_NETJIG

ARP sim
switch

UML_NETJIG

ARP sim
switch

UML_NETJIG

UML
(west)

eth0 eth1

screenkb UML
(east)

eth1 eth0

screenkb

ptypty

(expect)
net2−test.tcl

Figure 8: NetJig for multiple machines

cal machines.

References

[Atk95a] R. Atkinson. RFC 1825: Security
architecture for the Internet
Protocol, August 1995. Obsoleted
by RFC2401 [KA98a]. Status:
PROPOSED STANDARD.

[Atk95b] R. Atkinson. RFC 1826: IP
authentication header, August
1995. Obsoleted by RFC2402
[KA98b]. Status: PROPOSED
STANDARD.

[Atk95c] R. Atkinson. RFC 1827: IP
encapsulating security payload
(ESP), August 1995. Obsoleted by
RFC2406 [KA98c]. Status:
PROPOSED STANDARD.

[Bec01] Kent Beck.eXtreme
Programming: explained.
Addison-Wesley, 2001.

[DNP99] M. Degermark, B. Nordgren, and
S. Pink. RFC 2507: IP header
compression, February 1999.
Status: PROPOSED STANDARD.

[HC98] D. Harkins and D. Carrel. RFC
2409: The Internet Key Exchange
(IKE), November 1998. Status:
PROPOSED STANDARD.

[KA98a] S. Kent and R. Atkinson. RFC
2401: Security architecture for the
Internet Protocol, November 1998.
Obsoletes RFC1825 [Atk95a].
Status: PROPOSED STANDARD.

[KA98b] S. Kent and R. Atkinson. RFC
2402: IP authentication header,
November 1998. Obsoletes
RFC1826 [Atk95b]. Status:
PROPOSED STANDARD.

[KA98c] S. Kent and R. Atkinson. RFC
2406: IP Encapsulating Security
Payload (ESP), November 1998.
Obsoletes RFC1827 [Atk95c].
Status: PROPOSED STANDARD.

[MSST98] D. Maughan, M. Schertler,
M. Schneider, and J. Turner. RFC
2408: Internet Security
Association and Key Management
Protocol (ISAKMP), November
1998. Status: PROPOSED
STANDARD.

[Per96] C. Perkins. RFC 2003: IP
encapsulation within IP, October
1996. Status: PROPOSED
STANDARD.

[Pip98] D. Piper. RFC 2407: The Internet
IP security domain of
interpretation for ISAKMP,
November 1998. Status:
PROPOSED STANDARD.

[TDG98] R. Thayer, N. Doraswamy, and
R. Glenn. RFC 2411: IP security
document roadmap, November
1998. Status:
INFORMATIONAL.

PILS: A Generalized Plugin and Interface Loading
System

Alan Robertson
International Business Machines Corporation

alanr@unix.sh OR alanr@us.ibm.com

Abstract

Many modern Linux application systems make
extensive use of dynamically loadable object
modules (plugins). However, most of these
systems implement their plugin and interface
management systems in a way that satisfies
their own immediate needs, and is not gener-
ally directly usable by other projects.

PILS is an generalized and portable open
source Plugin and Interface Loading System.
PILS was developed as part of the Open
Cluster Framework reference implementation,
and is designed to be directly usable by a
wide variety of other applications. PILS is
available under the terms of the GNU Lesser
General Public License (LGPL). Since it is
written in C, and built with automake and
libtool, it is portable to most modern operating
systems. PILS manages both plugins (loadable
objects), and the interfaces these plugins
implement. PILS is designed to support any
number of plugins implementing any number
of interfaces.

This paper describes the philosophy and goals
of PILS, presents an example of how to use
PILS, and discusses a few implementation
details of the PILS system.

Figure 1: Plugin-enabled Program

1 Introduction

Many modern Linux application systems make
extensive use of dynamically loaded object
modules, oftentimes called plugins.

Plugins can be used for many purposes, and
a complex program may use several different
types of plugins for different purposes. A
program which uses plugins can implement
a variety of dynamic capabilities which were
not explicitly planned for when the program
was compiled. This situation is illustrated by
Figure 1. The sample program has commu-
nications plugins, authentication plugins and
other types of plugins. Such a program can
take advantage of new types of communica-
tion systems, or authentication systems, etc.
without recompiling or relinking the entire
system. In some cases, the program can begin
using newly-written code without even being
restarted.

This is ideal when one wishes to create a

Ottawa Linux Symposium 2002 469

general platform for many different people and
organizations to build on. The Open Cluster
Framework (OCF) reference implementation
is such a system. It is not known how many
types of plugins the system may eventually
need, nor how many different implementations
of each there might eventually be. Plugins are
ideal building blocks for such general systems.

On most Linux-like systems, thedlopen(3)
[dlopen] suite of calls are sufficient to load and
unload shared objects (.so files) and to find
symbols. However, there is much more to man-
aging such plugins than is provided by either
dlopen(3) or libtool [libtool]. PILS pro-
vides the following capabilities which are not
provided by eitherdlopen(3) or libtool:

• Determining what capabilities or inter-
faces are implemented by a particular
shared object

• Determining which plugins provide a par-
ticular interface

• Registering exported interfaces

• Importing interfaces for the use of the plu-
gins

• Tracking the reference counts of inter-
faces

Additionally, the implementation of
dlopen(3) varies from platform to platform,
and is not available at all on some platforms.
PILS uses libtool to take hidedlopen(3)
idiosyncrasies.

PILS was written to provide basic capabilities
for the Open Cluster Framework [OCF] refer-
ence implementation. OCF is intended to allow
proprietary and closed software to coexist in
the same framework, with contributions com-
ing from many people, and to support plugins

Figure 2: Dynamic Objects and Interfaces

which were not compiled as part of the refer-
ence platform. As a result, the ideal model is
to drop a suitable plugin into the correct direc-
tory, and have it simply work in every respect.

As a result, simple automatic determination of
the type of plugin and its capabilities must be
supported.

PILS also standardizes certain common func-
tions, such as setting the debugging level, and
logging functions through mandantory plugin
interfaces. This standardization makes plugins
more manageable and flexible than would
otherwise be the case. PILS has similar goals
to the Glib 2.0 C class loader, but does not
require the plugins to use the GTK class hi-
erarchy, and provides some additional features.

2 PILS Model and Terminology

Before presenting more about PILS, it is
necessary to define some terminology which is
used in this paper. Many of the terms which
PILS uses do not have universally accepted
meanings. For the purposes of this document
the following definitions are assumed:

• Dynamically Loadable Object Module.
A dynamically loadable object module
is an independent object file which can

Ottawa Linux Symposium 2002 470

be linked at run time into a running
program, executed, and then unloaded
when desired. On Linux-like systems,
dynamically loadable object modules are
typically stored as shared object (.so)
files. The relationship between a shared
object file, its interfaces, and itsINIT
function is illustrated in Figure 2.

• Plugin. A plugin is a dynamically load-
able object module which implements the
Plugin interface described later. In ad-
dition to providing thePlugin interface,
plugins typically implement one or more
other interfaces.

• Interface. An interface is the set of
exported and imported functions and
data items which are shared by all im-
plementations of these interfaces. For
example, a communications interface
might export functions to read and write
packets, and import a function to lock a
communications device. The exported
functions are defined by a structure with
pointers to the various functions (and
optionally data items) which the plugin
wishes to make public. The imported
functions are similarly defined.

Each interface type defines a unique set
of imported and exported functions that
are part of the interface which implemen-
tations of this interface must meet. PILS
defines thePlugin interface, and allows
others to be defined. PILS supports an
arbitrary number of types of interfaces.

• Exports. The exports of an interface
are the set of functions and/or data items
which are provided by the plugin for
the use of the system loading the plu-
gin. These exported functions are pro-

vided through a single pointer to a struc-
ture containing all the individual func-
tions. A typical interface defintion is a C
structure consisting of a number of point-
ers to functions in a structure. Here is
a sample interface from the example we
will present in detail later.

struct HBAuthOps {
int (*auth)(struct HBauth_info*

authinfo,
const char* data,
char* result,
int resultlen);
int (*needskey) (void);

};

In this example, the HBauth authentica-
tion exports are defined as astruct
HBAuthOps . This structure in turn con-
tains two function pointers, theauth()
function, and theneedskey() func-
tion. All implementations of theHBauth
interface export this exact set of functions.

• Imports . The imports of an interface
are the set of functions and/or data items
which are provided by the loader of a
plugin for the use of the plugin. The
plugin implementation is then able to
use these interfaces to accomplish its
purpose. Most plugin loading systems do
not provide for importing capabilities into
a plugin. The provision of imports to the
plugin increases the reusability of plugins
in other contexts, and minimizes the use
of external symbols by plugins (which is
problematic on some platforms). These
imported functions are provided through
a single pointer to a structure containing
all the individual functions, similar to
the HBauth example in the Exports
definition.

Ottawa Linux Symposium 2002 471

• Type. The word type is used in two
closely-related senses in this document.
In the most proper sense,typerefers to the
type of an interface. All implementations
which share the same interface name
are constrained to implement the same
interface. This interface name is called
the type of the interface, and also the type
of the implementation.

The word type is also used to refer to the
type of a plugin. Although, technically
plugins don’t inherently have distinct
types, there is a convention that a plugin
namedbar in directory foo provides the
bar implementation of interface typefoo.
This convention is assumed by software
which automatically loads plugins in
order to load the particular interfaces.

• Implementation. An implementationof
an interface is a particular set of exported
functions and data which conform to the
definition of the type of interface which
it implements. When a plugin is loaded,
it registers its interface implementations.
Any given plugin can register as many im-
plementations of as many different types
as it wishes. Normally, applications pro-
vide multiple implementations of an inter-
face, and each is generally contained in a
separate plugin. As a shorthand for re-
ferring to interfaces (and sometimes plu-
gins), we use a simple pathname conven-
tion. The string "HBauth/md5" is a short-
hand notation for themd5implementation
of theHBauthinterface. This is consistent
with the way the implementations are ar-
ranged on disk - with all the plugins of a
given type being in the same directory.

3 Basic PILS Capabilities

The basic capabilities which PILS provides in-
clude the following:

• Loading a plugin

• Managing Reference counts

• Unloading a plugin (by reference count)

• Registration of interface implementations

• Provision of interface imports

4 Loading a PILS plugin

The process of loading a PILS plugin goes
through the following steps:

1. Request The application requests
the loading of a particular inter-
face of a particular type using the
PILLoadPlugin() function. Nor-
mally an application loads a particular
plugin assuming that it provides an
interface of the same type as the name of
the directory in which it resides. Plugins
which provide more than one interface
are not fully supported at this time. More
about this can be found in the Status and
Future work section of this paper.

If, as part of its configuration, the appli-
cation needs to ask the user which par-
ticular implementation of a particular plu-
gin should be loaded, the application can
use thePILListPlugins() function
to return a list of plugins of the given
type. If it wishes to validate whether
a particular plugin exists, it can use the
PILPluginExists() call

Ottawa Linux Symposium 2002 472

2. Load Shared Object The PILS sys-
tem then asks the libtoollt_dlopen()
function to load the shared object into
memory. lt_dlopen() then uses the
native library loading system (commonly
dlopen(3) to load the object into mem-
ory.

3. Initialize Shared Object Each plugin
has a single initialization function which
is then called to initialize the plugin.
The name of this function is computed
on the basis of its type and its name.
This function name is created by the
PIL_PLUGIN_INIT macro.

4. Register Plugin When the plugin’s ini-
tialization (PIL_PLUGIN_INIT) func-
tion is called, it is is passed the Imports
portion of the Plugin interface as a param-
eter. This Imports structure includes the
following functions:

• register_plugin() A func-
tion to call to register oneself as a
plugin

• register_interface() A
function to call to register an
exported interface

• log() The preferred logging func-
tion - to be used by all the interfaces
in the plugin.

Once the plugin initialization func-
tion is called, the plugin then calls
register_plugin() to register
itself as a plugin. The register_plugin()
function is where the exports portion of
the Plugin interface is provided to the
system. These standard exported Plugin
functions include:

• pluginversion() Returns the
version of the plugin as a string.

• getdebuglevel() Returns the
current plugin debugging level.

• setdebuglevel() Sets the cur-
rent plugin debugging level to its pa-
rameter.

• close() Prepare to be unloaded
from memory.

5. Register Interfaces After registering
itself as a plugin, the plugin calls
register_interface() to register
each interface it implements.

Each type of interface has its own im-
port and export requirements. Pointers
to these structures are exchanged in the
register_interface() call. When
the register_interface() call is
made, theInterfaceMgr managing
this interface type then makes the inter-
face available to be called. The generic
InterfaceMgr does this by adding an
entry to aGHashTable for that inter-
face type. At this point, all the public in-
terfaces of the plugin are available to be
called.

5 Interface Managers

When interfaces are loaded, a plugin of type
InterfaceMgr is invoked to manage the
registered interfaces and make them available
to the calling program. PILS provides the
capability for each different type of interface
to export its capabilities in a unique fashion,
because each interface may have different
policies and mechanisms for using them and
making them accessible to the application.
PILS allows theseInterfaceMgr s to be
plugins because they implement a single
interface, and managing them as plugins
is consistent with the design philosophy of
the remainder of PILS.InterfaceMgr
interfaces are managed much like other
interface types, with the exception that the
InterfaceMgr/InterfaceMgr inter-
face manager is not dynamically loaded, but is

Ottawa Linux Symposium 2002 473

linked to a set of built-in functions which are
required to load other interface managers.

Any given type of interface can be managed
either using a type-specificInterfaceMgr
(named "InterfaceMgr/ type"), or the
generic interface manager. A type-specific in-
terface manager may register the plugin with
some other database or registry according to
the needs of the application. The generic
InterfaceMgr registers all the plugins it
manages in a set ofGHashTable s. One
GHashTable is maintained for each interface
type it manages. Many applications will find
that the generic interface manager meets most
common needs. This process sounds somewhat
tedious but in practice most of this tedium is
hidden and it is reasonably easy to use.

6 Sample Plugin

In this section, code for providing a sample
plugin are provided and explained. This ex-
ample code is based on the linux-ha [linux-ha]
authentication plugins. In this case, authenti-
cation operations are exported as astruct
HBAuthOps , which defines two exported
functions, one for calculating a signature
value, and another specifying whether or
not the signature method requires a key.
This is the same set of exported functions
described earlier. In this example, these
functions are calledmd5_auth_calc() and
md5_auth_needskey() respectively.

The first thing to do is set a few #defines which
are used by later macros. PIL_PLUGINTYPE
defines the interface being implemented, and
PIL_PLUGIN and PIL_PLUGIN_S define the
name of our implementation.

#define PIL_PLUGINTYPE HBauth
#define PIL_PLUGIN md5

#define PIL_PLUGIN_S "md5"
/* Our plugin is called

"HBauth/md5.so" */

Next, declare the set of operations to be ex-
ported to the world. In this case, an authen-
tication plugin only needs to export two func-
tions, so declare them, and set up the appropri-
ate structure to point to them, so they can be
exported later on.

static int
md5_auth_calc(const struct

HBauth_info *t,
const char * text, char * result,
int resultlen);

static int md5_auth_needskey(void);

/* Authentication plugin
operations */

static struct HBAuthOps md5ops =
{ md5_auth_calc,

md5_auth_needskey
};

Now, define a couple of shutdown functions for
managing the unloading of the interface and
plugin. These two are provided separately, one
or both of them may not have anything to do.

/* Shut down the plugin */
static void
md5closepi(PILPlugin* pi)
{
}

/* Shut down the interface */
static PIL_rc
md5closeintf(PILInterface* pi,

void* pp)
{

return PIL_OK;
}

The plugin needs to invoke a magic boilerplate
macro which provides some common defaults
for a number of things that the plugin requires.

Ottawa Linux Symposium 2002 474

Next comes declarations about the information
to be exchanged when the plugin and interface
are registered.

PIL_PLUGIN_BOILERPLATE("1.0", Debug,
md5closepi);

static const PILPluginImports* PluginImports;
static PILPlugin* OurPlugin;
static PILInterface* OurInterface;
static void* OurImports;
static void* interfprivate;

Next comes the plugin initialization and reg-
istration function which gets called when the
plugin is loaded. ThePIL_PLUGIN_INIT
macro gives the initialization function a name
based on the plugin type and name, to avoid
symbol clashes.

PIL_rc
PIL_PLUGIN_INIT(PILPlugin* us
, const PILPluginImports* imports)
{

/* Save away imports for later */
PluginImports = imports;
OurPlugin = us;

/* Register ourselves as a plugin */
imports->register_plugin(us
, &OurPIExports);

/* Register an HAauth/md5 interface */
return imports->register_interface(us
, "HBauth" , "md5"
, &md5ops
, md5closeintf
, &OurInterface
, &OurImports
, interfprivate);

}

This is the end of all the PILS-specific code.
The real work of the plugin follows. Note the
use of the importedlog() function. This al-
lows the plugin to use the same logging method
as the application which loads it uses. The plu-
gin neither knows nor cares how logging is to
be done in the particular application in which
it has been loaded.

/* Real work (should) happen here... */

static int
md5_auth_calc(const struct HBauth_info *t
, const char * text, char * result
, int resultlen)
{

/* UhOh, No Code yet! <8-O */

OurImports->log(PIL_FATAL
, "UhOh! forgot to write code!");

/*NOTREACHED*/
/* Compute md5 authentication */
return 0;

}
static int
md5_auth_needskey(void)
{

/* md5 authentication requires a key */
return 1;

}

7 Plugin Usage Code

Plugin code doesn’t need to be aware of which
InterfaceMgr is managing it, but code
that needs to access the loaded functions
must be aware of how to interact with the
interface manager, in order to be able to
find the exported interfaces. For this example,
the genericInterfaceMgr code is assumed.

First, declare variables to hold a reference to
the plugin system, the loaded authentication
functions, and some authentication informa-
tion which the HBauth system needs.

/* Sample code ignores errors ;-) */

PILPluginUniv* PluginLoadingSystem = NULL;
GHashTable* AuthFuncs = NULL;
char result[64];
struct HBAuthOps* Auth;

struct HBauth_info authinfo =
{NULL, "md5", "TopSecretKey!"};

PILGenericIfMgmtRqst RegisterRqsts[]= {
{"HBauth", &AuthFuncs, NULL, NULL, NULL}
{ NULL, NULL, NULL, NULL, NULL}

};

Next, initialize the plugin system, telling it
where to look to find plugins.

Ottawa Linux Symposium 2002 475

PluginLoadingSystem = NewPILPluginUniv
("/usr/lib/heartbeat/plugins");

Load the generic plugin manager, telling
it (through RegisterRqsts) to update
Authfuncs whenever an HBauth plugin is
registered or unregistered.

PILLoadPlugin(PluginLoadingSystem
, "InterfaceMgr", "generic"
, &RegisterRqsts));

At this point, the plugin system is completely
ready to go, and plugins can be loaded and un-
load at will.

PILLoadPlugin(PluginLoadingSystem
, "HBauth", "md5", NULL);

Now, the plugin is loaded, and can be accessed.
The generic plugin loader stashed a pointer to
the interface theAuthFuncs GHashTable .

/* Get the interface for the "md5" plugin */
Auth = g_hash_table_lookup(AuthFuncs,"md5");

/* Compute signature and put it in ’result’ */
Auth->auth(&authinfo, "ImportantStuffToSign"
, result, sizeof(result));

When the authentication plugin is no longer
needed, decrement the reference count, and the
plugin will automatically be unloaded.

Auth = NULL;

PILIncrIFRefCount(
PluginLoadingSystem

, "HBauth", "md5", -1);

Although the code to prepare the application
is somewhat more complex than the example
of the plugin itself, most of this code won’t be
repeated for each plugin or each plugin type.

Figure 3: Layers of Abstractions in PILS

8 PILS Implementation Overview

8.1 PILS Data Relationships

PILS is written using the Glib [Glib] library,
and makes extensive use ofGHashTable s.
There are basically two related abstraction
stacks which PILS maintains: the Plugin Uni-
verse, and the Interface Universe. These are, in
effect, parallel representations of related infor-
mation, or for the more pun-minded, parallel
universes. This is illustrated by Figure 3.

Each universe consists of a set of types, and
each type contains a set of instances of the
fundamental object (a Plugin or an Interface).
Most of the work is keeping the relationships
between the two layers and these two universes
synchronized, so that it is known what inter-
faces were instantiated from any given plugin,
and which plugin any particular interface was
loaded from. There are a number of reference
counts, and more complexity than one might
expect.

8.2 InterfaceMgr: Managing Interfaces

From the perspective of PILS, the most in-
teresting part of the world consists of inter-
faces.InterfaceMgr is PILS’ name for the
type of interface which is presented by plugins
which manage interfaces.

Ottawa Linux Symposium 2002 476

Interfaces are where the variation and interest-
ing behaviors are generally implemented. So,
PILS implements an interface for the manage-
ment of interfaces. This interface management
function of PILS is believed to be unique. In
PILS, the interface which manages interfaces
is called theInterfaceMgr interface. So
the InterfaceMgr interface which man-
ages other theInterfaceMgr interfaces is
the InterfaceMgr/InterfaceMgr
implementation. The
InterfaceMgr/InterfaceMgr is
built-in (not dynamically loaded) since it is
necessary for bootstrapping the dynamic load-
ing management system. It loads and manages
the other interface managers (including the
generic interface manager).

Normally, the name of an interface manager is
the same as the name of the type of interface it
manages. Not so for the generic interface man-
ager, which can manage any number of types
of interfaces. When it is loaded, it is passed a
parameter to tell it which types of interfaces it
should manage. Since it can register any num-
ber of implementations, it then registers itself
as the manager for each of these interface types
it was passed when it started up.

9 Security Considerations

There are a few additional security considera-
tions associated with plugin-enabled programs.
Programs which use plugins to provide ca-
pabilities have more files and directories
which need to be properly secured in order
to ensure the application is not compromised.
All programs have files and directories which
must be properly secured in order for them
to be secure, but software which uses plugins
typically have a few more such directories and
files. In addition to the location of the binary,
and the normal libraries, the location of the

plugins and the plugins themselves (and there
may be many of them) must also be properly
secured.

With an improperly secured system, and
plugins which meet well-known interfaces,
it is a very simple matter to create a plugin
which meets the well-known interface, but
which opens a wide security hole which can
go completely undetected for a long period of
time.

Plugins which provide security functions and
which provide extremely simple interfaces
(like the authentication example presented
earlier) make extraordinarily tempting targets
for intruders. It is prudent to assume that
attackerswill exploit such interfaces if they are
improperly secured.

Plugins run in the address space of the loading
program, so they can easily do any thing
which the program itself has permissions to
do. There is a difficult issue of trust associated
with a collection of plugins which come from
different sources.

It is necessary for software which uses plugins
(whether from PILS or some other source)
to ensure that they install their software in
properly secured locations. Although some
of the security enhancements described later
will help this problem somewhat, the need to
properly install and administer systems is still
fundamental.

10 Status and Future Work

The current implementation of PILS is func-
tional, and is currently used by the Linux-HA

Ottawa Linux Symposium 2002 477

project and part of the OCF reference frame-
work. It is currently generally available as part
of the Linux-HA distribution [ha-dist], but is
not currently available as a separate subpack-
age (but this will probably have occured by the
publication of this paper). The source to PILS
can also be directly viewed in CVS [ha-cvs].

Although PILS is a powerful tool providing
a rich set of capabilities, the area of plugin
management is broad and quite interesting, and
PILS is in the early stages of its evolution. As a
result, there are a number of needs which PILS
does not fully satisfy. Since it is an open source
project, all interested parties are invited to con-
tribute these or other enhancements. The fol-
lowing is a list of features which are under con-
sideration for the inclusion in future versions.

• Aliases. Add an alias capability. Al-
though each plugin can provide more than
one interface, the current implementation
of the "tell me all the plugins which im-
plement interface X", assumes that each
plugin actually only implements its main
interface. To remedy this limitation, it is
desirable to add an alias capability.

On many Linux filesystems, symbolic
links could be used, but it is believed that
even symbolic links would require some
additional implementation effort and then
they would be limited to being stored
on filesystems which implement symbolic
links.

• PATH support. Allow PATH-like
searches for the location of plugins.

• Porting. Complete and verify the ports to
other operating systems.

• Default InterfaceMgr. Add the abil-
ity for PILS to set an automatic de-
fault InterfaceMgr , rather than ex-

pecting the application to declare in ad-
vance which plugins they wish the current
generic manager to manage.

• InterfaceMgr management. Extend the
InterfaceMgr paradigm to add a new func-
tion to ask a particular InterfaceMgr to
manage a particular Interface type.

• InterfaceMgr interface Add the ability
to add new interfaces to manage after
an interface manager is loaded. This is
mainly for the generic interface manager,
but may also be necessary for plugins
whose interfaces have become inaccess-
able but whose plugin is still loaded. Note
that this may overlap or interact with the
previous item.

• Security awareness.Enhance PILS secu-
rity awareness. For example, verify who
owns plugins, plugin directories, and so
forth.

• Signed plugins. Add support for crypto-
graphic signatures for plugins.

• Plugin licenses. Add the license and li-
censeURL functions as standard member
functions for plugins.

• Independence. If sufficient interest is
shown, it would be good to make PILS
a completely independent open source
project. In any case, PILS needs to be
a completely independent package which
can be installed without any of the rest of
the OCF software.

• Gtype support. Extend PILS to load
GTK C types. If this were reasonable,
then it might be a better solution than the
C class loader which is scheduled to be re-
leased with the 2.0 version of Glib.

• C++ class support. Support loading of
C++ classes.

Ottawa Linux Symposium 2002 478

• Non-native languages. Generalize the
idea of plugins in such a way that PILS
could also load plugins written in arbitrary
languages like Perl, Python, or Java.

• Interface version management.There is
currently no built-in capability or conven-
tion for managing interface versions (in-
cluding the plugin interface).

11 Acknowledgments

Special thanks go to Neal McBurnett who con-
tributed both to the early design stages of PILS,
and also to the original design stages of the
HBauth plugin which is used in the examples.
Thanks also go out to Cliff White, Ramachan-
dra Pai and Xiaoxiang Liu who spent time re-
viewing and critiquing the paper. The author
also wishes to thank the developers of the Glib
library, who have created an extraordinarily
useful and functional C library. PILS devel-
opment would have been much more difficult
without Glib. The author notes that PILS is not
a commercial product and this paper represents
the views of the author, and does not necessar-
ily represent the views of his employer.

12 Trademarks

Linux is a trademark of Linus Torvalds. Other
company, product, and service names may be
trademarks or service marks of others.

References

[ha-cvs] PILS CVS Repository, Robertson, et
al, http://cvs.linux-ha.org

/viewcvs/viewcvs.cgi/linux-ha

/lib/pils/ ,
http://cvs.linux-ha.org

/viewcvs/viewcvs.cgi/linux-ha

/include/pils/

[dlopen] Linux dlopen(3) manual page, Linux
community.
http://www.freebsd.org/cgi

/man.cgi?query=dlopen

&apropos=0&sektion=0&

format=html&manpath=SuSE+

Linux%2Fi386+7.3

[Glib] Glib Reference Manual, Gnome
Project.
http://developer.gnome.org/doc

/API/glib/index.html

[ha-dist] High-Availability Linux
Distribution, Robertson, et al,
High-Availability Linux Project.
http://linux-ha.org/download/

[libtool] Libtool Reference Manual, Free
Software Foundation.
http://www.gnu.org/software

/libtool/manual.html

[linux-ha] High-Availability Linux Home
Page, Robertson, et al, High-Availability
Linux Project.
http://linux-ha.org/

[OCF] Open Cluster Framework Project
Home Page, Robertson, et al,
http://opencf.org/

Fuss, Futexes and Furwocks: Fast Userlevel Locking
in Linux

Hubertus Franke
IBM Thomas J. Watson Research Center

frankeh@watson.ibm.com

Rusty Russell
IBM Linux Technology Center

rusty@rustcorp.com.au

Matthew Kirkwood
matthew@hairy.beasts.org

Abstract

Fast userlevel locking is an alternative locking
mechanism to the typically heavy weight ker-
nel approaches such as fcntl locking and Sys-
tem V semaphores. Here, multiple processes
communicate locking state through shared
memory regions and atomic operations. Ker-
nel involvement is only necessary when there
is contention on a lock, in order to perform
queueing and scheduling functions. In this pa-
per we discuss the issues related to user level
locking by following the history of ideas and
the code to the current day. We present the ef-
ficacy of "futexes" through benchmarks, both
synthetic and through adaptations to existing
databases. We conclude by presenting the po-
tential future directions of the "futex" inter-
face.

1 Introduction

Linux™1 has seen significant growth as a
server operating system and has been success-
fully deployed in enterprise environments for
Web, file and print serving. With the deploy-
ment of Version 2.4, Linux has seen a tremen-
dous boost in scalability and robustness that

1Linux is a trademark of Linus Torvalds

makes it now feasible to deploy even more de-
manding enterprise applications such as high
end databases, business intelligence software
and application servers. As a result, whole en-
terprise business suites and middleware such
as SAP™, Websphere™, Oracle, DB2™2, etc.,
are now available for Linux.

For these enterprise applications to run effi-
ciently on Linux, or on any other operating
system for that matter, the OS must provide
the proper abstractions and services. Enter-
prise applications and applications suites are
increasingly built as multi process / multi-
threaded applications. Multi-threaded appli-
cations can take better advantage of SMP
hardware, while multiple processes allows for
higher degrees of fault tolerance, i.e., a single
process abort does not necessarily bring the en-
tire application down. Furthermore, applica-
tions suites are often a collection of multiple
independent subsystems.

Despite their functional separation, the pro-
cesses representing these subsystems often
must communicate with each other and share
state amongst each other. Examples of this
are database systems, which typically maintain
shared I/O buffers in user space. The buffers

2All third party trademarks are the property of their
respective owners.

Ottawa Linux Symposium 2002 480

are concurrently accessed by various database
engines and prefetching processes.

Access to such shared state must be prop-
erly synchronized through either exclusive or
shared locks. Exclusive locks allow only
one party access to the protected entity, while
shared locks allow multiple reader – single
writer semantics. Synchronization implies a
shared state, indicating that a particular re-
source is available or busy, and a means to wait
for its availability. The latter one can either be
accomplished through busy-waiting or through
a explicit / implicit call to the scheduler.

In traditional UNIX™ 3 systems, System V
IPC (inter process communication) such as
semaphores, msgqueues, socketsand the file
locking mechanism (flock()) are the basic
mechanisms for two processes to synchronize.
These mechanisms expose an opaque handle
to a kernel object that naturally provides the
shared state and atomic operations in the ker-
nel. Services must be requested through sys-
tem calls (e.g.,semop()). The drawback of
this approach is that every lock access requires
a system call. When locks have low contention
rates, the system call can constitute a signifi-
cant overhead.

One solution to this problem is to deploy user
level locking, which avoids some of the over-
head associated with purely kernel-based lock-
ing mechanisms. It relies on a user level lock
located in a shared memory region and modi-
fied through atomic operations to indicate the
lock status. Only the contended case requires
kernel intervention. The exact behavior and the
obtainable performance are directly affected by
how and when the kernel services are invoked.
The idea described here is not new. Some
of the foundation of this paper are described
in [4], [7] and [6]. In [2] the impact of lock-
ing on JVM performance is discussed.

3UNIX is a trademark of The Open Group

In this paper we are describing a particular fast
user level locking mechanism calledfutexes
that was developed in the context of the Linux
operating system. It consists of two parts, the
user library and a kernel service that has been
integrated into the Linux kernel distribution
version 2.5.7.

The paper is organized as followed. In sec-
tion 2 we describe the basic behavioral and
functional requirements of a user level lock-
ing mechanism. In section 3 we describe some
of the earlier approaches that led to the current
design offutexesand the futexes themselves.
In section 4 we provide a performance assess-
ment on a synthetic and a database benchmark.
In section 5 we elaborate on current and future
efforts and in 6 we conclude.

2 Requirements

In this section we are stating some of the re-
quirements of a fast userlevel locking mecha-
nism that we derived as part of this work and
that were posted to us as requirements by mid-
dleware providers.

There are various behavioral requirements that
need to be considered. Most center around the
fairness of the locking scheme and the lock re-
lease policy. In afair locking scheme the lock
is granted in the order it was requested, i.e., it
is handed over to the longest waiting task. This
can have negative impact on throughput due to
the increased number of context switches. At
the same time it can lead to the so calledcon-
voy problem. Since, the locks are granted in
the order of request arrival, they all proceed
at the speed of the slowest process, slowing
down all waiting processes. A common solu-
tion to the convoy problem has been to mark
the lock available upon release, wake all wait-
ing processes and have them recontend for the
lock. This is referred to asrandom fairness,

Ottawa Linux Symposium 2002 481

although higher priority tasks will usually have
an advantage over lower priority ones. How-
ever, this also leads to the well knownthun-
dering herd problem. Despite this, it can
work quite well on uni-processor systems if the
first task to wake releases the lock before being
preempted or scheduled, allowing the second
herd member to obtain the lock, etc. It works
less spectacularly on SMP. To avoid this prob-
lem, one should only wake up one waiting task
upon lock release. Marking the lock available
as part of releasing it, gives the releasing task
the opportunity to reacquire the lock immedi-
ately again, if so desired, and avoid unneces-
sary context switches and the convoy problem.
Some refer to these asgreedy, as the running
task has the highest probability of reacquiring
the lock if the lock is hot. However, this can
lead to starvation. Hence, the basic mecha-
nisms must enable both fair locking, random
locking and greedy or convoy avoidance lock-
ing (short ca-locking). Another requirement
is to enable spin locking, i.e., have an appli-
cation spin for the availablilty of the lock for
some user specified time (or until granted) be-
fore giving up and resolving to block in the
kernel for its availability. Hence an applica-
tion has the choice to either (a) block waiting
to be notified for the lock to be released, or (b)
yield the processor until the thread is resched-
uled and then the lock is tried to be acquired
again, or (c) spin consuming CPU cycles until
the lock is released.

With respect to performance, there are basi-
cally two overriding goals:

• avoid system calls if possible, as system
calls typically consume several hundred
instructions.

• avoid unnecessary context switches: con-
text switches lead to overhead associated
with TLB invalidations etc.

Hence, in fast userlevel locking, we first dis-
tinguish between the uncontended and the con-
tended case. The uncontended case should be
efficient and should avoid system calls by all
means. In the contended case we are willing to
perform a system call to block in the kernel.

Avoiding system calls in the uncontended case
requires a shared state in user space accessible
to all participating processes/task. This shared
state, referred to as theuser lock, indicates the
status of the lock, i.e., whether the lock is held
or not and whether there are waiting tasks or
not. This is in contrast to the System V IPC
mechanisms which merely exports a handle to
the user, and performs all operations in the ker-
nel.

The user lock is located in a shared memory re-
gion that was create viashmat() ormmap() .
As a result, it can be located at different virtual
addresses in different address spaces. In the
uncontended case, the application atomically
changes the lock status word without enter-
ing into the kernel. Hence, atomic operations
such asatomic_inc(), atomic_dec,
cmpxchg() , and test_and_set() are
neccessary in user space. In the contended
case, the application needs to wait for the re-
lease of the lock or needs to wake up a wait-
ing task in the case of an unlock operation.
In order to wait in the kernel, akernel object
is required, that haswaiting queuesassociated
with it. The waiting queues provide the queue-
ing and scheduling interactions. Of course, the
aforementioned IPC mechanisms can be used
for this purpose. However, these objects still
imply a heavy weight object that requires a pri-
ori allocation and often does not precisely pro-
vide the required functionality. Another alter-
native that is commonly deployed arespinlocks
where the task spins on the availability of the
user lock until granted. To avoid too many cpu
cycles being wasted, the task yields the proces-
sor occasionally.

Ottawa Linux Symposium 2002 482

It is desirable to have the user lock be handle-
free. In other words instead of handling an
oqaquekernel handle, requiring initialization
and cross process global handles, it is desir-
able to address locks directly through their vir-
tual address. As a consequence, kernel objects
can be allocated dynamically and on demand,
rather than apriori.

A lock, though addressed by a virtual ad-
dress, can be identified conceptually through
its global lock identity, which we define by the
memory object backing the virtual address and
the offset within that object. We notate this
by the tuple [B,O]. Three fundamental mem-
ory types can be distinguished that represent
B: (a) anonymous memory, (b) shared memory
segment, and (c) memory mapped files. While
(b) and (c) can be used between multiple pro-
cesses, (a) can only be used between threads
of the same process. Utilizing the virtual ad-
dress of the lock as the kernel handle also pro-
vides for an integrated access mechanism that
ties the virtual address automatically with its
kernel object.

Despite the atomic manipulation of the user
level lock word, race conditions can still ex-
ists as the sequence of lock word manipulation
and system calls is not atomic. This has to
be resolved properly within the kernel to avoid
deadlock and inproper functioning.

Another requirement is that fast user level lock-
ing should be simple enough to provide the
basic foundation to efficiently enable more
complicated synchronization constructs, e.g.
semaphores, rwlocks, blocking locks, or spin
versions of these, pthread mutexes, DB latches.
It should also allow for a clean separation
of the blocking requirements towards the ker-
nel, so that the blocking only has to be im-
plemented with a small set of different con-
structs. This allows for extending the use of
the basic primitives without kernel modifica-

tions. Of interest is the implementation of
mutex, semaphores and multiple reader/single
writer locks.

Finally, a solution needs to be found that en-
ables the recovery of “dead” locks. We define
unrecoverable locks as those that have been ac-
quired by a process and the process terminates
without releasing the lock. There are no conve-
nient means for the kernel or for the other pro-
cesses to determine which locks are currently
held by a particular process, as lock acquisition
can be achieved through user memory manip-
ulation. Registering the process’s “pid” after
lock acquisition is not enough as both opera-
tions are not atomic. If the process dies before
it can register its pid or if it cleared its pid and
before being able the release the lock, the lock
is unrecoverable. A protocol based solution to
this problem is described in [1]. We have not
addressed this problem in our prototypes yet.

3 Linux Fast User level Locking:
History and Implementations

Having stated the requirements in the previ-
ous section, we now proceed to describe the
basic general implementation issues. For the
purpose of this discussion we define a gen-
eral opaque datatypeulock_t to represent
the userlevel lock. At a minimum it requires
a status word.

typedef struct ulock_t {
long status;

} ulock_t;

We assume that a shared memory region has
been allocated either throughshmat() or
throughmmap() and that any user locks are
allocated into this region. Again note, that the
addresses of the same lock need not be the
same across all participating address spaces.

Ottawa Linux Symposium 2002 483

The basic semaphore functionsUP() and
DOWN()can be implemented as follows.

static inline int
usema_down(ulock_t *ulock)
{

if (!__ulock_down(ulock))
return 0;

return sys_ulock_wait(ulock);
}

static inline int
usema_up(ulock_t *ulock)
{

if (!__ulock_up(ulock))
return 0;

return sys_ulock_wakeup(ulock);
}

The __ulock_down() and
__ulock_up() provide the atomic in-
crement and decrement operations on the lock
status word. A non positive count (status) indi-
cates that the lock is not available. In addition,
a negative countcould indicate the number
of waiting tasks in the kernel. If a contention
is detected, i.e. (ulock->status <=
0) , the kernel is invoked through thesys_*
functions to either wait on the wait queue
associated withulock or release a blocking
task from said waitqueue.

All counting is performed on the lock word
and race conditions resulting from the non-
atomicity of the lock word must be resolved
in the kernel. Due to such race conditions, a
lock can receive a wakeup before the waiting
process had a chance to enqueue itself into the
kernel wait queue. We describe below how var-
ious implementation resolved this race condi-
tion as part of the kernel service.

One early design suggested was the explicit al-
location of a kernel object and the export of the
kernel object address as the handle. The ker-
nel object was comprised of a wait queue and
a unique security signature. On every wait or

wakeup call, the signature would be verified to
ensure that the handle passed indeed was refer-
ring to a valid kernel object. The disadvantages
of this approach have been mentioned in sec-
tion 2, namely that a handle needs to be stored
in ulock_t and that explicit allocation and
deallocation of the kernel object are required.
Furthermore, security is limited to the length of
the key and hypothetically could be guessed.

Another prototype implementation, known
as ulocks [3], implements general user
semaphores with both fair and convoy avoid-
ance wakeup policy. Mutual exclusive
locks are regarded as a subset of the user
semaphores. The prototype also provides
multiple reader/single writer locks (rwlocks).
The user lock objectulock_t consists of a
lock word and an integer indicating the re-
quired number of kernel wait queues. User
semaphores and exclusive locks are imple-
mented with one kernel wait queue and multi-
ple reader/single writer locks are implemented
with two kernel wait queues.

This implementation separates the lock word
from the kernel wait queues and other kernel
objects, i.e., the lock word is never accessed
from the kernel on the time critical wait and
wakeup code path. Hence the state of the lock
and the number of waiting tasks in the kernel
is all recorded in the lock word. For exclusive
locks, standard counting as described in the
generalulock_t discussion, is implemented.
As with general semaphores, a positive number
indicates the number of times the semaphore
can be acquired, “0” and less indicates that the
lock is busy, while the absolute of a negative
number indicates the number of waiting tasks
in the kernel.

The “premature” wakeup call is handled
by implementing the kernel internal wait-
queues using kernel semaphores (struct
semaphore) which are initialized with a

Ottawa Linux Symposium 2002 484

value 0. A premature wakeup call, i.e. no
pending waiter yet, simply increases the ker-
nel semaphore’s count to 1. Once the pend-
ing wait arrives it simply decrements the count
back to 0 and exits the system call without
waiting in the kernel. All the wait queues (ker-
nel semaphores) associated with a user lock are
encapsulated in a single kernel object.

In the rwlocks case, the lock word is split into
three fields: write locked (1 bit), writes waiting
(15 bits), readers (16 bits). If write locked, the
readers indicate the number of tasks wait-
ing to read the lock, if not write locked, it in-
dicates the numbers of tasks that have acquired
read access to the lock. Writers are blocking
on a first kernel wait queue, while readers are
blocking on a second kernel wait queue associ-
ated with a ulock. To wakeup multiple pending
read requests, the number of task to be woken
up is passed through the system call interface.

To implement rwlocks and ca-locks, atomic
compare and exchange support is required.
Unfortunately on older 386 platforms that is
not the case.

The kernel routines must identify the kernel
object that is associated with the user lock.
Since the lock can be placed at different virtual
addresses in different processes, a lookup has
to be performed. In the common fast lookup,
the virtual address of the user lock and the ad-
dress space are hashed to a kernel object. If
no hash entry exists, the proper global identity
[B, O] of the lock must be established. For this
we first scan the calling process’s vma list for
the vma containing the lock word and its off-
set. The global identity is then looked up in
a second hash table that links global identities
with their associated kernel object. If no kernel
object exists for this global identity, one is al-
located, initialized and added to the hash func-
tions. Theclose() function associated with
a shared region holding kernel objects is inter-

cepted, so that kernel objects are deleted and
the hash tables are cleaned up, once all attached
processes have detached from the shared re-
gion.

While this implementation provides for all the
requirements, the kernel infrastructure of mul-
tiple hash tables and lookups was deemed too
heavy. In addition, the requirement for com-
pare and exchange is also seen to be restric-
tive.

3.1 Futexes

With several independent implementations [8,
9, 10] in existence, the time seemed right in
early 2002 to attempt to combine the best el-
ements of each to produce the minimum use-
ful subset for insertion into the experimental
Linux kernel series.

There are three key points of the original futex
implementation which was added to the 2.5.7
kernel:

1. We use a unique identifier for each futex
(which can be shared across different ad-
dress spaces, so may have different vir-
tual addresses in each): this identifier is
the “struct page” pointer and the offset
within that page. We increment the ref-
erence count on the page so it cannot be
swapped out while the process is sleeping.

2. The structure indicating which futex the
process is sleeping on is placed in a hash
table, and is created upon entry to the fu-
tex syscalls on the process’s kernel stack.

3. The compression of “f ast userspace
mutex” into “ futex” gave a simple unique
identifier to the section of code and the
function names used.

Ottawa Linux Symposium 2002 485

3.1.1 The 2.5.7 Implementation

The initial implementation which was
judged a sufficient basis for kernel inclusion
used a single two-argument system call,
“sys_futex(struct futex *, int
op)” . The first argument was the address of
the futex, and the second was the operation,
used to furthur demultiplex the system call
and insulate the implementation somewhat
from the problems of system call number
allocation. The latter is especially important
as the system call is expand as new operations
are required. The two valid op numbers for
this implementation wereFUTEX_UP and
FUTEX_DOWN.

The algorithm was simple, the file
linux/kernel/futex.c containing 140 code
lines, and 233 in total.

1. The user address was checked for align-
ment and that it did not overlap a page
boundary.

2. The page is pinned: this involves look-
ing up the address in the process’s address
space to find the appropriate “struct
page * ”, and incrementing its reference
count so it cannot be swapped out.

3. The “struct page * ” and offset
within the page are added, and that result
hashed using the recently introduced fast
multiplicative hashing routines [11], to
give a hash bucket in the futex hash table.

4. The “op” argument is then examined. If it
is FUTEX_DOWNthen:

(a) The process is markedINTERRUPT-
IBLE, meaning it is ready to sleep.

(b) A “struct futex_q ” is chained
to the tail of the hash bucket deter-
mined in step 3: the tail is chosen

to give FIFO ordering for wakeups.
This structures contains a pointer
to the process and the “struct
page * ” and offset which identify
the futex uniquely.

(c) The page is mapped into low mem-
ory (if it is a high memory page), and
an atomic decrement of the futex ad-
dress is attempted,4 then unmapped
again. If this does not decrement the
counter to zero, we check for signals
(setting the error toEINTR and go-
ing to the next step), schedule, and
then repeat this step.

(d) Otherwise, we now have the futex,
or have received a signal, so we
mark this processRUNNING,unlink
ourselves from the hash table, and
wake the next waiter if there is one,
and return0 or -EINTR . We have
to wake another process so that it
decrements the futex to -1 to indicate
that it is waiting (in the case where
we have the futex), or to avoid the
race where a signal came in just as
we were woken up to get the futex
(in the case where a signal was re-
ceived).

5. If the op argument wasFUTEX_UP:

(a) Map the page into low memory if it
is in a high memory page

(b) Set the count of the futex to one
(“available”).

(c) Unmap the page if it was mapped
from high memory

4We do not even attempt to decrement the address if
it is already negative, to avoid potential wraparound. We
do the decrement even if the counter is zero, as “-1” indi-
cates we are sleeping and hence has different semantics
than 0.

Ottawa Linux Symposium 2002 486

(d) Search the hash table for the
first “struct futex_q ” associ-
ated with this futex, and wake up that
process.

6. Otherwise, if the op argument is anything
else, set the error to EINVAL.

7. Unpin the page.

While there are several subtleties in this im-
plementation, it gives a second major advan-
tage over System V semaphores: there are no
explicit limits on how many futexes you can
create, nor can one futex user “starve” other
users of futexes. This is because the futex is
merely a memory location like any other until
the sys_futex syscall is entered, and each
process can only do onesys_futex syscall
at a time, so we are limited to pinning one page
per process into memory, at worst.

3.1.2 What about Read-Write Locks?

We considered an implementation of “FU-
TEX_READ_DOWN” et. al, which would
be similar to the simple mutual exclusion
locks, but before adding these to the kernel,
Paul Mackerras suggested a design for creat-
ing read/write lock in userspace by using two
futexes and a count:f astuserspaceread/write
locks, or furwocks. This implementation pro-
vides the benchmark for any kernel-based im-
plementation to beat to justify its inclusion as
a first-class primitive, which can be done by
adding new valid “op” values. A comparision
with the integrated approach chosen by ulocks
is provided in Section 4.

3.1.3 Problems with the 2.5.7 Implementa-
tion

Once the first implementation entered the
mainstream experimental kernel, it drew the
attention of a much wider audience. In par-
ticular those concerned with implementing
POSIX(tm)5 threads, and attention also re-
turned to the fairness issue.

• There is no straightforward way to imple-
ment the pthread_cond_timedwait primi-
tive: this operation requires a timeout, but
using a timer is difficult as these must not
interfere with their use by any other code.

• The pthread_cond_broadcast primitive re-
quires every process sleeping to be woken
up, which does not fit well with the 2.5.7
implementation, where a process only ex-
its the kernel when the futex has been suc-
cessfully obtained or a signal is received.

• For N:M threading, such as the Next Gen-
eration Posix Threads project [5] an asyn-
chronous interface for finding out about
the futex is required, since a single pro-
cess (containing multiple threads) might
be interested in more than one futex.

• Starvation occurs in the following situta-
tion: a single process which immediately
drops and then immediately competes for
the lock will regain it before any woken
process will.

With these limitations brought to light, we
searched for another design which would be
flexible enough to cater for these diverse
needs. After various implemenation attempts
and discussions we settled on a variation
of atomic_compare_and_swapprimitive, with

5POSIX is a trademark of the IEEE Inc.

Ottawa Linux Symposium 2002 487

the atomicity guaranteed by passing the ex-
pected value into the kernel for checking.? To
do this, two new “op” values replaced the oper-
ations above, and the system call was changed
to two additional arguments, “int val” and
“struct timespec *reltime”.

FUTEX_WAIT: Similar to the previous FU-
TEX_DOWN, except that the looping and
manipulation of the counter is left to
userspace. This works as follows:

1. Set the process state toINTERRUPT-
IBLE, and place “struct futex_q”
into the hash table as before.

2. Map the page into low memory (if in
high memory).

3. Read the futex value.

4. Unmap the page (if mapped at step
2).

5. If the value read at step 3 is not
equal to the “val” argument provided
to the system call, set the return to
EWOULDBLOCK.

6. Otherwise, sleep for the time indi-
cated by the “reltime” argument, or
indefinitely if that is NULL.

(a) If we timed out, set the return
value toETIMEDOUT.

(b) Otherwise, if there is a signal
pending, set the return value to
EINTR.

7. Try to remove our “struct
futex_q ” from the hash table: if
we were already removed, return
0 (success) unconditionally, as this
means we were woken up, otherwise
return the error code specified
above.

FUTEX_WAKE: This is similar to the previ-
ousFUTEX_UP, except that it does not

alter the futex value, it simple wakes one
(or more) processes. The number of pro-
cesses to wake is controlled by the “int
val” parameter, and the return value for
the system call is the number of pro-
cesses actually woken and removed from
the hash table.

FUTEX_AWAIT: This is proposed as an
asynchronous operation to notify the pro-
cess via a SIGIO-style mechanism when
the value changes. The exact method has
not yet been settled (see future work in
Section 5).

This new primitive is only slightly slower than
the previous one,6 in that the time between
waking the process and that process attempt-
ing to claim the lock has increased (as the lock
claim is done in userspace on return from the
FUTEX_WAKE syscall), and if the process
has to attempt the lock multiple times before
success, each attempt will be accompanied by
a syscall, rather than the syscall claiming the
lock itself.

On the other hand, the following can be imple-
mented entirely in the userspace library:

1. All the POSIX style locks, includ-
ing pthread_cond_broadcast (which re-
quires the “wake all” operation) and
pthread_cond_timedwait (which requires
the timeout argument). One of the au-
thors (Rusty) has implemented a “non-
pthreads” demonstration library which
does exactly this.

2. Read-write locks in a single word, on ar-
chitectures which support cmpxchg-style
primitives.

6About 1.5% on a low-contention tdbtorture, 3.5%
on a high-contention tdbtorture

Ottawa Linux Symposium 2002 488

3. FIFO wakeup, where fairness is guaran-
teed to anyone waiting (see 3.1.4).

Finally, it is worthwhile pointing out that
the kernel implementation requires exactly the
same number of lines as the previous imple-
mentation: 233.

3.1.4 FIFO Queueing

The naive implementation of “up” does the fol-
lowing:

1. Atomically set the futex to 1 (“available”)
and record the previous value.

2. If the previous value was negative, invoke
sys_futex to wake up a waiter.

Now, there is the potential for another process
to claim the futex (without entering the kernel
at all) between these two steps: the process wo-
ken at step 2 will then fail, and go back to sleep.
As long as this does not lead to starvation, this
unfairness is usually tolerable, given the per-
formance improvements shown in Section 4

There is one particular case where starvation
is a real problem which must be avoided. A
process which is holding the lock for extended
periods and wishes to “give way” if others
are waiting cannot simple to “futex_up(); fu-
tex_down();”, as it will always win the lock
back before any other processes.

Hence one of us (Hubertus) added the con-
cept of “futex_up_fair() ”, where the fu-
tex is set to an extremely negative number
(“passed”), instead of 1 (“available”). This
looks like a “contended” case to the fast
userspace “futex_down()” path, as it is nega-
tive, but indicates to any process after a suc-
cessful return from theFUTEX_WAITcall that

the futex has been passed directly, and no fur-
ther action (other than resetting the value to -1)
is required to claim it.

4 Performance Evaluation

In this section we assess the performance of
the current implementation. We start out with a
synthetic benchmark and continue with a mod-
ified database benchmark.

4.1 MicroBenchmark: UlockFlex

Ulockflex is a synthetic benchmark designed
to ensure the integrity and measure the perfor-
mance of locking primitives. In a run,Ulock-
flex allocates a finite set (typically one) of
global shared regions (shmat or mmap’ed files)
and a specified number of user locks which
are assigned to the shared region in a round
robin fashion. It then clones a specified num-
ber of tasks either as threads or as processes
and assigns each task to one particular lock in
a round robin fashion. Each cloned task, in
a tight loop, computes two random numbers
nlht and lht, acquires its assigned lock, does
some work of lock hold timelht, releases the
lock, does some more work of non-lock hold
timenlht and repeats the loop. The mean lock
hold timelht(mean) and non-lock hold times
nlht(mean) are input parameters.lht andnlht
are determined as random numbers over a uni-
form distribution in the interval[0.5..1.5] of
their respective mean. The tool reports total
cummulative throughput (as in number of iter-
ations through the loop). It also reports the co-
efficient of variance of the per task througput.
A higher coefficient indicates the potential for
starvation. A small coefficient indicates fair-
ness over the period of execution. A data struc-
ture associated with each lock is updated after
obtaining the lock and verified before releasing
the lock, thus allowing for integrity checks.

Ottawa Linux Symposium 2002 489

In the following we evaluate the performance
of various user locking primitives that were
built on the basics of the futex and the
ulock implementations. We consider the ba-
sic two wakeup policies for both futexes
and ulocks, i.e. fair wakeup and regular
wakeup (i.e. convoy avoidance), yielding
the 4 casesfutex_fair, futex, ulocks_fairand
ulocks. For these cases we also consider a
spinning lock acquisition in that the task tries
to acquire the lock for 3µsecs before giv-
ing up and blocking in the kernel, yielding
the 4 cases offutex_fair(spin,3), futex(spin,3),
ulocks_fair(spin,3)and ulocks(spin,3). For
reference we also provide the measurements
for a locking mechanism build on System V
semaphores, i.e., each lock request results in
a system call. This variant is denoted assysv,
resulting in 9 overall locking primitives being
evaluated.

All experiments were performed on a dual
Pentium-III 500 MHz, 256MB system. A data
point was obtained by running ulockflex for 10
seconds with a minimum of 10 runs or until a
95% confidence interval was achieved.

In the first experiment we determine the basic
overhead of the locking mechanims. For this
we run with one task, one lock andnlht ==
lht == 0. Note that in this case all user lock-
ing mechanisms never have to enter into the
kernel. Performance is reported as % efficiency
of a run without lock invocations. Thesysvwas
25.1% efficient, while all 8 user level locking
cases fell within 84.6% and 87.9%. When the
(nlht+ lht) was increased to 10µsecs, the effi-
ciency ofsysvwas still only 82.2%, while those
of the user level locks ranged from 98.9% to
99.1%.

When executing this setup with two tasks and
two locks the efficiency ofsysvdrops to 18.3%
from 25.1% indicating a hot lock in the ker-
nel. At the same time the user level primitives

all remain in the same range, as expected. The
same effect can be described as follows. With
this setup we would expect twice the through-
put performance as compared to the 1 task, 1
lock setup. Indeed, for all user primitives the
scalability observed is between 1.99 and 2.02,
while sysvonly shows a scalability of 1.51.

In the next set of experiments we fixed the to-
tal loop execution timenlht + lht to 10µsecs,
however we changed the individual compo-
nents. Let(nlht, lht) denote a configuration.
Four configuration are observed: (0,10), (5,5),
(7,3), (9,1). The (0,10) represents the highly
contended case, while (9,1) represents a sig-
nificantly less contended case. The exact con-
tention is determined by the number of tasks
accessing a shared lock. Contention num-
bers reported are all measured against the fair
locking version of ulocks in a separate run.
The contention measurement does not intro-
duce any significant overhead.

Figures 1..5 show the comparision of the 9
locking primitives for the four configurations
under various task counts (2,3,4,100,1000).
The percentage improvements for each config-
uration and task count over thesysvbase num-
ber for that configuration are reported in Ta-
ble 1 for the fair futexes and ulocks without and
with spinning (3µsecs) and in Table 2 for the
regular futexes and ulocks.

The overall qualitative assessment of the re-
sults presented in these figures and tables is
as follows. First comparing the fair locking
mechanisms, fair ulocks, in general, have an
advantage over fair futexes. Furthermore, fair
futexes perform worse thansysvfor high con-
tention scenarios. Only in the high task count
numbers do fair futexes outperform (substan-
tially) sysv and fair ulocks. Spinning only
showed some decent improvement in the low
contention cases, as expected. For the regu-
lar versions (ca-locks), both futexes and ulocks

Ottawa Linux Symposium 2002 490

(0,10) (5,5) (7,3) (9,1)
0

2

4

6

8

10

12

14

16

18
x 10

4

Configs

T
hr

ou
gh

pu
t

sysv
futex_fair
futex_fair(spin,3)
ulocks_fair
ulocks_fair(spin,3)
futex
futex(spin,3)
ulocks
ulocks(spin,3)

Figure 1: Throughput for various lock types for
2 tasks, 1 lock and 4 configurations

(0,10) (5,5) (7,3) (9,1)
0

2

4

6

8

10

12

14

16

18
x 10

4

Configs

T
hr

ou
gh

pu
t

sysv
futex_fair
futex_fair(spin,3)
ulocks_fair
ulocks_fair(spin,3)
futex
futex(spin,3)
ulocks
ulocks(spin,3)

Figure 2: Throughput for various lock types for
3 tasks, 1 lock and 4 configurations

always outperform thesysvversion. The gen-
eral tendency is for ulocks to achieve their per-
formance at the(5,5) configuration with lit-
tle additional benefits. Though futexes in gen-
eral lack the ulock performance at the(5,5)
configuration, they outperform ulocks at the
(7.3) and the(9,1) configurations. In con-
trast to futexes, spinning for ulocks does not
help.

Figure 1 shows the results for 2 tasks compet-
ing for 1 lock under four contention scenarios.
The lock contention for the 4 configurations
were 100%, 97.8%, 41.7% and 13.1%. The

(0,10) (5,5) (7,3) (9,1)
0

2

4

6

8

10

12

14

16

18
x 10

4

Configs

T
hr

ou
gh

pu
t

sysv
futex_fair
futex_fair(spin,3)
ulocks_fair
ulocks_fair(spin,3)
futex
futex(spin,3)
ulocks
ulocks(spin,3)

Figure 3: Throughput for various lock types for
4 tasks, 1 lock and 4 configurations

(0,10) (5,5) (7,3) (9,1)
0

2

4

6

8

10

12

14

16

18
x 10

4

Configs

T
hr

ou
gh

pu
t

sysv
futex_fair
futex_fair(spin,3)
ulocks_fair
ulocks_fair(spin,3)
futex
futex(spin,3)
ulocks
ulocks(spin,3)

Figure 4: Throughput for various lock types for
100 tasks, 1 lock and 4 configurations

lock contention observed for Figure 2.. 5 are
all above 99.8%.

We now turn our attention to the multiple
reader/single writer (rwlock) lock primitives.
To recall, furwocks implement the rwlock
functionality ontop of two regular futexes,
while ulocks implement them directly in the in-
terface through atomic compare and exchange
manipulation of the lock word.Ulockflexal-
lows the specification of ashare-level for
rwlocks. This translates into the probability of
a task requesting a read lock instead of a write
lock while iterating through the tight loop.

Ottawa Linux Symposium 2002 491

(0,10) (5,5) (7,3) (9,1)
0

2

4

6

8

10

12

14

16

18
x 10

4

Configs

T
hr

ou
gh

pu
t

sysv
futex_fair
futex_fair(spin,3)
ulocks_fair
ulocks_fair(spin,3)
futex
futex(spin,3)
ulocks
ulocks(spin,3)

Figure 5: Throughput for various lock types for
1000 tasks, 1 lock and 4 configurations

0 20 40 60 80 100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

5

Share−Level (%)

T
hr

ou
gh

pu
t

2 tasks furwock
2 tasks ulocks
3 tasks furwock
3 tasks ulocks
4 tasks furwock
4 tasks ulocks
100 tasks furwock
100 tasks ulocks

Figure 6: Throughput of furwocks and shared
ulocks for (2,3,4,100) tasks competing for a
single lock under different read share ratios

Figure 6 shows the achieved throughput of fur-
wocks and shared ulocks for 2, 3, 4 and 100
tasks competing for a single lock under differ-
ent read share ratios. The general observation
is that the furwocks (solid lines) outperform
the ulocks (dashed lines) for their respective
task numbers. In general the lower the share
level and/or the higher the task numbers the
better the improvements that can be achieved
with furwocks over shared ulocks. Only in
the 100% share-level (only read accesses) do
shared ulocks outperform furwocks by2̃-3%.

We now analyze the fairness of the user lock-
ing. We monitor the global fairness by com-
puting the coefficient of variancecoeffof the
per task throughput. Note this should not be
compared with the fair locking itself. Theco-
eff of sysvis typically below 0.01. Only the
1000 task case showed acoeffof 9.1, indicat-
ing that tasks did not all properly get started.
The coeff for fair futexes and fair ulocks for
small task numbers (2,3,4) is in general be-
low 0.01 (as expected). For large task number
(100,1000), thecoeffremains very low for fu-
texes, while ulocks experience acoeffas high
as 1.10. For furwocks, the general observa-
tion is that thecoeff is less than 0.16 in both
furwocks and shared ulocks. Only for the 100
task case does thecoeffreach 0.45. Overall the
mean of coeff for all scenarios is 0.068 for fur-
wocks and 0.054 for shared ulocks. In general
we can state that at these level of contention,
global starvation is not a problem.

We now turn our attention to the degree of lo-
cal fairness for the ca-locks. We do this by
investigating how many times a task is capa-
ble of reacquiring the lock before some other
task locks it. To do so, we examine a high con-
tention case of 100 tasks and the (9,1) config-
uration. The kernel lock and the fair futexes
showed perfect fairness, 99.99% of the task
could never reacquire its lock without losing it
to some other task. The fair ulocks only 92.1%
failed to reacquire, 3.6% was able to grab the
lock twice in a row and 0.4% three times. The
maximum times a lock was able to be reac-
quired was 1034 times. For futexes these num-
bers are 79.0%, 21.0% and maximum of 575
and for ulocks they are 82.4%, 17.54% and
maximum of 751. To some degree it confirms
that futexes and ulocks have a higher degree
of instant reacquisition, however this analysis
fails to shed more light on why futexes are so
much better than ulocks.

Ottawa Linux Symposium 2002 492

4.2 TDB Torture Results

The Trivial DataBase (TDB) is a simple hash-
chain-based on-disk database used by SAMBA
and other projects to store persistent internal
data. It has a similar interface to the clas-
sic dbm library, but allows multiple readers
and writers and is less than 2000 lines long.
TDB normally uses fcntl locks: we replaced
these with futex locks in a special part of the
memory-mapped file. We also examined an
implementation using "spin then yield" locks,
which try to get the lock 1000 times before
calling yield() to let other processes schedule.

tdbtorture is one of the standard test pro-
grams which comes with TDB: we simplified
it to eliminate the cleanup traversal which it
normally performs, resulting in a benchmark
which forks 6 processes, each of which does
200000 random search/add/delete/traverse op-
erations.

To examine behavior under high contention,
we created a database with only one hash
chain, giving only two locks (there is one lock
for the free records chain). For the low con-
tention case, we used 4096 chains (there is still
some contention on the allocation lock). For
the no contention case, we used a single pro-
cess, rather than 6. The results shown in Ta-
ble 3 were obtained on a 2-processor 350MHz
Pentium II.

It is interesting that the fcntl locks have differ-
ent scaling properties than futexes: they actu-
ally do much worse under the low contention
case, possibly because the number of locks the
kernel has to keep track of increases.

Another point to make here is the simplicity of
the transformation from fcntl locks to futexes
within TDB: the modification took no longer
than five minutes to someone familiar with the
code.

5 Current and Future Directions

Currently we are evaluating an asynchronous
wait extension to the futex subsystem. The re-
quirement for this arises for the necessity to
support global POSIX mutexes in thread pack-
ages. In particular, we are working with the
NGPT (next generation pthreads) team to de-
rive specific requirements for building global
POSIX mutexes over futexes. Doing so pro-
vides the benefit that in the uncontended case,
no kernel interactions are required. However,
NGPT supports aM : N threading model, i.e.,
M user level threads are executed overN tasks.
Conceptually, theN tasks provide virtual pro-
cessors on which theM user threads are exe-
cuting.

When a user level thread, executing on one of
theseN tasks, needs to block on a futex, it
should not block the task, as this task provides
the virtual processing. Instead only the user
thread should be descheduled by the thread
manager of the NGPT system. Nevertheless,
awaitobj must be attached to the waitqueue
in the kernel, indicating that a user thread is
waiting on a particular futex and that the task
group needs a notification wrt to the continu-
ation on that futex. Once the thread manager
receives the notification it can reschedule the
previously blocked user thread.

For this we provide an additional operator
AFUTEX_WAITto the sys_futex system
call. Its task is to append awaitobj to the
futex’s kernel waitqueue and continue. Com-
pared to the synchronous calls described in
Section 3, thiswaitobj can not be allocated
on the stack and must be allocated and deallo-
cated dynamically. Dynamic allocations have
the disadvantage that thewaitobjs must be
freed even during an irregular program exit. It
further poses a denial of service attack threat in
that a malicious applications can continously
call sys_futex(AFUTEX_WAIT) . We are

Ottawa Linux Symposium 2002 493

contemplating various solutions to this prob-
lem.

The general solutions seem to convert to the
usage of a/dev/futexdevice to control resource
consumption. The first solution is to allo-
cate a file descriptorfd from the /dev/futex
“device” for each outstanding asynchronous
waitobj . Conveniently these descriptors
should be “pooled” to avoid the constant open-
ing and closing of the device. The private
data of the file would simply be thewaitobj .
Upon completion a SIGIO is sent to the appli-
cation. The advantage of this approach is that
the denial of service attack is naturally limited
to the file limits imposed on a process. Further-
more, on program death, allwaitobjs still
enqueued can be easily dequeued. The disad-
vantage is that this approach can significantly
pollute the “fd’ space. Another solution pro-
posed has been to open only onefd, but allow
multiplewaitobj allocations for thisfd. This
approach removes the fd space pollution issue
but requires an additional tuning parameter for
how many outstandingwaitobjs should be
allowed per fd. It also requires proper resource
management of thewaitobjs in the kernel.
At this point no definite decisions has been
reached on which direction to proceed.

The question of priorities in futexes has been
raised: the current implementation is strictly
FIFO order. The use of nice level is almost
certainly too restrictive, so some other priority
method would be required. Expanding the sys-
tem call to add a priority argument is possible,
if there were demonstrated application advan-
tage.

6 Conclusion

In this paper we described a fast userlevel lock-
ing mechanism, calledfutexes, that were in-
tegrated into the Linux 2.5 development ker-

nel. We outlined the various requirements for
such a package, described previous various so-
lutions and the current futex package. In the
performance section we showed, that futexes
can provide significant performance advan-
tages over standard System V IPC semaphores
in all cases studies.

7 Acknowledgements

Ulrich Drepper (for feedback about current
POSIX threads and glibc requirements), Paul
Mackerras (for furwocks and many ideas on al-
ternate implementations), Peter Waechtler and
Bill Abt for their feedback on asynchronous
notifications.

References

[1] Philip Bohannon and et. al. Recoverable
User-Level Mutual Exclusion. InProc.
7th IEEE Symposium on Parallel and
Distributed Systems, October 1995.

[2] Robert Dimpsey, Rajiv Arora, and Kean
Kuiper. Java Server Performance: Acase
study of building efficient, scalable
JVMs. IBM Systems Journal,
39(1):151–174, 2000.

[3] Hubertus Franke. Ulocks: Fast Userlevel
Locking. Available at
http://lse.sourceforge.net.

[4] John M. Mellor-Crummey and
Michael L. Scott. Scalable
Reader-Writer Synchronization for
Shared Memory Multiprocessors.ACM
Transactions on Computer Systems,
9(1):21–65, February 1991.

[5] NGPT: Next Generation Pthreads.
Available at
http://oss.software.ibm.com/pthreads.

Ottawa Linux Symposium 2002 494

[6] Michael Scott and William N. Scherer
III. Scalable Queue-Based Spin Locks
with Timeouts. InProc. 11th
ACMSIGPLAN Symposium on Principles
and Practice of Parallel Programming,
PPoPP’01, 2001.

[7] Robert W. Wisniewski, Leonidas I.
Kontothanassis, and Michael Scott. High
Performance Synchronization
Algorithms for Multiprogrammed
Multiprocessors. InProc. 5th ACM
SIGPLAN Symposium on Principles and
Practice of Parallel Programming,
PPoPP’95, 1995.

[8] Message-ID:
<Pine.LNX.4.33.0201071902070.5064-
101000@sphinx.mythic-beasts.com>.

[9] Message-ID:
<20020211143841.A1674@
elinux01.watson.ibm.com>.

[10] Message-ID:
<E16gRe3−0006ak−00@
wagner.rustcorp.com.au>.

[11] Message-ID:
<20020106183417.L10326@
holomorphy.com>.

Conf no-spin spin
futex ulock futex ulock

2 tasks
(0,10) -15.5 -0.7 -20.5 -22.9
(5,5) 7.9 4.6 52.4 47.7
(7,3) 15.5 18.7 50.2 66.4
(9,1) 33.2 33.1 40.1 46.5

3 tasks
(0,10) -13.7 -15.2 -19.1 -15.9
(5,5) -5.7 8.9 -10.1 3.8
(7,3) -33.0 11.0 -28.2 -9.2
(9,1) -33.7 7.5 -21.7 -0.7

4 tasks
(0,10) -15.8 -20.0 -20.4 -17.5
(5,5) 0.6 13.3 -5.3 13.5
(7,3) -38.6 8.0 -42.5 7.3
(9,1) -43.6 7.7 -30.6 6.4

100 tasks
(0,10) 172.3 190.8 151.4 189.5
(5,5) 367.6 393.9 386.4 397.6
(7,3) 464.0 300.5 449.0 305.5
(9,1) 495.7 180.3 449.1 190.0

1000 tasks
(0,10) 1900.4 2343.9 1787.2 2317.9
(5,5) 3363.7 3752.5 3403.7 3792.1
(7,3) 3972.5 3295.2 3891.1 3357.3
(9,1) 4393.7 1971.5 4127.7 1985.3

Table 1: Percentage improvement of Fair lock-
ing (spinning and non-spinning) over the base
sysvthroughput

Ottawa Linux Symposium 2002 495

Conf no-spin spin
futex ulock futex ulock

2 tasks
(0,10) 8.8 7.6 9.3 7.8
(5,5) 17.7 127.8 86.0 108.2
(7,3) 33.2 60.1 68.5 55.7
(9,1) 40.8 30.9 44.9 29.3

3 tasks
(0,10) 43.2 9.0 38.5 9.3
(5,5) 49.1 116.0 89.9 76.5
(7,3) 35.0 38.0 58.0 28.1
(9,1) 39.5 12.8 43.3 12.3

4 tasks
(0,10) 61.2 38.8 59.7 33.7
(5,5) 66.6 130.5 116.3 90.5
(7,3) 34.7 29.9 49.1 20.3
(9,1) 36.1 10.5 39.6 6.2

100 tasks
(0,10) 456.8 397.1 426.9 399.7
(5,5) 852.3 1030.2 973.4 844.5
(7,3) 1040.4 1003.9 1175.2 919.5
(9,1) 1223.7 967.7 1260.4 936.5

1000 tasks
(0,10) 4591.7 4047.9 3333.1 4055.2
(5,5) 6989.5 9570.0 8583.8 8095.9
(7,3) 9149.7 9427.1 10781.5 8714.6
(9,1) 11569.6 9437.7 11869.9 9223.3

Table 2: Percentage improvement of regular
(ca) locking (spinning and non-spinning) over
the basesysvthroughput

Locktype Contention Level
High Low None

FCNTL 1003.69 1482.08 76.4
SPIN 751.18 431.42 67.6
FUTEX 593.00 111.45 41.5

Table 3: Completion times (secs) of tdbtorture
runs with different contention rates and differ-
ent lock implementations

Evaluation and Improvement of IPv6 Protocol Stack
by USAGI Project

Yuji Sekiya
Keio University

sekiya@linux-ipv6.org

Hideaki Yoshifuji
The University of Tokyo

yoshfuji@linux-ipv6.org

Mitsuru Kanda
Toshiba Corporation

mk@linux-ipv6.org

Kazunori Miyazawa
Yokogawa Electric Corporation

miyazawa@linux-ipv6.org

Abstract

IPv6 protocol stack has been implemented in
Linux kernel since 1996. In spite of the early
implementation of IPv6 in the kernel, the stack
wasn’t maintained for a long time and became
out of date. For instance, Linux host couldn’t
get IPv6 addresses by stateless address auto-
configuration. It was caused by poorly im-
plementation of neighbor discovery protocol.
Considering the situation we started USAGI
project in October 2000. Our goal is to de-
velop, integrate and provide high quality, RFC
compliant, and free IPv6 stack including IPsec
and Mobile IPv6. Finally we want to integrate
our improvements into the original kernel.

At the beginning we evaluated the original
Linux IPv6 stack by TAHI tool. The first eval-
uation was performed on linux-2.2.15 kernel
and the result showed that Linux IPv6 proto-
col stack wasn’t compliant to latest RFCs and
didn’t have IPsec function which is manda-
tory for IPv6. As compared with KAME IPv6
protocol stack which passed almost all items
of the test, Linux had many problems in ker-
nel. For example, the kernel failed 38 of 58
test items for Neighbor Discovery Protocol and
Stateless Address Autoconfiguration failed 55

of 77 items. Then we summarized the results
and began to start improving.

Ever since starting the project, we have been
continuing to evaluate and improve Linux IPv6
protocol stack. As a result, we have achieved
a lot of improvements and released our snap-
shot code every two weeks and stable code four
times. Nowadays the results of evaluation be-
come better and almost all of test item have
been passed. Furthermore IPv6 IPsec functions
begin to work.

From the experiences, we describe improving
methods and evaluation results of USAGI IPv6
protocol stack in this paper. Lastly we describe
our future development and merge plans.

1 Introduction

Establishment of IPv6, as a next-generation in-
ternet protocol to IPv4, has started since the be-
ginning of the 1990’s. The aspect of IPv6 is on
providing the solution to the protocol scalabil-
ity, the greatest problem IPv4 was facing as the
Internet grew larger. In detail, IPv6 differ from
IPv4 in following ways.

• 128bit address space.

Ottawa Linux Symposium 2002 497

• Forbidding of packet fragmentation in in-
termediate routers.

• Flexible feature extension using extension
headers.

• Supporting security features by default.

• Supporting Plug & Play features by de-
fault.

Currently, IPv6 is at the final phase of standard-
ization. Fundamental specifications are almost
fixed and commercial products which supports
IPv6 has started to show up in the market. In-
ternational leased lines for IPv6 are out as well.
IPv6 has expanded the existing Internet by pro-
viding solutions to protocol scalability and be-
ginning to grow as a standard for connecting
everything, not just existing computers.

Considering above circumstances, USAGI
Project was lunched in October, 2000. USAGI
Project is a project which aims to provide im-
proved IPv6 stack on Linux. There are simi-
lar organization called KAME, which provides
IPv6 stack on BSD Operating systems such as
FreeBSD, NetBSD, OpenBSD, and BSD/OS.
However, KAME Project does not target their
development on Linux. It is important to pro-
vide high-quality IPv6 stack on Linux, which is
one of the most popular free open-source oper-
ating systems in the world, for IPv6 to propa-
gate.

2 Linux IPv6 Implementation

Linux kernel has IPv6 protocol stack by de-
fault. However, this IPv6 protocol stack has
several problems. In this section, we describe
basic IPv6 functions which are needed for IPv6
host and router. Additionally, evaluations on
functions mentioned below are done using ex-
isting IPv6 protocol stack.

Following utilization patterns are assumed for
using Linux, as an IPv6 host, to connect to
IPv6 networks.

1. IPv6 host

2. IPv6 gateway inside the house

3. IPv6 mobile host

There, problems on Linux IPv6 protocol stack
are described and evaluated in details follow-
ing the categories mentioned above. Then
following evaluations are performed on Linux
kernel 2.2.15, 2.2.20 and 2.4.18.

2.1 Linux as an IPv6 Host

Following features are required for using Linux
as an IPv6 host.

• IPv6 address autoconfiguration

• Reachability and unreachability detection
of neighbor hosts and routers

• IPv6 TCP/UDP socket communication

"IPv6 address autoconfiguration" is a indis-
pensable feature of IPv6 to enable plug & play
function. Additionally, "Reachability and un-
reachability detection of neighbor hosts and
routers" are required for a IPv6 host to detect
and switch default routers quickly. Further-
more, "IPv6 TCP/UDP socket communication"
is a feature required for using IPv6 applications
on Linux.

From these perspectives, evaluation on features
which Linux IPv6 protocol stack on kernel
2.2.15, 2.2.20 and 2.4.18. The 2.2.15 kernel
was released before USAGI Project initializa-
tion. The evaluations were done using tools
provided by TAHI Project[9].

Ottawa Linux Symposium 2002 498

IPv6 address autoconfiguration First of all,
evaluation on IPv6 address autoconfiguration
feature is described. IPv6 stateless address au-
toconfiguration is a function which is defined
in RFC2462[10]. It is a function which config-
ures IPv6 address and default router automat-
ically when receiving router advertisements
from IPv6 routers. This function is needed for
IPv6 Plug & Play feature. The evaluation re-
sult of 2.2.15 kernel on this function is shown
in Table 2, result of 2.2.20 kernel is shown in
Table 3 and result of 2.4.18 kernel is shown in
Table 4.

In result of 2.2.15 kernel, there were 30 items
that failed and 22 items with warnings of the 54
items in the test. Only 1 of the 54 items passed.
There are several causes for this. First, the
Duplicate Address Detection (DAD) described
in RFC2462[10], which detects duplicated ad-
dress, may not work correctly. This can be seen
from test numbers 2, 20, 21, 23 showing failure
in Table 2.

Moreover, the Router Advertisement (RA),
which auto-configures the address and the de-
fault route, can be one of the causes for the
messages may not have processed correctly.
The numbers 30, 31 and 40 show this in Ta-
ble 2.

In result of 2.2.20 kernel, there were 25 failed
items, 15 warned items and 13 passed items.
The number of passed items are increased from
1 to 13. However, many of DAD function were
failed and didn’t work correctly.

In result of 2.4.18 kernel, many functions were
improved. There were 42 passed items, 10
failed items and 1 warned item.

As compared with 2.2 kernel, DAD functions
were improved on Linux 2.4 kernel. How-
ever, there was a lack in the number of error
processes when receiving irregular messages,
which caused the test to failed for abnormal be-

havior.

Figure 6 summarizes the result of comparing
the three kernel results.

Reachability and unreachability detection
Second, evaluation on Neighbor Discovery
Protocol is mentioned. Neighbor Discovery
Protocol is a function defined in RFC2461[7].
It is a function which detects appearance and
disappearance of hosts and routers. This func-
tion is needed for IPv6 hosts to communicate
with neighbor hosts. The evaluation is also
performed on Linux kernel 2.2.15, 2.2.20 and
2.4.18. The result on this function is shown in
Table 5, Table 6, and Table 7.

Of the 58 items in the test, there were 36 items
that failed, 2 items with warnings and 20 items
that passed in result of kernel 2.2.15. From
failures in test numbers 15, 16, 17, 19, 20,
22, 23 and 24, we see that the state transition
in Neighbor Discovery Protocol did not follow
the specifications defined in RFC2461.

Same as result of 2.2.15 kernel, there were
many failed items in result of 2.2.20 kernel.
Regarding NDP functions there wan no differ-
ence between 2.2.15 and 2.2.20 kernels.

In result of 2.4.18 kernel, the number of failed
items was decreased to 27 items and the num-
ber of succeeded items was increased to 29.
As a result, there were some improvements be-
tween 2.2.20 and 2.4.18 kernels. However, it
wasn’t good result for working correct IPv6
host.

Figure 7 summarizes the comparison of the
three kernel results.

IPv6 TCP/UDP socket communication
Last, to enable IPv6 applications, it is neces-
sary to have communication features for both

Ottawa Linux Symposium 2002 499

TCP and UDP in IPv6. GNU libc(glibc)[5]
and IPv6 protocol stack in Linux has both TCP
and UDP, and applications using Application
Program Interface may access both TCP and
UDP socket in IPv6.

However, GNU libc and IPv6 protocol stack
in Linux made in the beginning of year 2000
before the USAGI Project was founded, were
implemented as IPv6 socket API based on
RFC2133[3]. The latest IPv6 socket API at that
time was RFC2553[4] revised from RFC2133,
thus both GNU libc and IPv6 protocol stack in
Linux were implemented not based on the lat-
est specifications.

From the evaluation results above, there are
number of changes required to use Linux as
IPv6 host. Among all, neighbor discovery pro-
tocol and IPv6 address autoconfiguration are
base features in IPv6 communication. If these
features does not function correctly, it will not
function as IPV6 host.

Moreover, from the security and error process
point of view, protocol stack should be build
not cause effects on the function by discarding
illegal packets. From this point of view, IPv6
protocol stack in Linux is has not reached the
level to use as a stable IPv6 host.

2.2 Linux as an IPv6 Gateway Inside the
House

Next, we evaluate Linux IPv6 protocol stack
on the features necessary when Linux is used
as IPv6 router in homes.

• IPv6 packet forwarding according to rout-
ing table

• IPv6 over IPv4 tunneling

The “IPv6 packet forwarding according to
routing table” is a feature to forward packets

to the next hop according to the routing infor-
mation in the routing table when IPv6 packets
are received. This in a required feature in a
IPv6 router. The “IPv6 over IPv4 tunneling” is
a technology to structure IPv6 Internet by es-
tablishing a virtual link over the IPv4 Internet.

We evaluated the Linux IPv6 protocol stack us-
ing Linux kernel 2.2.15 on the above 2 fea-
tures. We tested if IPv6 packets are correctly
forwarded using the topology shown in Fig-
ure 1.

���������
	�����
��������������� �"!

# 	%$'&# 	�$�(

)�*+* #-,/. �0& , &1�'(2) , (2���3� ,+,54 ��6

)�*+* #-,/. �-& , &1�'(
) , &7���3� ,+,54 �86

�9�:����;<�>=0�@?

�A������;<�:=-�CB

���:���D�FE����"!GEH�>�

���������
	�����
��������������� �"!

# 	%$'&# 	�$�(

)�*+* #-,/. �0& , &1�'(2) , (2���3� ,+,54 ��6

)�*+* #-,/. �-& , &1�'(
) , &7���3� ,+,54 �86

�9�:����;<�>=0�@?

�A������;<�:=-�CB

���������
	�����
��������������� �"!

# 	%$'&# 	�$�(

)�*+* #-,/. �0& , &1�'(2) , (2���3� ,+,54 ��6

)�*+* #-,/. �-& , &1�'(
) , &7���3� ,+,54 �86

�9�:����;<�>=0�@?

�A������;<�:=-�CB

���:���D�FE����"!GEH�>�

Figure 1: Topology for Routing Evaluation

Also, the routing table on the IPv6 router is
shown in the Figure 1. IPv6 hosts A and B
receives RA message from IPv6 router and
auto-configures IPv6 address and the default
route. Additionally, this IPv6 router and the
IPv6 router on the other side are connected
using IPv6 over IPv4 tunnel. It is assumed
that IPv6 router on the other side has correct
routing. IPv6 router on the other side uses

Ottawa Linux Symposium 2002 500

Kernel IPv6 routing table
Destination Next Hop Iface
::1/128 :: lo
3ffe:501:1023::/48 :: ipv6_tun0
3ffe:501:1023:1000::1/128 :: lo
3ffe:501:1023:1000::/64 :: eth1
3ffe:501:1023:2000::1/128 :: lo
3ffe:501:1023:2000::/64 :: eth2
fe80::/64 :: eth0
fe80::/64 :: eth1
fe80::/64 :: eth2
fe80::/64 :: ipv6_tun0
ff00::/8 :: eth0
ff00::/8 :: eth1
ff00::/8 :: eth2
ff00::/8 :: ipv6_tun0
::/0 fe80::290:27ff:fe3a:d8 ipv6_tun0

Table 1: IPv6 Routing Table

FreeBSD with KAME snap kit.

Following four kinds of tests are done using
above network environment.

TEST #1 Communication from IPv6 router
on the other side to IPv6 hosts A and B.

TEST #2 Communication between IPv6 hosts
A and B.

TEST #3 Communication between IPv6
router and IPv6 router on the other side.

TEST #4 Communication from IPv6 router to
any IPv6 hosts on the Internet.

As a result, test 1 was proven to be successful.
Test2, passing through IPv6 router, host A and
B was able to communicate each other. On test
3, with the use of IPv6 tunnel, communication
using IPv6 was proven to be possible.

However, test 4 failed. The cause was IPv6
router discarding the packet sent from A to
fe80::290:27ff:fe3a:d8, which is the next hop
of the default route(::/0) without forwarding.

This results from the IPv6 protocol stack spec-
ification on Linux. From the point of routing
control mechanism, Linux IPv6 protocol stack
differs from IPv4 protocol stack with no sim-
ilarity. On IPv4 protocol stack, routing table
is kept in the hash table[1], on the other hand,
IPv6 routing table is kept using radix tree[8].

In routing table using radix tree, the top of the
tree is the host which possesses the information
regarding default route. However, as shown in
Figure 2, Linux IPv6 protocol stack has a radix
tree with fixed node information on top and it
points to ipv6_null_entry. Therefore, when de-
fault route is added, the information is attached
next to the rt6_info structure which contains
ipv6_null_entry. This causes default route not
to be referred.

In conclusion, "IPv6 packet forwarding ac-
cording to routing table" works correctly ex-
cept for the default route part. Also, "IPv6 over
IPv4 tunneling" is proven to work correctly
as well. For IPv6 routers inside the houses,
it is critical that default route is not function-
ing. It is hard to say that IPv6 router inside
the house possess full routes and it is recom-

Ottawa Linux Symposium 2002 501

���������
	�����

����������	����� ���������
	�����

����������� �"!

#�$ �����%	���� #&$ �'�(�%	����

�)+*,�'��	�-�./.0�1�2	 $/#43
�5��62798/8;:�<=798>:@?A���48B����C�DE8 �6

���������
	��������������
	�����

����������	����� ���������
	�����

����������� �"!

#�$ �����%	���� #&$ �'�(�%	����

�)+*,�'��	�-�./.0�1�2	 $/#43
�5��62798/8;:�<=798>:@?A���48B����C�DE8 �6

Figure 2: Linux IPv6 Routing Table Structure

mended that routes outside the house is held as
default route. Therefore, it is hard to use Linux
as a IPv6 gateway inside the house without the
change in protocol specification.

2.3 Summary of Linux IPv6 Protocol Stack

From the evaluations mentioned above, Linux
IPv6 protocol stack is not suitable in its fea-
tures as an IPv6 node. It is hard to believe
Linux IPv6 protocol to function as an IPv6 host
and router using the current Linux IPv6 proto-
col stack.

3 Activities of USAGI Project

As mentioned in Section 2, IPv6 protocol stack
in Linux carry several fatal problems. Thus,
USAGI Project was launched, as mentioned in
Section 1, to improve the IPv6 protocol stack in
Linux. Improvement made by USAGI Project
is mentioned in this section.

3.1 Improvement by USAGI Project

Improvements by USAGI Project are men-
tioned below based on the evaluation and anal-
ysis in Section 2.

• Reinforcing illegal NDP message check

• Improving control timer for NDP state

• Following Latest API

• Improving IPv6 routing table structure

• Imprementing IPsec for IPv6

Each improvements is mentioned in detail.

Reinforce illegal NDP message checkFirst
of all, reinforced illegal message check for
Neighbor Advertisement(NA), Neighbor So-
licitation(NS), Router Advertisement(RA), and
Router Solicitation(RS) as defined in NDP
specifications. The checks are mentioned be-
low in detail.

• Make an unified management function for
above messages

• Discarding messages with Hop Limit
other than 255

• Discarding NA messages with solicited
flag and multicast address as source ad-
dress

• Selecting proper source address when
sending DAD messages

• Improving router renewal algorithm for
RA messages with link-local unicast ad-
dress as source address

• Discarding RA messages with source ad-
dress other than link-local unicast address

• Discarding NA messages with destination
address as multicast address

• Improving the number to send RS mes-
sage

These simple improvement prevented abnor-
mal process.

Ottawa Linux Symposium 2002 502

Improving control timer for NDP state As
mentioned before, NDP is a feature to control
status of neighbor nodes. NDP checks on regu-
lar intervals if neighbor nodes are reachable or
not. The specification require to allocate NDP
entry in memory for every node in neighbor,
and control status for each neighbor node.

However, the existing Linux IPv6 protocol
stack checks reachability of neighbor nodes
with a single kernel timer, as shown in
Figure 3. Consequently, reachability were
checked in constant intervals, regardless of the
status for each node.

���������
	���

���������
	���

���������
	���

���������
	���

����� ���������

��� ��!#"
���������
	���

���������
	���

���������
	���

���������
	���

����� ���������

��� ��!#"

Figure 3: Linux NDP Table

Therefore, USAGI Project improved this ker-
nel timer to check each NDP entry indepen-
dently as shown in Figure 4. Thus, it is possible
to enable and disable timer separately for each
NDP entry, and prevent check made to unnec-
essary NDP entries. Moreover, it is possible to
exchange messages correspondent to the status
of each NDP entry as defined in the NDP spec-
ifications.

����� ���	��
�

��������������

��������������

��������������

��������������

��� �"!$#&%

��� �"!$#('

��� �"!$#*)

��� �"!$#(+

����� ���	��
�

��������������

��������������

��������������

��������������

��� �"!$#&%

��� �"!$#('

��� �"!$#*)

��� �"!$#(+

Figure 4: USAGI NDP Table

Following Latest API Linux IPv6 proto-
col stack and GNU libc, which corresponds
to RFC2133, was updated to comply with
RFC2533. Change in kernel is adding member
sin6_scope_id to sockaddr_in6 structure.

Improving IPv6 routing table structure
Problem on recognizing default route is fixed.
As shown in Figure 2, modification has made
it possible to change pointer from fib6_node
structure to rt6_info structure and also made
it to adapt routing table lookup functions to
new tree structure. With all the improvements,
Linux IPv6 protocol stack can recognize IPv6
default route and forward IPv6 packet properly.

Implementing IPsec for IPv6 We imple-
ment IPsec for IPv6 in USAGI kernel and our
IPsec stack was derived from IABG IPsec[6].
We have improved and changed based on
IABG’s IPsec and currently our IPsec stack is
independent from IABG’s IPsec.

Ottawa Linux Symposium 2002 503

���������
	�����

���������������

��� ��� �!	"�#�

�$� �%� �&	'���

� (*)+�%�,	�-/.0.1���2	 �0�43

�&�65279808;:�</7 8;:>=*�?�48@�A��BDCE8 '5

�#�&�"���
	F���� �A�&�"����	G����

���������
	��������������
	�����

���������������

��� ��� �!	"�#�

�$� �%� �&	'���

� (*)+�%�,	�-/.0.1���2	 �0�43

�&�65279808;:�</7 8;:>=*�?�48@�A��BDCE8 '5

�#�&�"���
	F�����#�&�"���
	F���� �A�&�"����	G�����A�&�"����	G����

Figure 5: USAGI IPv6 Routing Table Structure

Our stack supports AH/ESP transport mode
and manual keying, key negotiation by IKE
which is ported from FreeS/WAN[2]. We
have already attended some interoperability
test events and our stack could communicate
with other IPsec implementations. Because
our implementation is in still progress, we will
continue to work with IPsec for IPv6.

3.2 Evaluation of USAGI Improvement

The same TAHI IPv6 conformance test was
done on USAGI snapshot release at the point of
Feb. 18th, 2002, which contains five improve-
ments mentioned earlier. The kernel is based
on Linux kernel 2.4.17.

The test result of IPv6 address autoconfigura-
tion on USAGI kernel is shown in Table 8.

The result showed that it passed almost all tests
regarding IPv6 stateless address autoconfigura-
tion. There were 52 passed items and only 1
warned item.

Then the test result of NDP on USAGI kernel
is shown in Table 9.

It reduced the number of failed items. There
were 45 succeeded items, 3 warned items and

10 failed items.

Summary of the IPv6 conformance tests on
Linux kernels and USAGI IPv6 kernel regard-
ing IPv6 stateless address autoconfiguration
and neighbor discovery is shown in Figure 8
and Figure 9.

4 Availability

The outcome of the USAGI Project can be ob-
tained from http://www.linux-ipv6.org/. We re-
lease snapshot and stable USAGI kit. Stable
USAGI kits are released several times a year
and snapshot USAGI kits are released once in
two weeks. We have already released stable kit
four times. The first was on Nov. 1st, 2000 and
the second was on Feb. 5th, 2001. The third
was on Jan. 1st, 2002 and The forth, it was a
bug fix release of third stable release, was re-
leased on Apr. 8th, 2002.

5 Summary

We evaluated Linux IPv6 protocol stack and
analyzed the problems in detail. As a result,
we were able to pointed out the points which
needs improvements. The results enabled to
pass many items listed in IPv6 conformance
test, and use the features required for IPv6 host.

From the evaluation results, it is obviously that
the quality of Linux IPv6 protocol stack has
been improved by USAGI Project. We are now
working for making patches in order to con-
tribute our improvements to original Linux ker-
nels. However, we have to divide our improve-
ments into small patches which are splitted by
each improvement. It takes somewhat span to
complete making patches and contribute them.

Ottawa Linux Symposium 2002 504

6 Future Works

Finally, we list our future plans in USAGI
Project in this section.

The analysis and improvements mentioned in
this paper, were those only in IPv6 protocol
specification in IPv6 protocol stack.

Concerning IPv6 protocol specifications, we
plan to continue activity especially focused on
passing TAHI IPv6 conformance Test, imple-
menting IPv6 features not yet implemented,
IPsec Protocol, and IPv6 performance tuning.

For our future plan, we have the below devel-
oping items.

• IPsec tunnel mode

• Generic tunnel device for IPv4 and IPv6

• Introduce scope semantics

• DHCPv6

• Prefix Delegation Protocol

• IPv4/IPv6 Translator

References

[1] Jon Crowcroft and Iain Phillips.TCP/IP
and Linux Protocol Implementation:
Systems Code for the Linux Internet.
WILEY Publishers, October 2001.

[2] FreeS/WAN Project. Linux FreeS/WAN
Project.
http://www.freeswan.org/ .

[3] R. Gilligan, S. Thomson, J. Bound, and
W. Stevens. Basic Socket Interface
Extensions for IPv6. RFC2133, April
1997.

[4] R. Gilligan, S. Thomson, J. Bound, and
W. Stevens. Basic Socket Interface
Extensions for IPv6. RFC2553, March
1999.

[5] GNU Project. GNU C library.
http://www.gnu.org/software

/libc/libc.html .

[6] IABG. IPv6 at IABG.
http://www.ipv6.iabg.de/ .

[7] T. Narten, E. Nordmark, and
W. Simpson. Neighbor Discovery for IP
Version 6 (IPv6). RFC2461, December
1998.

[8] Keith Sklower. A tree-based packet
routing table for berkeley unix. In
USENIX Winter, pages 93–104, 1991.

[9] TAHI Project. Test and Verification for
IPv6. http://www.tahi.org/ .

[10] S. Thomson and T. Narten. IPv6
Stateless Address Autoconfiguration.
RFC2462, December 1998.

Ottawa Linux Symposium 2002 505

7 Tables & Figures

��� ����� ����� ����� 	����
������

��������� � ��������
��

��������� � �����������

��������� � ��������
�	

� �"!#!
$%�'&)(
*��,+.-

Figure 6: Result of IPv6 Address Autoconfiguration Test on Linux Kernel

��� ����� ����� ����� 	����
������

��������� � ��������
��

��������� � �����������

��������� � ��������
�	

� �"!#!
$%�'&)(
*��,+.-

Figure 7: Result of IPv6 NDP Test on Linux Kernel

Ottawa Linux Symposium 2002 506

��� ����� ����� ����� 	����
������

��������� � ��������
��

��������� � �����������

��������� � ��� ����
�	

���� �!#"

$� ��%�
&')(+*
,- ."0/

Figure 8: Result of IPv6 Address Autoconfiguration Test on USAGI

��� ����� ����� ����� 	����
������

��������� � ��������
��

��������� � �����������

��������� � ��������
�	

�! �"$#&%

'�"()
*+"-,/.
0�"&%21

Figure 9: Result of IPv6 NDP Test on USAGI

Ottawa Linux Symposium 2002 507

Table 2: IPv6 Conformance Test For Stateless Address Configuration on Linux kernel 2.2.15

Test No. Title Result
1 DAD is performed on NUT by Stateless Link-local address autoconfiguration WARN
2 DAD Success when NUT received no packet on Stateless Link-local address

autoconfiguration FAIL
3 DAD Fail when NUT received Valid NS in random delaying phase on Stateless

Link-local address autoconfiguration PASS
4 DAD Fail when NUT received Valid NS (dst MAC addr != MAC addr of NUT) on

Stateless Link-local address autoconfiguration WARN
5 DAD Fail when NUT received Valid NS (dst MAC addr == MAC addr of NUT) on

Stateless Link-local address autoconfiguration WARN
6 DAD Fail when NUT received Surprise NS (Prefix Option) on Stateless

Link-local address autoconfiguration (Surprise test) WARN
7 DAD Fail when NUT received Valid NA (dst MAC addr != MAC addr of NUT) on

Stateless Link-local address autoconfiguration WARN
8 DAD Fail when NUT received Valid NA (dst MAC addr == MAC addr of NUT) on

Stateless Link-local address autoconfiguration WARN
9 DAD Fail when NUT received NA (No TLL option) on Stateless Link-local

address autoconfiguration WARN
10 DAD Fail when NUT received NA (dst addr == solicited node multicast) on

Stateless Link-local address autoconfiguration WARN
11 DAD Fail when NUT received Surprise NA (Many Options) on Stateless

Link-local address autoconfiguration (Surprise test) WARN
12 DAD Success when NUT received Invalid NS (Dst addr is Allnodes) on

Stateless Link-local address autoconfiguration FAIL
13 DAD Success when NUT received Invalid NS (Dst addr is Tentative) on

Stateless Link-local address autoconfiguration FAIL
14 DAD Success when NUT received Invalid NS (Hoplimit != 255) on Stateless

Link-local address autoconfiguration FAIL
15 DAD Success when NUT received Invalid NS (Include SLL opt) on Stateless

Link-local address autoconfiguration FAIL
16 DAD Success when NUT received NS (Src addr is Unicast) on Stateless

Link-local address autoconfiguration FAIL
17 DAD Success when NUT received Invalid NA (Hoplimit != 255) on Stateless

Link-local address autoconfiguration FAIL
18 DAD Success when NUT received Invalid NA (S flag == 1) on Stateless

Link-local address autoconfiguration FAIL
19 DAD Success when NUT received NA (Dst addr is unicast) on Stateless

Link-local address autoconfiguration FAIL
20 DAD is performed on NUT by Manual Link-local address configuration FAIL
21 DAD Success when NUT received no packet on Manual Link-local address

configuration FAIL
22 DAD is performed on NUT by Manual Global address configuration WARN
23 DAD Success when NUT received no packet on Manual Global address configurationFAIL
24 DAD Fail when NUT received Valid NS (dst MAC addr == MAC addr of NUT) on

Manual Global address configuration WARN
25 DAD Fail when NUT received Valid NA (dst MAC addr == MAC addr of NUT) on

Table continues on next page. . .

Ottawa Linux Symposium 2002 508

Table 2 continued. . .
Test No. Title Result

Manual Global address configuration WARN
26 DAD Success when NUT received Invalid NS (Dst addr is Allnodes) on

Manual Global address configuration FAIL
27 DAD Success when NUT received Invalid NS (Dst addr is Tentative) on

Manual Global address configuration FAIL
28 DAD is performed on NUT by Stateless Global address autoconfiguration WARN
29 DAD is performed on NUT by Stateless Global address autoconfiguration

after DAD Failed for Link-local address autoconfiguration WARN
30 ADDRCONF Success when NUT received Valid RA (Global address) FAIL
31 ADDRCONF Success when NUT received Valid RA (Site-local address) FAIL
32 ADDRCONF Success when NUT received Surprise RA (Many link-layer options)

(Surprise test) FAIL
33 NUT ignores prefixopt if PreferredLifeTime> ValidLifeTime WARN
34 NUT ignores prefixopt if Prefixlen> 64 (interface ID len is 64) WARN
35 NUT ignores prefixopt if Prefixlen< 64 (interface ID len is 64) WARN
36 NUT ignores prefixopt if A flag is 0 WARN
37 NUT ignores prefixopt if prefix is Link-local WARN
38 NUT ignores prefixopt if Prefixlen> 128 WARN
39 NUT ignores prefixopt if ValidLifeTime is 0 (unknown prefix) WARN
40 NUT ignores prefixopt if ValidLifeTime is 0

(known prefix but without IPSEC authentication) FAIL
41 NUT ignores prefixopt if prefix is Global Multicast (Surprise test) WARN
42 Probe PrefixOptions processing order of same prefixes in one RA

(Surprise test) FAIL
43 Check if ValidLifetime is reset on NUT by RA with same prefix

(before expiry, greater VLT) FAIL
44 Check if ValidLifetime is NOT reset on NUT by RA with same prefix

(before expiry, same VLT) FAIL
45 Check if ValidLifetime is reset on NUT by RA with same prefix

(after expiry, same VLT) FAIL
46 Check if ValidLifetime is NOT reset on NUT by RA with same prefix

(before expiry, less VLT) FAIL
47 Check if ValidLifetime is reset on NUT by RA with same prefix

(after expiry, less VLT) FAIL
48 Packet receiving and Global address lifetime expiry

(valid preferred, valid deprecated, invalid) FAIL
49 Packet receiving and Site-local address lifetime expiry

(valid preferred, valid deprecated, invalid) FAIL
50 Source address selection and address lifetime expiry

(valid deprecated VS valid preferred) FAIL
51 Source address selection and address lifetime expiry

(valid deprecated VS valid deprecated) FAIL
52 Source address selection and address lifetime expiry

(invalid VS valid deprecated) FAIL
53 Source address selection and address lifetime expiry

(invalid VS invalid) FAIL
This Report was generated by TAHI IPv6 Conformance Test Suite

Ottawa Linux Symposium 2002 509

Table 3: IPv6 Conformance Test For Stateless Address Configuration on Linux kernel 2.2.20

Test No. Title Result
1 DAD is performed on NUT by Stateless Link-local address autoconfiguration PASS
2 DAD Success when NUT received no packet on Stateless Link-local address

autoconfiguration PASS
3 DAD Fail when NUT received Valid NS in random delaying phase on Stateless

Link-local address autoconfiguration PASS
4 DAD Fail when NUT received Valid NS (dst MAC addr != MAC addr of NUT) on

Stateless Link-local address autoconfiguration PASS
5 DAD Fail when NUT received Valid NS (dst MAC addr == MAC addr of NUT) on

Stateless Link-local address autoconfiguration PASS
6 DAD Fail when NUT received Surprise NS (Prefix Option) on Stateless

Link-local address autoconfiguration (Surprise test) PASS
7 DAD Fail when NUT received Valid NA (dst MAC addr != MAC addr of NUT) on

Stateless Link-local address autoconfiguration PASS
8 DAD Fail when NUT received Valid NA (dst MAC addr == MAC addr of NUT) on

Stateless Link-local address autoconfiguration PASS
9 DAD Fail when NUT received NA (No TLL option) on Stateless Link-local

address autoconfiguration PASS
10 DAD Fail when NUT received NA (dst addr == solicited node multicast) on

Stateless Link-local address autoconfiguration PASS
11 DAD Fail when NUT received Surprise NA (Many Options) on Stateless

Link-local address autoconfiguration (Surprise test) PASS
12 DAD Success when NUT received Invalid NS (Dst addr is Allnodes) on

Stateless Link-local address autoconfiguration FAIL
13 DAD Success when NUT received Invalid NS (Dst addr is Tentative) on

Stateless Link-local address autoconfiguration FAIL
14 DAD Success when NUT received Invalid NS (Hoplimit != 255) on Stateless

Link-local address autoconfiguration FAIL
15 DAD Success when NUT received Invalid NS (Include SLL opt) on Stateless

Link-local address autoconfiguration FAIL
16 DAD Success when NUT received NS (Src addr is Unicast) on Stateless

Link-local address autoconfiguration FAIL
17 DAD Success when NUT received Invalid NA (Hoplimit != 255) on Stateless

Link-local address autoconfiguration FAIL
18 DAD Success when NUT received Invalid NA (S flag == 1) on Stateless

Link-local address autoconfiguration FAIL
19 DAD Success when NUT received NA (Dst addr is unicast) on Stateless

Link-local address autoconfiguration FAIL
20 DAD is performed on NUT by Manual Link-local address configuration WARN
21 DAD Success when NUT received no packet on Manual Link-local address

configuration FAIL
22 DAD is performed on NUT by Manual Global address configuration WARN
23 DAD Success when NUT received no packet on Manual Global address configurationFAIL
24 DAD Fail when NUT received Valid NS (dst MAC addr == MAC addr of NUT) on

Manual Global address configuration WARN
25 DAD Fail when NUT received Valid NA (dst MAC addr == MAC addr of NUT) on

Table continues on next page. . .

Ottawa Linux Symposium 2002 510

Table 3 continued. . .
Test No. Title Result

Manual Global address configuration WARN
26 DAD Success when NUT received Invalid NS (Dst addr is Allnodes) on

Manual Global address configuration FAIL
27 DAD Success when NUT received Invalid NS (Dst addr is Tentative) on

Manual Global address configuration FAIL
28 DAD is performed on NUT by Stateless Global address autoconfiguration WARN
29 DAD is performed on NUT by Stateless Global address autoconfiguration

after DAD Failed for Link-local address autoconfiguration PASS
30 ADDRCONF Success when NUT received Valid RA (Global address) FAIL
31 ADDRCONF Success when NUT received Valid RA (Site-local address) FAIL
32 ADDRCONF Success when NUT received Surprise RA (Many link-layer options)

(Surprise test) FAIL
33 NUT ignores prefixopt if PreferredLifeTime> ValidLifeTime WARN
34 NUT ignores prefixopt if Prefixlen> 64 (interface ID len is 64) WARN
35 NUT ignores prefixopt if Prefixlen< 64 (interface ID len is 64) WARN
36 NUT ignores prefixopt if A flag is 0 WARN
37 NUT ignores prefixopt if prefix is Link-local PASS
38 NUT ignores prefixopt if Prefixlen> 128 WARN
39 NUT ignores prefixopt if ValidLifeTime is 0 (unknown prefix) WARN
40 NUT ignores prefixopt if ValidLifeTime is 0

(known prefix but without IPSEC authentication) FAIL
41 NUT ignores prefixopt if prefix is Global Multicast (Surprise test) WARN
42 Probe PrefixOptions processing order of same prefixes in one RA

(Surprise test) FAIL
43 Check if ValidLifetime is reset on NUT by RA with same prefix

(before expiry, greater VLT) FAIL
44 Check if ValidLifetime is NOT reset on NUT by RA with same prefix

(before expiry, same VLT) FAIL
45 Check if ValidLifetime is reset on NUT by RA with same prefix

(after expiry, same VLT) FAIL
46 Check if ValidLifetime is NOT reset on NUT by RA with same prefix

(before expiry, less VLT) FAIL
47 Check if ValidLifetime is reset on NUT by RA with same prefix

(after expiry, less VLT) FAIL
48 Packet receiving and Global address lifetime expiry

(valid preferred, valid deprecated, invalid) FAIL
49 Packet receiving and Site-local address lifetime expiry

(valid preferred, valid deprecated, invalid) FAIL
50 Source address selection and address lifetime expiry

(valid deprecated VS valid preferred) WARN
51 Source address selection and address lifetime expiry

(valid deprecated VS valid deprecated) WARN
52 Source address selection and address lifetime expiry

(invalid VS valid deprecated) WARN
53 Source address selection and address lifetime expiry

(invalid VS invalid) FAIL
This Report was generated by TAHI IPv6 Conformance Test Suite

Ottawa Linux Symposium 2002 511

Table 4: IPv6 Conformance Test For Stateless Address Configuration on Linux kernel 2.4.18

Test No. Title Result
1 DAD is performed on NUT by Stateless Link-local address autoconfiguration PASS
2 DAD Success when NUT received no packet on Stateless Link-local address

autoconfiguration PASS
3 DAD Fail when NUT received Valid NS in random delaying phase on Stateless

Link-local address autoconfiguration PASS
4 DAD Fail when NUT received Valid NS (dst MAC addr != MAC addr of NUT) on

Stateless Link-local address autoconfiguration PASS
5 DAD Fail when NUT received Valid NS (dst MAC addr == MAC addr of NUT) on

Stateless Link-local address autoconfiguration PASS
6 DAD Fail when NUT received Surprise NS (Prefix Option) on Stateless

Link-local address autoconfiguration (Surprise test) PASS
7 DAD Fail when NUT received Valid NA (dst MAC addr != MAC addr of NUT) on

Stateless Link-local address autoconfiguration PASS
8 DAD Fail when NUT received Valid NA (dst MAC addr == MAC addr of NUT) on

Stateless Link-local address autoconfiguration PASS
9 DAD Fail when NUT received NA (No TLL option) on Stateless Link-local

address autoconfiguration PASS
10 DAD Fail when NUT received NA (dst addr == solicited node multicast) on

Stateless Link-local address autoconfiguration PASS
11 DAD Fail when NUT received Surprise NA (Many Options) on Stateless

Link-local address autoconfiguration (Surprise test) PASS
12 DAD Success when NUT received Invalid NS (Dst addr is Allnodes) on

Stateless Link-local address autoconfiguration FAIL
13 DAD Success when NUT received Invalid NS (Dst addr is Tentative) on

Stateless Link-local address autoconfiguration PASS
14 DAD Success when NUT received Invalid NS (Hoplimit != 255) on Stateless

Link-local address autoconfiguration PASS
15 DAD Success when NUT received Invalid NS (Include SLL opt) on Stateless

Link-local address autoconfiguration FAIL
16 DAD Success when NUT received NS (Src addr is Unicast) on Stateless

Link-local address autoconfiguration PASS
17 DAD Success when NUT received Invalid NA (Hoplimit != 255) on Stateless

Link-local address autoconfiguration PASS
18 DAD Success when NUT received Invalid NA (S flag == 1) on Stateless

Link-local address autoconfiguration PASS
19 DAD Success when NUT received NA (Dst addr is unicast) on Stateless

Link-local address autoconfiguration PASS
20 DAD is performed on NUT by Manual Link-local address configuration PASS
21 DAD Success when NUT received no packet on Manual Link-local address

configuration PASS
22 DAD is performed on NUT by Manual Global address configuration PASS
23 DAD Success when NUT received no packet on Manual Global address configurationPASS
24 DAD Fail when NUT received Valid NS (dst MAC addr == MAC addr of NUT) on

Manual Global address configuration PASS
25 DAD Fail when NUT received Valid NA (dst MAC addr == MAC addr of NUT) on

Table continues on next page. . .

Ottawa Linux Symposium 2002 512

Table 4 continued. . .
Test No. Title Result

Manual Global address configuration PASS
26 DAD Success when NUT received Invalid NS (Dst addr is Allnodes) on

Manual Global address configuration FAIL
27 DAD Success when NUT received Invalid NS (Dst addr is Tentative) on

Manual Global address configuration PASS
28 DAD is performed on NUT by Stateless Global address autoconfiguration PASS
29 DAD is performed on NUT by Stateless Global address autoconfiguration

after DAD Failed for Link-local address autoconfiguration PASS
30 ADDRCONF Success when NUT received Valid RA (Global address) PASS
31 ADDRCONF Success when NUT received Valid RA (Site-local address) PASS
32 ADDRCONF Success when NUT received Surprise RA (Many link-layer options)

(Surprise test) PASS
33 NUT ignores prefixopt if PreferredLifeTime> ValidLifeTime PASS
34 NUT ignores prefixopt if Prefixlen> 64 (interface ID len is 64) PASS
35 NUT ignores prefixopt if Prefixlen< 64 (interface ID len is 64) PASS
36 NUT ignores prefixopt if A flag is 0 PASS
37 NUT ignores prefixopt if prefix is Link-local PASS
38 NUT ignores prefixopt if Prefixlen> 128 PASS
39 NUT ignores prefixopt if ValidLifeTime is 0 (unknown prefix) PASS
40 NUT ignores prefixopt if ValidLifeTime is 0

(known prefix but without IPSEC authentication) PASS
41 NUT ignores prefixopt if prefix is Global Multicast (Surprise test) PASS
42 Probe PrefixOptions processing order of same prefixes in one RA

(Surprise test) WARN
43 Check if ValidLifetime is reset on NUT by RA with same prefix

(before expiry, greater VLT) FAIL
44 Check if ValidLifetime is NOT reset on NUT by RA with same prefix

(before expiry, same VLT) FAIL
45 Check if ValidLifetime is reset on NUT by RA with same prefix

(after expiry, same VLT) FAIL
46 Check if ValidLifetime is NOT reset on NUT by RA with same prefix

(before expiry, less VLT) PASS
47 Check if ValidLifetime is reset on NUT by RA with same prefix

(after expiry, less VLT) FAIL
48 Packet receiving and Global address lifetime expiry

(valid preferred, valid deprecated, invalid) FAIL
49 Packet receiving and Site-local address lifetime expiry

(valid preferred, valid deprecated, invalid) FAIL
50 Source address selection and address lifetime expiry

(valid deprecated VS valid preferred) PASS
51 Source address selection and address lifetime expiry

(valid deprecated VS valid deprecated) PASS
52 Source address selection and address lifetime expiry

(invalid VS valid deprecated) PASS
53 Source address selection and address lifetime expiry

(invalid VS invalid) FAIL
This Report was generated by TAHI IPv6 Conformance Test Suite

Ottawa Linux Symposium 2002 513

Table 5: IPv6 Conformance Test For Neighbor Discovery on Linux kernel 2.2.15

Test No. Title Result
1 Verify that the NUT send NSs (link-local ==> link-local) FAIL
2 Verify that the NUT send NSs (global ==> global) FAIL
3 Verify that the NUT send NSs (link-local ==> global) FAIL
4 Verify that the NUT send NSs (global ==> link-local) FAIL
5 Multicast NS w/ Default Config. PASS
6 Multicast NS w/ RetransTimer=3sec. PASS
7 Unicast NS w/ Default Config. PASS
8 Unicast NS w/ RestransTier=3sec. PASS
9 Address Resolution Queue (one entry for an address ?) PASS
10 Address Resolution Queue (more then one entry for an address ?)PASS
11 Address Resolution Queue (one entry per an address ?) FAIL
12 Receiving valid NSs WARN
13 Receiving invalid NSs FAIL
14 NS vs. IsRouter flag PASS
15 NS vs. NONCE FAIL
16 NS vs. INCOMPLETE FAIL
17 NS vs. REACHABLE FAIL
18 NS vs. STALE PASS
19 NS vs. PROBE FAIL
20 R flag vs. IsRouter flag FAIL
21 NA vs. NONCE PASS
22 NA vs. INCOMPLETE FAIL
23 NA vs. REACHABLE FAIL
24 NA vs. STALE FAIL
25 NA vs. PROBE FAIL
26 Sending RS FAIL
27 Sending RS after receiving unsolicited RA FAIL
28 Not sending RS after receiving solicited RA FAIL
29 Ignoring RS PASS
30 RA set IsRouter flag FAIL
31 Receiving multiple RAs #1 FAIL
32 Receiving multiple RAs #2 FAIL
33 Ingnoring invalid RAs FAIL
34 ReachableTIme vs BaseReachableTime FAIL
35 RouterLifetime=0 PASS
36 RouterLifetime=5 FAIL
37 Next-hop Determination WARN
38 The Default Router List vs Unreachability Detection FAIL
39 RA vs NONCE PASS
40 RA vs INCOMPLETE PASS
41 RA vs REACHABLE FAIL
42 RA vs STALE PASS
43 RA vs PROBE FAIL
44 Redirect vs NONCE PASS
45 Redirect vs INCOMPLETE PASS

Table continues on next page. . .

Ottawa Linux Symposium 2002 514

Table 5 continued. . .
Test No. Title Result
46 Redirect vs REACHABLE PASS
47 Redirect vs STALE PASS
48 Redirect vs PROBE FAIL
49 Invalid Redirect vs Neighbor Cache State FAIL
50 Redirect vs Destination Cache; Redirect to a host FAIL
51 Redirect vs Destination Cache; Redirect to a better router FAIL
52 Redirect vs Neighbor Unreachability Detection; Redirect to a host FAIL
53 Redirect vs Neighbor Unreachability Detection; Redirect to a better routerFAIL
54 Redirect vs NA w/ RFlag=0 #1 PASS
55 Redirect vs NA w/ RFlag=0 #2 FAIL
56 Redirect vs RA w/ RouterLifetime=0 #1 PASS
57 Redirect vs RA w/ RouterLifetime=0 #2 FAIL
58 Redirect vs NONCE FAIL

This Report was generated by TAHI IPv6 Conformance Test Suite

Table 6: IPv6 Conformance Test For Neighbor Discovery on Linux kernel 2.2.20

Test No. Title Result
1 Verify that the NUT send NSs (link-local ==> link-local) FAIL
2 Verify that the NUT send NSs (global ==> global) FAIL
3 Verify that the NUT send NSs (link-local ==> global) FAIL
4 Verify that the NUT send NSs (global ==> link-local) FAIL
5 Multicast NS w/ Default Config. PASS
6 Multicast NS w/ RetransTimer=3sec. PASS
7 Unicast NS w/ Default Config. PASS
8 Unicast NS w/ RestransTier=3sec. PASS
9 Address Resolution Queue (one entry for an address ?) PASS
10 Address Resolution Queue (more then one entry for an address ?)PASS
11 Address Resolution Queue (one entry per an address ?) FAIL
12 Receiving valid NSs WARN
13 Receiving invalid NSs FAIL
14 NS vs. IsRouter flag PASS
15 NS vs. NONCE FAIL
16 NS vs. INCOMPLETE FAIL
17 NS vs. REACHABLE FAIL
18 NS vs. STALE PASS
19 NS vs. PROBE FAIL
20 R flag vs. IsRouter flag FAIL
21 NA vs. NONCE PASS
22 NA vs. INCOMPLETE FAIL
23 NA vs. REACHABLE FAIL
24 NA vs. STALE FAIL
25 NA vs. PROBE FAIL
26 Sending RS FAIL
27 Sending RS after receiving unsolicited RA FAIL
28 Not sending RS after receiving solicited RA FAIL
29 Ignoring RS PASS

Table continues on next page. . .

Ottawa Linux Symposium 2002 515

Table 6 continued. . .
Test No. Title Result
30 RA set IsRouter flag FAIL
31 Receiving multiple RAs #1 FAIL
32 Receiving multiple RAs #2 FAIL
33 Ingnoring invalid RAs FAIL
34 ReachableTIme vs BaseReachableTime FAIL
35 RouterLifetime=0 PASS
36 RouterLifetime=5 FAIL
37 Next-hop Determination WARN
38 The Default Router List vs Unreachability Detection FAIL
39 RA vs NONCE FAIL
40 RA vs INCOMPLETE PASS
41 RA vs REACHABLE FAIL
42 RA vs STALE PASS
43 RA vs PROBE FAIL
44 Redirect vs NONCE PASS
45 Redirect vs INCOMPLETE PASS
46 Redirect vs REACHABLE PASS
47 Redirect vs STALE PASS
48 Redirect vs PROBE FAIL
49 Invalid Redirect vs Neighbor Cache State FAIL
50 Redirect vs Destination Cache; Redirect to a host FAIL
51 Redirect vs Destination Cache; Redirect to a better router FAIL
52 Redirect vs Neighbor Unreachability Detection; Redirect to a host FAIL
53 Redirect vs Neighbor Unreachability Detection; Redirect to a better routerFAIL
54 Redirect vs NA w/ RFlag=0 #1 PASS
55 Redirect vs NA w/ RFlag=0 #2 FAIL
56 Redirect vs RA w/ RouterLifetime=0 #1 PASS
57 Redirect vs RA w/ RouterLifetime=0 #2 FAIL
58 Redirect vs NONCE FAIL

This Report was generated by TAHI IPv6 Conformance Test Suite

Table 7: IPv6 Conformance Test For Neighbor Discovery on Linux kernel 2.4.18

Test No. Title Result
1 Verify that the NUT send NSs (link-local ==> link-local) FAIL
2 Verify that the NUT send NSs (global ==> global) FAIL
3 Verify that the NUT send NSs (link-local ==> global) FAIL
4 Verify that the NUT send NSs (global ==> link-local) FAIL
5 Multicast NS w/ Default Config. PASS
6 Multicast NS w/ RetransTimer=3sec. PASS
7 Unicast NS w/ Default Config. PASS
8 Unicast NS w/ RestransTier=3sec. PASS
9 Address Resolution Queue (one entry for an address ?) PASS
10 Address Resolution Queue (more then one entry for an address ?)PASS
11 Address Resolution Queue (one entry per an address ?) FAIL
12 Receiving valid NSs WARN
13 Receiving invalid NSs FAIL
14 NS vs. IsRouter flag PASS

Table continues on next page. . .

Ottawa Linux Symposium 2002 516

Table 7 continued. . .
Test No. Title Result
15 NS vs. NONCE FAIL
16 NS vs. INCOMPLETE FAIL
17 NS vs. REACHABLE PASS
18 NS vs. STALE PASS
19 NS vs. PROBE FAIL
20 R flag vs. IsRouter flag FAIL
21 NA vs. NONCE PASS
22 NA vs. INCOMPLETE FAIL
23 NA vs. REACHABLE FAIL
24 NA vs. STALE FAIL
25 NA vs. PROBE FAIL
26 Sending RS PASS
27 Sending RS after receiving unsolicited RA PASS
28 Not sending RS after receiving solicited RA PASS
29 Ignoring RS PASS
30 RA set IsRouter flag FAIL
31 Receiving multiple RAs #1 PASS
32 Receiving multiple RAs #2 PASS
33 Ingnoring invalid RAs PASS
34 ReachableTIme vs BaseReachableTime PASS
35 RouterLifetime=0 PASS
36 RouterLifetime=5 FAIL
37 Next-hop Determination WARN
38 The Default Router List vs Unreachability Detection FAIL
39 RA vs NONCE PASS
40 RA vs INCOMPLETE PASS
41 RA vs REACHABLE PASS
42 RA vs STALE PASS
43 RA vs PROBE FAIL
44 Redirect vs NONCE PASS
45 Redirect vs INCOMPLETE PASS
46 Redirect vs REACHABLE PASS
47 Redirect vs STALE PASS
48 Redirect vs PROBE FAIL
49 Invalid Redirect vs Neighbor Cache State FAIL
50 Redirect vs Destination Cache; Redirect to a host FAIL
51 Redirect vs Destination Cache; Redirect to a better router FAIL
52 Redirect vs Neighbor Unreachability Detection; Redirect to a host FAIL
53 Redirect vs Neighbor Unreachability Detection; Redirect to a better routerFAIL
54 Redirect vs NA w/ RFlag=0 #1 PASS
55 Redirect vs NA w/ RFlag=0 #2 FAIL
56 Redirect vs RA w/ RouterLifetime=0 #1 PASS
57 Redirect vs RA w/ RouterLifetime=0 #2 FAIL
58 Redirect vs NONCE FAIL

This Report was generated by TAHI IPv6 Conformance Test Suite

Ottawa Linux Symposium 2002 517

Table 8: IPv6 Conformance Test For Stateless Address Configuration on USAGI kernel

Test No. Title Result
1 DAD is performed on NUT by Stateless Link-local address autoconfiguration PASS
2 DAD Success when NUT received no packet on Stateless Link-local address

autoconfiguration PASS
3 DAD Fail when NUT received Valid NS in random delaying phase on Stateless

Link-local address autoconfiguration PASS
4 DAD Fail when NUT received Valid NS (dst MAC addr != MAC addr of NUT) on

Stateless Link-local address autoconfiguration PASS
5 DAD Fail when NUT received Valid NS (dst MAC addr == MAC addr of NUT) on

Stateless Link-local address autoconfiguration PASS
6 DAD Fail when NUT received Surprise NS (Prefix Option) on Stateless

Link-local address autoconfiguration (Surprise test) PASS
7 DAD Fail when NUT received Valid NA (dst MAC addr != MAC addr of NUT) on

Stateless Link-local address autoconfiguration PASS
8 DAD Fail when NUT received Valid NA (dst MAC addr == MAC addr of NUT) on

Stateless Link-local address autoconfiguration PASS
9 DAD Fail when NUT received NA (No TLL option) on Stateless Link-local

address autoconfiguration PASS
10 DAD Fail when NUT received NA (dst addr == solicited node multicast) on

Stateless Link-local address autoconfiguration PASS
11 DAD Fail when NUT received Surprise NA (Many Options) on Stateless

Link-local address autoconfiguration (Surprise test) PASS
12 DAD Success when NUT received Invalid NS (Dst addr is Allnodes) on

Stateless Link-local address autoconfiguration PASS
13 DAD Success when NUT received Invalid NS (Dst addr is Tentative) on

Stateless Link-local address autoconfiguration PASS
14 DAD Success when NUT received Invalid NS (Hoplimit != 255) on Stateless

Link-local address autoconfiguration PASS
15 DAD Success when NUT received Invalid NS (Include SLL opt) on Stateless

Link-local address autoconfiguration PASS
16 DAD Success when NUT received NS (Src addr is Unicast) on Stateless

Link-local address autoconfiguration PASS
17 DAD Success when NUT received Invalid NA (Hoplimit != 255) on Stateless

Link-local address autoconfiguration PASS
18 DAD Success when NUT received Invalid NA (S flag == 1) on Stateless

Link-local address autoconfiguration PASS
19 DAD Success when NUT received NA (Dst addr is unicast) on Stateless

Link-local address autoconfiguration PASS
20 DAD is performed on NUT by Manual Link-local address configuration PASS
21 DAD Success when NUT received no packet on Manual Link-local address

configuration PASS
22 DAD is performed on NUT by Manual Global address configuration PASS
23 DAD Success when NUT received no packet on Manual Global address configurationPASS
24 DAD Fail when NUT received Valid NS (dst MAC addr == MAC addr of NUT) on

Manual Global address configuration PASS
25 DAD Fail when NUT received Valid NA (dst MAC addr == MAC addr of NUT) on

Table continues on next page. . .

Ottawa Linux Symposium 2002 518

Table 8 continued. . .
Test No. Title Result

Manual Global address configuration PASS
26 DAD Success when NUT received Invalid NS (Dst addr is Allnodes) on

Manual Global address configuration PASS
27 DAD Success when NUT received Invalid NS (Dst addr is Tentative) on

Manual Global address configuration PASS
28 DAD is performed on NUT by Stateless Global address autoconfiguration PASS
29 DAD is performed on NUT by Stateless Global address autoconfiguration

after DAD Failed for Link-local address autoconfiguration PASS
30 ADDRCONF Success when NUT received Valid RA (Global address) PASS
31 ADDRCONF Success when NUT received Valid RA (Site-local address) PASS
32 ADDRCONF Success when NUT received Surprise RA (Many link-layer options)

(Surprise test) PASS
33 NUT ignores prefixopt if PreferredLifeTime> ValidLifeTime PASS
34 NUT ignores prefixopt if Prefixlen> 64 (interface ID len is 64) PASS
35 NUT ignores prefixopt if Prefixlen< 64 (interface ID len is 64) PASS
36 NUT ignores prefixopt if A flag is 0 PASS
37 NUT ignores prefixopt if prefix is Link-local PASS
38 NUT ignores prefixopt if Prefixlen> 128 PASS
39 NUT ignores prefixopt if ValidLifeTime is 0 (unknown prefix) PASS
40 NUT ignores prefixopt if ValidLifeTime is 0

(known prefix but without IPSEC authentication) PASS
41 NUT ignores prefixopt if prefix is Global Multicast (Surprise test) PASS
42 Probe PrefixOptions processing order of same prefixes in one RA

(Surprise test) WARN
43 Check if ValidLifetime is reset on NUT by RA with same prefix

(before expiry, greater VLT) PASS
44 Check if ValidLifetime is NOT reset on NUT by RA with same prefix

(before expiry, same VLT) PASS
45 Check if ValidLifetime is reset on NUT by RA with same prefix

(after expiry, same VLT) PASS
46 Check if ValidLifetime is NOT reset on NUT by RA with same prefix

(before expiry, less VLT) PASS
47 Check if ValidLifetime is reset on NUT by RA with same prefix

(after expiry, less VLT) PASS
48 Packet receiving and Global address lifetime expiry

(valid preferred, valid deprecated, invalid) PASS
49 Packet receiving and Site-local address lifetime expiry

(valid preferred, valid deprecated, invalid) PASS
50 Source address selection and address lifetime expiry

(valid deprecated VS valid preferred) PASS
51 Source address selection and address lifetime expiry

(valid deprecated VS valid deprecated) PASS
52 Source address selection and address lifetime expiry

(invalid VS valid deprecated) PASS
53 Source address selection and address lifetime expiry

(invalid VS invalid) PASS
This Report was generated by TAHI IPv6 Conformance Test Suite

Ottawa Linux Symposium 2002 519

Table 9: IPv6 Conformance Test For Neighbor Discovery on USAGI kernel

Test No. Title Result
1 Verify that the NUT send NSs (link-local ==> link-local) PASS
2 Verify that the NUT send NSs (global ==> global) PASS
3 Verify that the NUT send NSs (link-local ==> global) PASS
4 Verify that the NUT send NSs (global ==> link-local) PASS
5 Multicast NS w/ Default Config. PASS
6 Multicast NS w/ RetransTimer=3sec. PASS
7 Unicast NS w/ Default Config. PASS
8 Unicast NS w/ RestransTier=3sec. PASS
9 Address Resolution Queue (one entry for an address ?) PASS
10 Address Resolution Queue (more then one entry for an address ?)PASS
11 Address Resolution Queue (one entry per an address ?) PASS
12 Receiving valid NSs WARN
13 Receiving invalid NSs PASS
14 NS vs. IsRouter flag PASS
15 NS vs. NONCE PASS
16 NS vs. INCOMPLETE PASS
17 NS vs. REACHABLE PASS
18 NS vs. STALE PASS
19 NS vs. PROBE PASS
20 R flag vs. IsRouter flag WARN
21 NA vs. NONCE PASS
22 NA vs. INCOMPLETE PASS
23 NA vs. REACHABLE PASS
24 NA vs. STALE PASS
25 NA vs. PROBE PASS
26 Sending RS PASS
27 Sending RS after receiving unsolicited RA PASS
28 Not sending RS after receiving solicited RA PASS
29 Ignoring RS PASS
30 RA set IsRouter flag FAIL
31 Receiving multiple RAs #1 PASS
32 Receiving multiple RAs #2 PASS
33 Ingnoring invalid RAs PASS
34 ReachableTIme vs BaseReachableTime PASS
35 RouterLifetime=0 PASS
36 RouterLifetime=5 FAIL
37 Next-hop Determination WARN
38 The Default Router List vs Unreachability Detection PASS
39 RA vs NONCE PASS
40 RA vs INCOMPLETE PASS
41 RA vs REACHABLE PASS
42 RA vs STALE PASS
43 RA vs PROBE PASS
44 Redirect vs NONCE PASS
45 Redirect vs INCOMPLETE PASS

Table continues on next page. . .

Ottawa Linux Symposium 2002 520

Table 9 continued. . .
Test No. Title Result
46 Redirect vs REACHABLE PASS
47 Redirect vs STALE PASS
48 Redirect vs PROBE PASS
49 Invalid Redirect vs Neighbor Cache State FAIL
50 Redirect vs Destination Cache; Redirect to a host FAIL
51 Redirect vs Destination Cache; Redirect to a better router FAIL
52 Redirect vs Neighbor Unreachability Detection; Redirect to a host FAIL
53 Redirect vs Neighbor Unreachability Detection; Redirect to a better routerFAIL
54 Redirect vs NA w/ RFlag=0 #1 PASS
55 Redirect vs NA w/ RFlag=0 #2 FAIL
56 Redirect vs RA w/ RouterLifetime=0 #1 PASS
57 Redirect vs RA w/ RouterLifetime=0 #2 FAIL
58 Redirect vs NONCE FAIL

This Report was generated by TAHI IPv6 Conformance Test Suite

GNU Bayonne: telephony application server of the GNU
project

David Sugar
Open Source Telecom.
Somerset, NJ, 08873

sugar@gnu.org

http://www.gnu.org/software/bayonne

Abstract

GNU Bayonne is a middleware telephony
server that can be used to create and deploy
script driven telephony application services.
These services interact with users over the pub-
lic telephone network. GNU Bayonne can be
used to create carrier applications like Voice
Mail and calling card systems, as well as enter-
prise applications such as unified messaging.
It can be used to provide voice response for e-
commerce systems and has been used in this
role in various e-gov projects. GNU Bayonne
can also be used to telephony enable existing
scripting languages such as perl and python.

1 Introduction

Our goal in GNU Bayonne was to make tele-
phony services as easy to program and deploy
as a web server is today. We choose to make
this server easily programmable thru server
scripting. We also desired to have it highly
portable, and allow it to integrate with exist-
ing application scripting tools so that one could
leverage not just the core server but the entire
platform to deliver telephony functionality and
integrate with other resources like databases.

GNU Bayonne, as a telephony server, also im-
poses some very real and unique design con-

straints. For example, we must provide inter-
active voice response in real-time. “realtime”
in this case may mean what a person might tol-
erate, or delay of 1/10th of a second, rather
than what one might measure in milliseconds
in other kinds of real-time applications. How-
ever, this still means that the service cannot
block, for, after all, you cannot flow control
people speaking.

Since each vendor of telephony hardware has
chosen to create their own unique and substan-
tial application library interface, we needed
GNU Bayonne to sit above these and be able to
abstract them. Ultimately we choose to create a
driver plugin architecture to do this. What this
means is that you can get a card and api from
Aculab, for example, write your application in
GNU Bayonne using it, and later choose, say,
to use Intel telephony hardware, and still have
your application run, unmodified. This has
never been done in the industry widely because
many of these same telephony hardware manu-
facturers like to produce their own middleware
solutions that lock users into their products.

2 GNU Common C++

To create GNU Bayonne we needed a portable
foundation written in C++. I wanted to use
C++ for several reasons. First, the highly ab-

Ottawa Linux Symposium 2002 522

stract nature of the driver interfaces seemed
very natural to use class encapsulation for. Sec-
ond, I found I personally could write C++ code
faster and more bug free than I could write C
code.

Why we choose not to use an existing frame-
work is also simple to explain. We knew we
needed threading, and socket support, and a
few other things. There were no single frame-
work that did all these things except a few
that were very large and complex which did
far more than we needed. We wanted a small
footprint for Bayonne, and the most adaptable
framework that we found at the time typically
added several megs of core image just for the
runtime library.

GNU Common C++ (originally APE) was cre-
ated to provide a very easy to comprehend and
portable class abstraction for threads, sockets,
semaphores, exceptions, etc. This has since
grown into its own and is now used as a foun-
dation of a number of projects as well as being
a part of GNU.

3 GNU ccScript

In addition to having portable C++ threading,
we needed a scripting engine. This script-
ing system had to operate in conjunction with
a non-blocking state-transition call processing
system. It also had to offer immediate call
response, and support several hundred to a
thousand instances running concurrently in one
server image.

Many extension languages assume a separate
execution instance (thread or process) for each
interpreter instance. These were unsuitable.
Many extension languages assume expression
parsing with non-deterministic run time. An
expression could invoke recursive functions or
entire subprograms for example. Again, since
we wanted not to have a separate execution in-

stance for each interpreter instance, and have
each instance respond to the leading edge of
an event callback from the telephony driver as
it steps thru a state machine, none of the ex-
isting common solutions like tcl, perl, guile,
etc, would immediately work for us. Instead,
we created a non-blocking and deterministic
scripting engine, GNU ccScript.

GNU ccScript is unique in several ways. It
is step executed, and is non-blocking. State-
ments either execute and return immediately,
or they schedule their completion for a later
time with the executive. A given “step” is ex-
ecuted, rather than linearly. This allows a sin-
gle thread to invoke and manage multiple in-
terpreter instances. While GNU Bayonne can
support interacting with hundreds of simulta-
neous telephone callers on high density carrier
scale hardware, we do not require hundreds of
native “thread” instances running in the server,
and we have a very modest cpu load.

Another way GNU ccScript is unique is in sup-
port for memory loaded scripts. To avoid delay
or blocking while loading scripts, all scripts
are loaded and parsed into a virtual machine
structure in memory. When we wish to change
scripts, a brand new virtual machine instance
is created to contain these scripts. Calls cur-
rently in progress continue under the’ old vm
and new callers are offered the new vm. When
the last old call terminates, the entire old vm is
then disposed of. This allows for 100% uptime
even while services are modified.

Finally, GNU ccScript allows direct class ex-
tension of the script interpreter. This allows
one to easily create a derived dialect specific
to a given application, or even specific to a
given GNU Bayonne driver, simply by deriv-
ing it from the core language thru standard C++
class extension.

Ottawa Linux Symposium 2002 523

4 TGI support and plugins

While GNU Bayonne offers a ccScript virtual
interpreter for creating telephony applications,
we wanted to be able to integrate support for
databases and other things. There are sys-
tems and scripting environments such as Perl
which already offer database connectivity. So
we created a concept called “TGI,” which, like
CGI, allows external executables to be invoked
from within a call flow script, and the results to
be recorded so that information can be passed
both to and from the user.

The TGI model for GNU Bayonne is very sim-
ilar to how CGI works for a web server. In
TGI, a separate process is started, and it is
passed information on the phone caller thru
environment variables. Environment variables
are used rather than command line arguments
to prevent snooping of transactions that might
include things like credit card information and
which might be visible to a simple “ps” com-
mand.

The TGI process is tethered to GNU Bayonne
thru stdout and any output it generates is used
to invoke server commands. These commands
can do things like set return values, such as
the result of a database lookup, or they can do
things like invoke new sessions to perform out-
bound dialing. A “pool” of available processes
are maintained for TGI gateways so that it can
be treated as a restricted resource, rather than
creating a gateway for each concurrent call ses-
sion. It is assumed gateway execution time rep-
resents a small percentage of total call time,
so it is efficient to maintain a small process
pool always available for quick TGI startup and
desirable to prevent stampeding if say all the
callers hit a TGI at the exact same moment.

TGI does involve a lot of overhead, and so in
addition we have the ability to create direct
command extensions to the native GNU Bay-

Xlib

X Server Printer

Application

Toolkit

Pango Pango Core

PS rendering backend X rendering backendLanguage Module

Arabic X Shaper PS X Shaper

Figure 1: Architecture of GNU Bayonne

onne scripting languages. These command ex-
tensions can be processed thru plugin modules
which can be loaded at runtime, and offer both
scripting language visible interface extensions,
and, within the plugin, the logic necessary to
support the operation being represented to the
scripting system. These are much more tightly
coupled to the internal virtual machine envi-
ronment and a well written plugin could make
use of thread pools or other resources in a very
efficient manner for high port capacity applica-
tions.

5 Architecture

As can be seen, we bring all these elements to-
gether into a GNU Bayonne server, which then
executes as a single core image. The server it-
self exports a series of base classes which are
then derived in plugins. In this way, the core
server itself acts as a “library” as well as a sys-
tem image. One advantage of this scheme is
that, unlike a true library, the loaded modules
and core server do not need to be relocatable,
since only one instance is instantiated in a spe-
cific form that is not shared over arbitrary pro-
cesses.

When the server comes up, it creates gateways

Ottawa Linux Symposium 2002 524

and loads plugins. The plugins themselves use
base classes found in the server and derived ob-
jects that are defined for static storage. This
means when the plugin object is mapped thru
dload, its constructor is immediately executed,
and the object’s base class found in the server
image registers the object with the rest of GNU
Bayonne. Using this method, plugins in ef-
fect automatically register themselves thru the
server as they are loaded, rather than thru a sep-
arate runtime operation.

The server itself also instantiates some objects
at startup even before main() runs. These are
typically objects related to plugin registration
or parsing of the config file.

6 Hardware Requirements

Since GNU Bayonne has to interact with tele-
phone users over the public telephone network
or private branch exchange, there must be hard-
ware used to interconnect GNU Bayonne to the
telephone network. There are many vendors
that supply this kind of hardware and often as
PC add-on cards. Some of these cards are sin-
gle line telephony devices such as the Quicknet
LineJack card, and others might support multi-
ple T1 spans. Some of these cards have exten-
sive on-board DSP resources and TDM busses
to allow interconnection and switching.

GNU Bayonne tries to abstract the hardware
as much as possible and supports a very broad
range of hardware already. GNU Bayonne of-
fers support for /dev/phone Linux kernel tele-
phony cards such as the Quicknet LineJack, for
multiport analog DSP cards from VoiceTronix
and Dialogic, and digital telephony cards
including CAPI 2.0 (CAPI4Linux) compli-
ant cards, and digital span cards from In-
tel/Dialogic and Aculab. We are always look-
ing to broaden this range of card support.

At present both voice modem and OpenH323

support is being worked on. Voice modem
support will allow one to use generic low cost
voice modems as a GNU Bayonne telephony
resource. The openh323 driver will actually re-
quire no hardware but will enable GNU Bay-
onne to be used as an application server for
telephone networks and softswitch equipment
built around the h323 protocol family. At the
time of this writing I am not sure if either or
both of these will be completed in time for the
1.0 release.

7 GNU Bayonne and XML Script-
ing

Some people have chosen to create telephony
services thru web scripting, which is an ad-
merable ambition. To do this, several XML
dialects have been created, but the idea is es-
sentially the same. A query is made, typi-
cally to a web server, which then does some
local processing and spits back a well formed
XML document, which can then be used as
a script to interact with the telephone user.
These make use of XML to generate applica-
tion logic and control much like a scripting lan-
guage, and, perhaps, is an inappropriate use of
XML, which really is designed for document
presentation and inter- exchange rather than as
a scripting tool. However, given the popular-
ity of creating services in this manner, we do
support them in GNU Bayonne.

GNU Bayonne did not choose to be designed
with a single or specific XML dialect in mind,
and as such it uses a plugin. The design is
implimented by dynamically transcoding an
XML document that has been fetched into the
internal ccScript virtual machine instructions,
and then execute the transcoded script as if it
were a native ccScript application. This allows
us to transcode different XML dialects and run
them on GNU Bayonne, or even support mul-
tiple dialects at once.

Ottawa Linux Symposium 2002 525

Since we now learn that several companies
are trying to force thru XML voice browsing
standards which they have patent claims in,
it seems fortunate that we neither depend on
XML scripting nor are restricted to a specific
dialect at this time. My main concern is if
the W3C will standardize voice browsing itself
only to later find out that the very process of
presenting a document in XML encoded script-
ing to a telephone user may turn out to have a
submarine patent, rather than just the specific
attempts to patent parts of the existing W3C
voice browsing standard efforts.

8 Current Status

At the time of this paper’s publication, the 1.0
release of GNU Bayonne should already be in
active distribution. This release represents sev-
eral years of active development and has been
standardized in how it operates and how it is
deployed. Even before this point, and for the
past 6 months, active development has hap-
pened on a second generation GNU Bayonne
server, and snapshots of this new server are
currently available for download. Where GNU
Bayonne is evolving will be explained further
on.

9 GNU Bayonne the Meta Projects

GNU Bayonne does not exist alone but is
part of a larger meta-project, “GNUCOMM.”
The goals of GNUCOMM is to provide tele-
phony services for both current and next gen-
eration telephone networks using freely li-
censed software. These services could be
defined as services that interact with desk-
top users such as address books that can dial
phones and softphone applications, services
for telephone switching such as the IPSwitch
GNU softswitch project and GNU oSIP proxy
registrar, services for gateways between cur-

rent and next generation telephone networks
such as troll and proxies between firewalled
telephone networks such as Ogre, realtime
database transaction systems like preViking In-
fotel and BayonneDB, and voice application
services such as those delivered thru GNU
Bayonne.

10 Transactional Databases

BayonneDB is mentioned briefly for transac-
tional services. When we conceived of the
need for a transactional database server, we
considered that database queries might be slow.
The telephony server does not want to do
nothing while a transaction is completing, es-
pecially if it takes many seconds to happen.
Maybe the caller needs to be played music on
hold or given other options.

To accomplish non-blocking transactions that
allow the telephony server to continue call pro-
cessing, we choose a peer messaging architec-
ture. A request would be sent to an external
server for a transaction, and when the trans-
action completes, a result message would be
sent to the server. There can be time-out and
retransmission controls which allow this to be
conduced thru UDP packets rather than poten-
tially blocking TCP sessions. This set of proto-
cols and specifications was created initially by
Zaheer Milari and myself and published early
last year.

BayonneDB was an attempt to implement the
concepts in an operational server. Like Bay-
onne, BayonneDB offers abstraction thru plug-
ins and is based on GNU Common C++. In the
case of BayonneDB, it is designed to abstract
the interface to the underlying database server
used to complete the transaction request. Being
threaded, BayonneDB can maintain a persis-
tent threadpool of database connections to op-
timize overall query performance. A short di-

Ottawa Linux Symposium 2002 526

Figure 2: Architecture of BayonneDB

Figure 3: Enterprise Applications Today

agram of BayonneDB architecture is presented
below:

11 Enterprise Applications

In our broadest view of enterprise telephony
applications, we can see using GNU Bayonne
as a part of an overall solution. GNU Bayonne
must be able to interact with enterprise data,
whether thru transaction monitors such as Bay-
onneDB or thru perl scripts executed via TGI.
It may need to interact with other services such
as email when delivering voice messages to a
unified mailbox, or the local phone switch thru

Figure 4: Carrier Applications Today

a resource such as Babylon. We will explain
Babylon a bit later.

Our view of GNU Bayonne and telephony ap-
plication services are that it is a strategic and
integral part of the commercial enterprise. Pro-
prietary solutions that are in common use today
have often been designed from the question of
how to lock a user into a specific OEM product
family and control what a user or reseller can
do or integrate such products, rather than from
the question of what the enterprise user needs
and how to provide the means to enable it. This
has often kept telephony separate and walled
off from the rest of the enterprise. We do not
wish to see it separate but a natural extension,
whether of web services, of contact manage-
ment, of customer relations, etc.

12 Carrier Applications

When we look at carrier class applications for
GNU Bayonne today, we typically consider
applications like operator assistance systems,
prepaid calling platforms, and service provider
voice mail. Each of these has different require-
ments. What they have in common is that a
front end central office switch might be used,
such as a Lucent Excel or even a full ESS

Ottawa Linux Symposium 2002 527

5 switch. Application logic and control for
voice processing would then be hosted on one
or more racks of GNU Bayonne servers most
likely interconnected with multiple T1 spans.
If database transactions are involved, such as in
pre-paid calling, perhaps we would distribute
a BayonneDB server to provide database con-
nectivity for each rack. A web server may also
exist if there is some web service component.

Operator assist services are probably the eas-
iest to understand. Very often a carrier might
need to provide directory assistance or some
other form of specialized assist service. A call
will come in from the switching center to a
GNU Bayonne server, which will then decide
what to do with the call. If the caller is from
a location that is known, perhaps the call will
be re-routed by GNU Bayonne thru an out-
going span to a local service center. Online
operator assistance might be done by creating
an outgoing session to locate an operator and
then bridge the callers, all on a GNU Bayonne
server.

In service provider voice mail one doesn’t have
to bridge calls. Service provider voice mail is
typically much simpler than enterprise voice
mail; there is no company voice directory,
there is no forwarding or replying between
voice mailboxes, there may be no external mes-
sage notification. All these things make it an
easy to define application on first apperance.
What it must be is reliable, and ideally scal-
able.

The problem with service provider voice mail
is where to store the potentially large pool of
message boxes. We don’t know what callers
might call in for messages or when. If the
call capacity is larger than a single server can
handle even with multiple T1 spans, then we
might need to deal with a reliable message
store hosted on a machine outside the GNU
Bayonne servers. We could also scatter mail-

boxes over multiple machines by hashing the
mailbox address into a GNU Bayonne server
address, and load balance over multiple servers
that way.

If we have a common external message store,
perhaps we can have it on a fibre channel bus.
GNU Bayonne doesn’t like blocking, and tradi-
tional network file systems, like NFS, can have
long timeout and blocking intervals. Messages
can also be transported from a central store
over different procotols. One thought I had was
a UDP based transport protocol for voice mes-
saging. Since the need is not for full duplex
voice, many of the issues in regard to latency
and packet size can be relaxed for transporting
a voice stream over what is typically required
to make VoIP systems work. With a network
addressable message store, GNU Bayonne can
provide a reliable platform for service provider
voice mail.

Many applications carriers wish to deploy do
not nessisarly require “carrier grade” Linux to
appear before they can be used. In fact, IDT
Corp, a major provider of prepaid calling in the
world today, uses over 500 rack mounted com-
modity PC’s running things including a stan-
dard distribution of “RedHat” GNU/Linux to
reliably service over 20 million call minutes
per day in their main switching center. This
does not mean there is no value in the carrier
grade kernel work, just that it is not nessisary to
create and sell some types of GNU/Linux voice
processing solutions for carriers today. We
have looked at the issues involved in high re-
liability/carrier grade enhanced Linux and we
intend to address those as described a little fur-
ther.

13 GNU Bayonne clustering

In England one enterprising fellow is working
on GNU Bayonne tandem switching nodes. A

Ottawa Linux Symposium 2002 528

tandem switching node essentially routes call
traffic between spans based on various rules,
perhaps to achieve a low interconnection count
or to find the least cost available route in a tele-
phone network. This touches upon an interest-
ing and unique feature of GNU Bayonne which
we have not yet talked about; GNU Bayonne
servers talk to each other.

When Bayonne servers talk with each other,
they do two things. Each node elects a “buddy”
node to act as a failover for itself. Elections
are held every few minutes and the design of
this is that a single node will only elect it-
self to buddy up to two additional nodes in the
network. Buddies are useful in failover, since
they are aware of all transactions and the state
of each GNU Bayonne server, and can com-
plete transactions if a given machine (node)
goes down. By having a limited set of buddies
chosen thru election, we assure there is no net-
work stampede when a node goes down on the
part of other nodes wishing to complete trans-
actions for it.

Since global call state is shared among GNU
Bayonne servers, each server knowns what the
other one is doing and what its current utiliza-
tion is like. This can be very useful in a tandem
switching application where one needs to know
where available endpoints are and if there are
ports available at each end point for a given
call request. GNU Bayonne cluster network-
ing is still in its infancy, and we are looking for
ways to express networking thru the applica-
tion scripting language.

The main use of clustering at the moment is to
overcome the inherit limits of system reliability
for acceptance of GNU Bayonne in developing
carrier class applications. Over time, this need
will be lessened as we take advantage of the
work being done on carrier grade GNU/Linux.

14 The NG Server

Even before GNU Bayonne 1.0 had been final-
ized, work had been started by late last year on
a successor to GNU Bayonne. This successor
attempts to simplify many of the architectural
choices that were made early on in the project
to make it easier to adept and integrate GNU
Bayonne in new ways.

One of the biggest challegnes in the current
GNU Bayonne server is the creation of tele-
phony card plugins. These often involve the
implementation of a complete state machine
for each and every driver, and very often the
code is duplicated. GNU Bayonne “2” solves
this by pushing the state machine into the core
server and making it fully abstract thru C++
class extension. This allows drivers to be sim-
plified, but also enabled us to build multiple
servers from a single code base.

Another key difference in GNU Bayonne “2”
is much more direct support for carrier grade
Linux solutions. In particular, unlike GNU
Bayonne, this new server can take ports in and
out of service on a live server, and this allows
for cards to be hotplugged or hot swapped. In a
carrier grade platform, the kernel will provide
notification of changeover events and applica-
tion services can listen for and respond to these
events. GNU Bayonne is designed to support
this concept of notification for management of
resources it is controlling.

Finally, GNU Bayonne “2” is designed from
the ground up to take advantage of XML in var-
ious ways. It uses a custom XML dialect for a
configuration language. It also acts as a web
service with both the ability to request XML
content that describe the running state of GNU
Bayonne services and the ability to support
XMLRPC. This fits into our vision for making
telephony servers integrate with web services,
and will be described further in a seperate pa-

Ottawa Linux Symposium 2002 529

per.

15 Acknowledgments

There are a number of contributors to GNU
Bayonne. These include Matthias Ivers who
has provided a lot of good bug fixes and
new scheduler code. Matt Benjamin has pro-
vided a new and improved tgi tokeniser and
worked on Pika outbound dialing code. Wilane
Ousmane helped with the French phrasebook
rulesets and French language audio prompts.
Henry Molina helped with the Spanish phrase-
book rulesets and Spanish language audio
prompts. Kai Germanschewski wrote the CAPI
2.0 driver for GNU Bayonne, and David Kerry
contributed the entire Aculab driver tree. Mark
Lipscombe worked extensivily on the Dialogic
driver tree. There have been many additional
people who have contributed to and partici-
pated in related projects like GNU Common
C++ or who have helped in other ways.

Prospect: A Sampling System Profiler for Linux
Design, Implementation, and Internals

Alex Tsariounov
Hewlett-Packard Company

3404 E. Harmony Rd., MS42

Fort Collins, CO 80528

alex_tsariounov@hp.com

Bob Montgomery
Hewlett-Packard Company

3404 E. Harmony Rd., MS42

Fort Collins, CO 80528

bob_montgomery@hp.com

Abstract

Prospect is a developer’s profiling tool for
the Linux operating system. Prospect is an
instruction-pointer-sampling flat profiler for
obtaining code profiles in a non-intrusive way.
One can obtain profiles (both symbol-level and
assembly-level) without undue requirements
on the target application. For example, there
is no need to specially instrument, rebuild, or
relink the application. In fact, the only require-
ment is that the application not be stripped.

Prospect has a history on the HPUX operating
system where it was invented in 1988. In the
last year’s time frame, we have moved this pro-
filer to Linux with the aid of the sampling mod-
ule oprofile released under GPL by John Levon
while at the Victoria University of Manchester,
UK. We describe the interface to oprofile, the
data structures and algorithms used to collect
and store the instruction pointer and system
event data, and the symbol profile generation.

1 Introduction

In 1988 Doug Baskins at HP wanted to know
exactly what an HP-UX machine was doing
during operations. He ended up designing and
implementing the Kernel Instrumentation (KI)

package (a kernel tracing facility) and a test-
ing tool for it. The testing tool became valu-
able in its own right and was named “Prospect”
after the gold prospectors of the past. Just as
when one prospects for gold and finds the oc-
casional nugget, so does one also use Prospect
to find nuggets of performance data. The KI
and Prospect live on to this day in modern HP-
UX systems.

In the last year’s time frame we have moved
this idea to Linux where we needed such a per-
formance analysis tool. Prospect produces flat
symbol and assembly-level profiles through in-
struction pointer (IP) sampling. All applica-
tions running on the system are profiled and
produce both user and kernel profiles. Prospect
also generates kernel-only profiles in its re-
ports. One can obtain profiles without undue
requirements on the target applications. For
example, there is no need to specially instru-
ment the application and there is no need to re-
build or relink. In fact, the only requirement
is that the applications not be stripped. Shared
libraries escape this requirement for the most
part as do assembly-level profiles.

Prospect on Linux uses the oprofile module de-
veloped by John Levon [Levon] while at the
Victoria University of Manchester, UK. Opro-
file is a neat project that uses the P6 perfor-
mance counters to clock an NMI sampler and

Ottawa Linux Symposium 2002 531

is an active GPL project at this time with grow-
ing contributions. The goals of oprofile and
Prospect are similar though parallel and thus
the two tools complement each other nicely.

Hewlett Packard has recently allowed Prospect
to become Open Source and released it un-
der the GNU General Public License Version
2. Hosting arrangements have not been deter-
mined yet for the project at the time of this pa-
per.

In your exploration of HP’s web sites you
may find reference to an HP-UX version
of Prospect. This is still an active project
currently maintained by one of the authors
but it is not Open Source. However, it
is available for free for the HP-UX op-
erating system and can be downloaded
from ftp://ftp.cup.hp.com in the
dist/networking/tools/prospect
subdirectory. The HP-UX version of Prospect
does not use oprofile or GDB in any way.

2 Architecture

Figure 1 shows the overall architecture of
Prospect. Note that not all parts are used all
the time. In fact, there are several phases that
Prospect goes through in the typical run that we
describe later on.

As can be seen from Figure 1, Prospect has the
following major architectural modules:

Oprofile Sampling Module This is the inter-
face that provides us with most of our
data. Prospect uses/proc upon initial-
ization to record all current activity on
the system, however, all data from that
point on is provided by oprofile. Opro-
file comes with a user-space daemon that
provides some parallel functionality to
Prospect. Prospect takes the place of the
oprofile user-space daemon and only uses

the oprofile sampling module. Most of the
attractive properties of Prospect – proper-
ties such as non-intrusiveness, no special
build nor link requirements, total system
picture, accurate kernel profiles – are in
fact provided by the oprofile module.

Prospect System ModelAll processes on the
system are modeled as data structures
of some process-specific information and
a virtual address space consisting of a
doubly linked list of executable regions.
These regions have path name and symbol
information encoded in them. The symbol
information is filled in after the sampling
run when all regions that had instruction
pointer hits are read in.

Data Storage and Retrieval Most data in
Prospect is stored in a digital tree (also
called a trie, see [Fredkin] and [Knuth])
data structure. This type of data structure
provides a way to store sparse data
without undue storage or management
requirements. Retrieval performance is
acceptable for most cases. In one case we
implement a cache in front of the tree to
improve retrieval performance.

Symbol Mapping with ELF All symbol in-
formation that Prospect requires is located
in each executable ELF file. Prospect
useslibelf to read this symbol infor-
mation out of the executable files (ap-
plications, shared libraries, and kernel).
The libelf library provides a nice,
platform-independent way to get at this
information. For each region that had in-
struction pointer hits, Prospect creates a
searchable symbol table from this infor-
mation: local (static) symbols are pro-
moted to global for searching purposes
and duplicate symbols are noted. At the
end of the run in the profile generation
phase, Prospect then has the addresses
of all instruction pointer hits stored for

Ottawa Linux Symposium 2002 532

Figure 1: Architecture of Prospect

each process in its hit trie as well as a
sorted array of symbols. Prospect then
bsearch es the symbol array for each
distinct instruction pointer address to pro-
duce the profile.

Stripped Shared Libraries If the executable
file is stripped, then there are no symbols
to read out. This is one of the few restric-
tions that Prospect places on executables
for generating symbol-level profiles (note
that assembly-level profiles are always
available). For shared libraries, it turns
out that Prospect can use the dynamic
symbol table even if the file has been
stripped. The caveat is that local (static)
symbols are removed. Since a lot of hits
are to local symbols, Prospect attempts
to produce useful data by bracketing the
hits between the closest global symbols.
For example, this produces profiling sym-
bols such asbsearch->qsort for a hit

to a static routine defined somewhere be-
tween the global symbols ofbsearch
andqsort in libc . While this is not a
perfect solution, it is hoped that it at least
points to where to look further for more
information and it is better than not pro-
ducing any data at all. The assumption of
course is that the static symbol is related
to one of the two global symbols in the
bracket.

GDB for Assembly-Level Profiles
Assembly-level profiles have been a
feature of Prospect from the early days.
Originally, these profiles were more of
a test than anything because they were
relatively easy to produce. Prospect
already had the exact addresses of the
instruction pointer hits and all that was
necessary was to read out the instructions
at those addresses and display them. It
turned out that this functionality became

Ottawa Linux Symposium 2002 533

very useful – even in light of the fact
that modern processors make this type
of profile almost impossible to produce
with 100% accuracy because of pipeline
effects and such. Nevertheless, if one is
familiar with the architecture and behav-
ior of the processor, the disassembled
profile produced by Prospect becomes a
valuable aid in determining cache and
TLB effects in the code being profiled.
Prospect wraps GDB with a lightweight
pipe communication wrapper to actually
perform the disassembly. This allows
Prospect to use GDB as a library and
escape disassembly complexities such
as variable instruction size on IA32
systems. Since a GDB process can
take approximately 3.2 MB in memory,
Prospect keeps a user-configurable queue
of open pipes to GDB processes for the
disassembly phase.

The short descriptions above give an overall
picture of the functional modules involved in
Prospect. To complete this picture, it is useful
to see an enumeration of run time phases that
the software shifts through for a typical run:

1. Load and initialize the oprofile sampling
module.

2. Go through all processes in/proc and
set up process data structures with virtual
address space (VAS) information.

3. Attach to and activate the oprofile module.

4. Set up periodic alarm signal to flush the
oprofile buffer.

5. Exec the child process.

6. Go into a blocking read loop on the opro-
file device file.

• Every alarm, flush the oprofile buffer
and check for child exit.

• The flush allows us to read the opro-
file buffers and store that informa-
tion in memory.

• Should the oprofile buffer fill be-
fore the alarm signal goes off, then
the read will just go through allow-
ing the information to be stored and
Prospect then reblocks in the read
loop.

7. If child has exited, stop profiling and
empty the oprofile buffer.

8. Go through the storage structures of all
processes and extract all program counter
hits. Match these to the files stored in each
process’s VAS and create the report.

9. Shutdown and leave the oprofile module
in memory.

3 Detailed Descriptions

Now that we have a general idea of the
Prospect architecture and control flow, this sec-
tion will describe a few functional modules
in greater detail. Three modules are of inter-
est: the oprofile interface, thedtree digital
tree implementation, and the GDB interface for
assembly-level profile generation.

3.1 The Oprofile Module Interface

The oprofile project is a very active GPL
project (see http://oprofile.sf.net) that provides
an instruction pointer sampling mechanism
that is clocked off the Pentium P61 series per-
formance counters.2 The performance counter
events are routed through the APIC to the NMI
pin of the processor. The module registers a
short sampling routine to the NMI vector that

1P6 series covers Pentium Pro through Pentium III
2There are two configurable counters on the P6;

AMD chips are also supported

Ottawa Linux Symposium 2002 534

actually does the sampling. The instruction
pointer samples are kept in a trick constant-size
hash table in kernel memory and dumped to
user space though a device interface file. Nor-
mal operation is to have the user-space daemon
block on reading this file. When the kernel
buffer nears capacity, or when a “1” is sent to
the buffer flush/proc oprofile interface file,
the read succeeds and the data is transfered.
In addition to instruction pointer samples, the
oprofile module also intercepts certain system
calls and passes this trace through another de-
vice interface file. Finally, oprofile also keeps
track of opened files in a hash table in kernel
memory for determining the path ofexec ’ed
and mmap’ed files. This hash table is acces-
sible from user space and is normally memory
mapped. All of this information taken in its en-
tirety allows Prospect to generate its profiles.

Prospect acts as the user-space daemon func-
tionality wise (and in fact replaces the opro-
file user-space daemon for the purpose of
Prospect), but is not a daemon at all and is re-
moved from memory after every run (the opro-
file module is left resident). Both Prospect
and the oprofile tools have similar but different
goals and so the tools complement each other
nicely. The goal of Prospect was two-fold: (1)
make oprofile trivially easy to use; (2) create a
profile of all system activity specified within a
certain time interval. This interstice of time is
specified by the child of the Prospect process in
the same manner as for the/bin/time com-
mand.

The oprofile tools were designed to unobtru-
sively run in the background, sampling sys-
tem information continuously. Thus one would
have a long term profiling record of all pro-
cesses on the system. Also, the effects of short-
lived processes are merged into single profile
files identified by filenames in a/var location
when you use the oprofile tools.

While there are a number of events that
can be used to clock the oprofile sam-
pling module, Prospect always uses the
CPU_CLK_UNHALTED event by default.
However, the setup code was written in such a
way that if Prospect detects that oprofile was
set up already at initialization time, then the
existing set up is not changed. Thus you can
use a different event to clock the sampler by
using theop_start script supplied with the
oprofile distribution. In effect, you can gener-
ate profiles based on any of the performance
monitor events – see the oprofile documenta-
tion for details.

Using the oprofile modules entails the follow-
ing interesting phases:

Initialization Upon initialization, Prospect
first finds the oprofile module and if not
loaded, loads it. Prospect then attempts
to open the hash map device: if suc-
cessful, then Prospect has control of the
oprofile module. Only one user can have
the oprofile device files open at a time.
If this was a fresh load, then the per-
formance counter 0 is set up to clock
CPU_CLK_UNHALTED at a default fre-
quency of 200 Hz (unless specified oth-
erwise with the-H <Hertz> command
line parameter). If the oprofile module
was already loaded, then the counter setup
is not touched with exception of the fre-
quency. We do not open the sample device
yet since that starts profiling.

Next, Prospect goes through all processes
currently existing in /proc and cre-
ates data structures for all of them in-
dexed by PID. Prospect then reads in the
System.map file and locates an uncom-
pressed kernel image. If Prospect can’t
read in theSystem.map file then ker-
nel profiles are disabled; if an uncom-
pressed kernel image is not available, then
disassembled kernel profiles will not be

Ottawa Linux Symposium 2002 535

produced. You can specify both of these
files with the -K and -L arguments –
however, Prospect will check the specified
System.map against /proc/ksyms
and if they don’t match, kernel profiles
will not be available.

At this point, the oprofile devices are
opened which starts profiling. Prospect
next sets up the periodic alarm signal to
flush the oprofile buffer. Now, Prospect
fork ’s and exec ’s the command line
that was passed to it and goes into the
read-block loop on the oprofile device
files.

Periodic Flush Every two seconds by default,
Prospect flushes the oprofile buffer. This
causes oprofile to allow its profiling data
to be read out of the kernel holding buffers
through the oprofile device files. This
continues for the duration of the child run.
After Prospect blocks on the read on the
samples oprofile device, one of two things
can happen: (1) the alarm signal goes off
and takes us out of block, or (2) the noti-
fication and/or the samples buffer fills to
high water causing the read to succeed. If
the alarm goes off, then Prospect writes
a “1” to the oprofile flush device file and
re-reads the sample file. This time the
read will go through for both the samples
buffer and the notifications buffer.

The tradeoff when using periodic flushing
with oprofile is deciding how much data
the kernel gets to keep in the instruction
pointer hash table by adjusting the peri-
odic flush rate and balancing that against
the bounding time interval. The further
apart the periodic flush command is, the
more data is stored in kernel memory and
the longer a read will block. This rate can
be adjusted with the-M <value> com-
mand line parameter. The<value> is in
hundredths of a second; for example, 200

is every two seconds. If the flush rate is
set to a very short interval (0.01 seconds
is the minimum allowed), then Prospect
will stop sampling very shortly after the
child application terminates. If however,
the flush rate is longer then it can take
up to that amount of time before Prospect
stops sampling after the child application
exits. And of course, there is more system
intrusion for faster flush rates.

Shutdown Every time a read succeeds
Prospect checks for the child exit with
a waitpid . Upon child exit, Prospect
then empties the oprofile buffer by issuing
a flush and read combination twice in
succession. The buffers are read as
many times as there are CPUs for each
cycle. Next, the oprofile device files are
closed. This stops profiling. Prospect
leaves the oprofile module in memory on
assumption that it will be used later on.
At this point, Prospect has all the data it
needs and can generate the report.

The files linux_module.c and
linux_module.h hold the functions
and definitions that interface with the oprofile
module. The filerec_proc.c orchestrates
the sequence for data collection.

3.2 Thedtree Module

Most data used in Prospect is kept in a data
structure called a Digital Tree and is called
dtree in the code. The name trie is synony-
mous with this. This data structure is discussed
by Knuth[Knuth] in his third volume ofThe Art
of Computer Programming. The trie lends it-
self very well to managing sparse data, and the
data that Prospect collects is sparse consisting
mainly of: (1) process structures indexed by
PID, and (2) instruction pointer hits indexed by
memory address. The concept is easily stated:

Ottawa Linux Symposium 2002 536

the value of the index is implied in the struc-
ture of the trie itself. The subdirectorydtree
holds all the files for this implementation.

3.2.1 Basic Description

Prospect happens to use a quaternary trie. This
means that there are four items in each node
and so 2 bits translate each node path. This
equates into a trie that can be 16 levels deep
for a 32-bit entity (32 levels for 64 bits). Be-
cause of the quaternary nature, five consecutive
indices will extend the 32-bit trie branch to the
maximum level. This also means that five con-
secutive indices will extend the 64-bit version
to its maximum level too since the current im-
plementation does not double the order of the
trie along with the word size for the 32- to 64-
bit transition. This has not proven to be a per-
formance burden yet.

Traversing the trie to find a value consists of re-
peatedly using the top two bits to choose which
quaternary branch to follow and shifting up by
two after the choice until a value is arrived at.
If a node contains values, it is called a flower
and since it is a quaternary trie, it can have up
to four values in a flower.

3.2.2 Operation and Use

The dtree module is used to store avoid
pointer at the leaf. This can be an actual pointer
that points to some structure (as in the process
structures indexed by PID), or it can just be
used as along variable to store a count (as
for the number of hits indexed by memory ad-
dress). Thedtree functions return avoid*
that should be cast appropriately.

The dtree.h header file defines the follow-
ing shortcut functions for using the structure
easily:

Insert: DTI(Pdt, Idx)
Get: DTG(Pdt, Idx)

First: DTF(Pdt, Idx)
Next: DTN(Pdt, Idx)
Prev: DTP(Pdt, Idx)
Last: DTL(Pdt, Idx)

In these definitions,Pdt should be avoid
pointer to a dtree variable andIdx should be a
long for index value.

Since thedtree module handles all memory
management, setting up a trie is as easy as
declaring aNULL void pointer and inserting
the first value. For example, to add a certain
amount of hits to a counter variable indexed by
address:

void *hit_tree=NULL;
void add_hits(int hits,

char *addr) {
int *hptr;
hptr = (int*)DTI(hit_tree,

(unsigned long) addr);
if (hptr) *hptr += hits;

}

The DTI insert method (which stands for
“dtree insert”) will return a pointer to a non-
null quantity if an item at that index (addr
in the example above) exists, otherwise the re-
turned pointer points toNULL. The function
will return an actualNULLonly if sbrk fails.

Using this method to store a pointer to an arbi-
trary structure is very similar as the following
example shows.

struct big_struct **bs_ptr;
void *tree=NULL;

bs_ptr = (struct big_struct*)
DTI(tree, 451);

if (*bs_ptr==NULL) {
/* first insert */

Ottawa Linux Symposium 2002 537

*bs_ptr=malloc(
sizeof(big_struct));

*bs_ptr->bs_member = 42;
}
else {

*bs_ptr->bs_member += 42;
}

The next method isDTG which stands for
“dtree get”. This method is used to query the
trie if a value at an index is present. This func-
tion will return a NULL if there is no value
present, and a pointer to the value if it is. For
example:

int *var;
void *trie;
unsigned long PC;

/* some code here */

var = (int*)
DTG(trie, 0x80004533);

if (var)
printf("Value = %d\n,*var);

else
printf(

"No value at 0x80004533\n");

The next twodtree functions form the mech-
anism for the common way to extract all in-
formation out of the trie. These areDTF (for
“dtree first”) andDTN(for “dtree next”). An
actual code example from Prospect follows.
Here we pull out all instruction pointer hits for
a particular region for a particular process.

#typedef unsigned long ul;
process_t *p;
ul *P;
...
/* extract profile and build table */
for (Index=0L,

P = (ul*) DTF(p->pr_profile, Index);
P != (ul*) NULL;
P = (ul*) DTN(p->pr_profile, Index)

)
{

if (*P == 0) {
mBUG("*P=0 on user profile extract");
continue;

}

BuildUserSymbolTbl(Index, (ul) *P, p);
}

The functionBuildUserSymbolTbl does
the work of building a profile table and is
called for every address in the profile with the
amount of hits to that address. Note that these
dtree methods(DTF,DTN,DTP,DTL) ex-
pect a variable for theIndex argument. This
is because the methods set that variable to the
index where the returned value is found.

Note also that all thedtree access methods
actually return a pointer to a pointer, thus cast-
ing is necessary to get things right.

3.2.3 Caching for Better Performance

Not much performance analysis was done on
thedtree structure itself, however, recogniz-
ing some patterns in the incoming data allowed
performance upgrading of the method overall
by putting a small cache in front of the trie.
This is especially useful for the process struc-
ture indexed by PID trie, and as it happens, the
cache is not used for the hits indexed by mem-
ory address tries.

The software cache size was selected to match
the cacheline size of the machine: the cache is
used to hold four indices and four correspond-
ing values. At machine word length, this corre-
sponds to a 32-byte cacheline for a 32-bit ma-
chine, and a 64-byte cacheline for a 64-bit ma-
chine. This cache can then store up to four in-
dex/value pairs. Every time through the cached
lookup routine, we first see if the index that is
asked for is in the cache. If it is, the corre-
sponding value is returned out of the cache. If
it is not, then we do a true lookup and after-
wards, we choose a index/value pair at random
in the cache and replace it with the new value.
The value looked up is then returned. The ran-
dom generator is the lower two bits of the free-

Ottawa Linux Symposium 2002 538

running counter – theTSC on an IA32 chip,
andAR44 register on IPF.

Even though the item replacement is ran-
dom, the cache is quite effective. You can
turn on some statistics output by uncom-
menting the#define PERFTEST line in
the prospect.h header file and running
prospect on any load.

3.3 Controlling GDB: The dass_gdb Wrapper

The initial HP-UX implementation of Prospect
had a built-in disassembler for the PARISC in-
struction set. This was a fixed-size instruc-
tion set and table driven. For the IA32 port
the instruction set was rather different and in-
structions were no longer of fixed size. Af-
ter realizing that GDB provides a nice disas-
sembly facility and that when Prospect was
disassembling instructions and generating the
IPD (Instruction Profile Disassembly) profiles,
it was in a non-performance-critical stage, we
decided to create a wrapper around this GDB
facility.

Use of this wrapper allows the programmatic
symbolic disassembly of any binary file on the
system and its use is almost transparent when
moving from IA32 to IPF as well. The wrapper
uses normal Unix pipes to open a GDB pro-
cess, send it disassembly commands, and read
back the disassembled instructions. Prospect
includes code for managing many such open
pipes to separate GDB processes. The subdi-
rectorydass_gdb contains the files that im-
plement the wrapper.

3.3.1 Interface Description

Thedass_gdb wrapper defines the following
functions as its interface:

void *dass_open(const char

*filename);
char **dass(void *handle,

char *begin,
char *end);

void dass_free(char **array);
int dass_close(void *handle);

These functions perform the following ser-
vices.

dass_open()This is the initialization function
that takes a file name to disassemble as ar-
gument and upon success returns avoid
pointer to a control structure. The func-
tion make sure the file exists and that
GDB is accessible. It thenfork/execs
a GDB on the file and sets GDB ready
to accept disassembly directives. The re-
turned control structure pointer can then
be used for subsequent management of
this process.

dass() This is the main work function in the
wrapper. It accepts as arguments: the
process control pointer, a starting address,
and a finishing address. The instructions
disassembled are inclusive of the begin
address and exclusive of the end address.
For example, a call withX begin ad-
dress andX+1 ending address will return
the disassembled instruction at addressX.
Note that for IPF, instructions are grouped
in bundles of three. Prospect always prints
out the full bundle for every disassembled
instruction on IPF.

The dass() function returns a list of
strings as the return value. Or rather, a
char** through which the caller can ac-
cess this list. It is up to the caller to free
the memory used for the list of strings
once the caller is done with it. Freeing
this memory is done with the next func-
tion das_free() .

dass_free()This function will free a block of
memory that serves as a list of strings for

Ottawa Linux Symposium 2002 539

the return value of the functiondass() .
Argument is thechar** variable that
was returned fromdass() .

dass_close()This function accepts a control
structure pointer to a running GDB. The
process is killed and all pipes are closed.

3.3.2 The Rolling Queue

Each GDB process can take 3.2 to 3.6
megabytes of memory on average. Since a
Prospect output can have potentially hundreds
(perhaps even thousands) of separate files as-
sociated with regions for all processes that ran
during the sampling period, having this many
running GDB processes at once can bog the
system down. At the same time, you don’t
want to start and stop a single GDB process ev-
ery time the profile switches to a different ex-
ecutable or library since that would add a dis-
tasteful overhead to this process.

If we further examine Prospect output, then
we see some more things that can be used to
advantage. For example, a large number of
files are used repeatedly for many processes
(the shared libraries), and if processes are re-
peatedly run, all of their disassembled output
comes from the same files. What we needed
was a way to hold open a number of GDB pro-
cesses, set at a reasonable default and config-
urable by the user. Thus, Prospect uses a most-
used-first queue of open pipes to running GDB
processes with the number of simultaneously
opened pipes set by the-g <number> pa-
rameter.

The way this rolling queue works is as follows.
When a file is to be disassembled, Prospect first
tries to find an open pipe to a GDB process for
that file in the queue by linear search through
the queue. If a pipe tied to the desired filename
is found, then Prospect moves that pipe to the
head of the queue. If the pipe is not found,

then Prospect opens a pipe to a GDB for that
file with a call todas_open() . The pipe is
then inserted at the head of the queue. At this
point, Prospect checks if there are too many
open pipes according to the-g <number>
parameter, and if there are, Prospect closes the
pipe held at the tail of the queue.

Thus, the most often used files for disassem-
bly gravitate toward the front of the queue and
are found quicker than the less often used files.
The length of the queue determines how many
simultaneous pipes to GDB processes are held
open and is user configurable. If you set the
-g <number> parameter to 1 (one), then this
mechanism will open and close a GDB process
for every file encountered even if it’s the same
file. This saves memory but costs time in the
open/close process overhead. If you set the pa-
rameter to a high number, then that many open
pipes (and hence running GDB processes) will
be held open. This will improve run-time per-
formance, but will cost memory. The default
amount of slots in the queue is set to 8. See
the file incache.c for details on this queue
implementation.

4 Example Use

Besides its obvious use in profiling single
benchmark and application programs, Prospect
is also useful for insight into the behavior of
the whole system during interesting workloads.
In this example, the netperf benchmark will be
used to create a multi-process kernel-intensive
workload and we’ll explore Prospect’s ability
to see what’s going on.

Our workload is created by this script:

for i in 1 2 3 4
do

netperf -t TCP_RR -H isv204 \
-l 60 -P 0 -v 0 &

done

Ottawa Linux Symposium 2002 540

wait

This starts four simultaneous netperf request-
response runs to remote server isv204, instruct-
ing each to run for 60 seconds. The script ends
when all the netperf processes have exited.

A timed run of the netperf4.sh script shows:

2.94user 57.08system
1:02.10elapsed 96%CPU

To profile everything on the system while this
script runs, a typical Prospect command line
would be:

$ prospect -f prospect.out -V4 \
-H1000 \
./netperf4.sh >netperf.out 2>&1

The -V4 option says to trace all active pro-
cesses on the system during the duration of the
command ./netperf4.sh. Prospect will produce
a user and kernel profile for each process that
meets the CPU time threshold, plus a global
profile of the time spent in the kernel. The -
H1000 option sets a sample rate of 1000 sam-
ples/sec.

Alternately, if the workload were ongoing, or
not easily startable from Prospect, you could
obtain the full system profile by “profiling” a
sleep command of the desired duration:

$ prospect -f prospect.out -V4 \
-H1000 sleep 60

The oprofile module provides Non-Maskable
Interrupt (NMI) sampling on hardware plat-
forms that support it, and Prospect normally
sets it up to use CPU clock cycle counting
to generate the interrupts that collect the IP
samples. On platforms where oprofile doesn’t

support NMI sampling, the Real-Time Clock
(RTC) hardware can be used to generate sam-
ple interrupts. RTC sampling is most useful for
profiling user-mode execution on uniprocessor
systems. Since it doesn’t use a Non-Maskable
Interrupt, it has a blind-spot in kernel mode that
will be illustrated in our example: RTC sam-
pling can’t catch execution in other interrupt
handlers.

4.1 Sampling System Idle Time

What do CPUs do when there is nothing use-
ful to do? They execute an idling routine in
the kernel and wait to be interrupted with use-
ful work. On most i386 Linux systems, the
cpu_idle and default_idle routines in the ker-
nel are where they wait. The implementation
of default_idle can create an interesting prob-
lem for Prospect with NMI sampling. The de-
fault_idle routine uses the HLT (halt) instruc-
tion to stop the CPU while it waits for some-
thing to do. But the CPU_CLK_UNHALTED
counter used to generate the NMI sampling is
so named because it does not advance when the
CPU is halted. Sampling just stops when the
CPU halts and Prospect doesn’t know it. That
part of the idle time simply disappears from the
profile. The interrupts used by RTC sampling
are driven by elapsed time, so the halted CPU is
awakened from its halted state and sampled, ef-
fectively caught in the default idle routine. But,
as mentioned before, RTC sampling has other
problems sampling the kernel.

Because of some hardware bug of long ago,
Linux provides a boot parameter that allows
NMI sampling to see idle time. Appending
“no-hlt=1” to the boot string in lilo.conf causes
default_idle to become part of a time-wasting
loop instead of halting the CPU, and allows
Prospect to show us the idle time as hits in the
cpu_idle and default_idle routines.

The results below came from three different

Ottawa Linux Symposium 2002 541

Prospect runs: Default NMI mode, RTC mode,
and NMI mode on a no-hlt=1 kernel. Since the
RTC sample rates are limited to powers of 2,
we used -H1024 for all runs so we can compare
hit counts as well as equivalent times. Here are
some highlights from the Prospect output for
the netperf workload:

4.2 Statistics of Run

The “Statistics of Run” section has stats on the
operation of Prospect itself. Three counts are
of interest here:

Num System User
samples Hits hits

Default 61667 58579 3088
RTC 65024 61798 3226
No-hlt 65657 62658 2999

Note that the Default case appears to be miss-
ing 3 or 4 seconds worth of 1024 Hz samples.
We’ll see why later. We can also see that user
time is not a significant part of this workload.

The output that Prospect provides is quite ex-
tensive. For clarity of presentation, we only re-
produce the relevant parts of the output in this
document.

4.3 Extrapolated Summary of Processes

This section summarizes all processes seen
during the profiling period, dropping the ones
that don’t meet the CPU usage thresholds (con-
figurable with -k and -m options). The two
methods produce similar results:

Default NMI sampling
Process User Hits/ System Hits/

Time Time
netperf 728 0.7109 14838 14.4902
netperf 709 0.6924 14197 13.8643
netperf 679 0.6631 14140 13.8086
netperf 666 0.6504 14557 14.2158
prospect 301 0.2939 769 0.7510
bash 5 0.0049 2 0.0020

RTC sampling
Process User Hits/ System Hits/

Time Time
netperf 776 0.7578 14634 14.2910
netperf 768 0.7500 14253 13.9189
netperf 699 0.6826 14442 14.1035
netperf 698 0.6816 14335 13.9990
prospect 278 0.2715 28 0.0273
bash 6 0.0059 4 0.0039

The No-hlt NMI case is not significantly dif-
ferent than the Default case in this section. The
missing System Time in the Default case does
not show up in the process summary.

Note also that Prospect sees and reports its own
overhead, but some parts of the oprofile mod-
ule necessarily run with sampling disabled, so
indirect methods would be required to assess
the complete effect of profiling.

4.4 Details of Processes

After the summary, each eligible process is
profiled in user mode and in kernel (or system)
mode. Although we see from the summary that
user mode execution is not a significant con-
tributor to CPU time in this workload, there are
a couple of interesting points.

The four netperf user profiles are expectedly
similar, showing these three routines and their
files:

send_tcp_rr in
/usr/local/netperf/netperf

recv->recvfrom in /lib/libc-2.2.4.so
send->sendmsg in /lib/libc-2.2.4.so

The libc shared library is stripped, so Prospect
shows the enclosing symbols from the dynamic
symbol table as a range to emphasize that there
is some uncertainty. In other words, samples
occurred between the recv and recvfrom en-
tries, and between send and sendmsg, but with-
out the normal symbol table, Prospect can’t

Ottawa Linux Symposium 2002 542

know what static functions might exist in that
range. A greater (and possibly too much
greater) level of detail within these ranges
could be seen by specifying disassembly. Oth-
erwise, linking static or building unstripped
shared libraries would also reveal more detail
in the user mode profile.

To compare the NMI and RTC sampling meth-
ods, here are the user hits reported for the top
routines of each netperf process in the USER
portion of profile:

Default NMI sampling
Routine name Hits Hits Hits Hits
send_tcp_rr 410 401 382 376
recv->recvfrom 167 158 155 158
send->sendmsg 145 140 134 126
Total 722 699 671 660

RTC sampling
Routine name Hits Hits Hits Hits
send_tcp_rr 387 373 359 352
recv->recvfrom 222 194 178 189
send->sendmsg 163 194 158 153
Total 772 761 695 694

Results with the No-hlt kernel are not signif-
icantly different than the NMI results shown
here. The big differences in the three methods
show up in the Kernel portions of the process
profiles and in the Global Kernel profile.

Here are the kernel (or system) hits reported for
the top kernel routines of each netperf process
in the KERNEL portion of profile:

Default NMI sampling
Routine name Hits Hits Hits Hits
speedo_interrupt 1411 1313 1354 1345
tcp_sendmsg 686 659 616 654
speedo_rx 517 529 544 587
. . .
speedo_start_xmit 482 491 452 465
. . .
do_softirq 223 200 226 219
. . .

RTC sampling
Routine name Hits Hits Hits Hits
do_softirq 2693 2698 2709 2681
speedo_start_xmit 1422 1383 1425 1339
tcp_sendmsg 665 700 696 650
. . .

Once again, NMI no-hlt sampling was not sig-
nificantly different from Default NMI sam-
pling. But as you can see, the profile of the
top routines in the RTC version differs signifi-
cantly from that in the NMI version. While the
top two RTC routines do show up in the NMI
version with lower hit counts, the two speedo
routines in the top three of the NMI version
don’t show up in the RTC profile at all.

The routines that are missing from the RTC
profile are part of the interrupt handler for the
eepro100 network driver. They show up under
the netperf process KERNEL profile because
the interrupt came in when that process was on
the CPU. Other routines shown under the pro-
cess KERNEL profile are actually there as a
result of system calls made by the process, but
you can’t currently tell which are which with-
out knowing something about the code.

As an example of how an “innocent” process
can have its profile “corrupted” in this way, a
background cpuspin program was run at a nice
priority throughout another netperf workload.
When running alone on a system, the cpuspin
program normally gets 0.06 seconds of system
time in a run that consumes 58 seconds of user
CPU time. But during the netperf run interval,
Prospect reported that the background cpuspin

Ottawa Linux Symposium 2002 543

program picked up 7.3 seconds of user time
and 3.9 seconds of system time. The KERNEL
portion of cpuspin’s profile showed these rou-
tines at the top:

Routine name Hits

speedo_interrupt 714
speedo_rx 397
schedule 269
uhci_interrupt 259
tcp_v4_rcv 210
net_rx_action 173
...

You can see how this could mislead you into
believing something about the cpuspin pro-
gram that wasn’t actually true.

4.5 Global KERNEL Profile

Now it’s time to get back to the missing sys-
tem time in the Default NMI sampling method.
The last section of a -V4 Prospect report is the
Global KERNEL Profile. It provides a single
profile of all system hits in the run. Here are
the top routines:

Default NMI sampling:
Routine name Hits

speedo_interrupt 5436
tcp_sendmsg 2615
speedo_rx 2182
uhci_interrupt 1978
speedo_start_xmit 1890
schedule 1777
tcp_recvmsg 1623
__rdtsc_delay 1366
...
default_idle 11
...

No-hlt NMI sampling:
Routine name Hits

speedo_interrupt 5556
tcp_sendmsg 2612
speedo_rx 2202
default_idle 2070
cpu_idle 1945
speedo_start_xmit 1944
uhci_interrupt 1929
schedule 1716
tcp_recvmsg 1596
__rdtsc_delay 1414
...

Hit counts are pretty similar except for the
two idle routines. The No-hlt kernel allows
Prospect to see 4015 hits in the idle routines,
while it only saw 11 hits in the Default NMI
case. The reported difference in system hits
between the two runs was 4079, so we have
the culprit. The RTC version still insists that
do_softirq is the top kernel routine, but at least
it does attribute 4010 hits to default_idle.

A disassembly (-e) run with RTC sampling
showed that in the do_softirq routine, a huge
concentration of hits occurred in a three-
instruction cluster consisting of:

Hits Address Instruction
4117 <do_softirq+77>: lea 0x0(%esi),%esi

94 <do_softirq+80>: test $0x1,%bl
2961 <do_softirq+83>: je <do_softirq+93>

This doesn’t make a lot of sense until you look
at the two instructions just before these:

<do_softirq+74>: sti
<do_softirq+75>: mov %ebp,%esi

Ottawa Linux Symposium 2002 544

The sti instruction allows the processor to start
responding to external maskable interrupts af-
ter the next instruction is executed. With RTC
sampling, the sample is taken when the inter-
rupt is allowed to occur, not when the real time
clock wants it to occur. In this case it was held
off until after the sti instruction in do_softirq.
NMI isn’t held off at all, so the real kernel pro-
file can be seen.

These runs were performed on a 2.4.14 unipro-
cessor kernel. NMI sampling works well on
SMP as well, reporting times that are multi-
plied by the number of CPUs running. RTC
sampling is not as reliable on SMP systems,
since each interrupt is processed by only one of
the CPUs. The accuracy of the resulting pro-
file depends on the RTC interrupts being dis-
tributed evenly across the CPUs.

The drivers on this kernel were built in, not
loaded as modules. Prospect can not currently
provide profiles of kernel modules, but that ca-
pability should be available Real Soon Now.

5 Acknowledgments

A number of people have contributed in many
ways to this project, not the least of which are:
Doug Baskins, Keith Fish, Michael Morrell,
and Bob Metzger, all of whom are at HP.

We would also like to thank John Levon for
writing such cool software and putting it under
GPL.

References

[Fredkin] Fredkin, E. H.,Trie Memory,
CACM 3:9 (September), pp. 490-500,
(1960).

[Knuth] Donald E. Knuth,The Art of
Computer Programming, Volume 3
Second Edition, pp. 492-507, (1998).

[Levon] John Levon,The Oprofile System
Profiler. http://oprofile.sf.net

(2001).

How NOT to write kernel drivers

Arjan van de Ven
Red Hat, Inc.

arjanv@redhat.com, http://people.redhat.com/arjanv

Abstract

Quit a few tutorials, articles and books give
an introduction on how to write Linux kernel
drivers. Unfortionatly the things one should
NOT do in Linux kernel code is is either only
a minor appendix or, more commonly, com-
pletely absent. This paper tries to briefly touch
the areas in which the most common and seri-
ous bugs and do-nots are encountered.

1 Introduction

Quit a few tutorials, articles and books give
an introduction on how to write Linux kernel
drivers. Unfortionatly the things one should
NOT do in Linux kernel code is is either only
a minor appendix or, more commonly, com-
pletely absent.

With the growing popularity of Linux in the
last few years, more and more vendors are try-
ing to create linux drivers, and quite often that
is done by giving an engineer the windows
driver code and the assignment to have a linux
driver ready in 4 weeks.

In my job as Red Hat Linux kernel maintainer
such drivers quite often end up in my inbox
with the request to include it. Surprisingly
quite often these drivers share the same bugs
and “please don’t dothat” things.

This text and the corresponding talk is intended
to show several such bugs and why they are

bad. Quite a few will be of the “Oh but of
course” caliber but that’s usually the case with
bugs in hindsight.

My hope is that explaining why certain things
are wrong is enough to prevent such things
from cluttering up my inbox too much.

All of the code examples in this paper are
from real code, however they have been edited
slightly to fit the layout and non-essential bits
are removed for clarity.

2 Allocating memory

The Linux kernel has a diverse API for allo-
cating memory, unlike operating systems such
as Microsoft Windows and SCO Unixware.
Linux uses this set of functions and flags
one the one hand to be able to more aggres-
sively optimize the VM algorithms, and on the
other hand to provide safeguards against out-
of-memory deadlocks.

Quite often drivers that are ported from other
operating systems try to abstract the multitude
of allocators and flags into one function. Not
only does this void the VM tuning optimisa-
tions, it also leads to subtle and hard to debug
bugs.

2.1 GFP_KERNEL and GFP_ATOMIC

Most kernel tutorials describe that you
shouldn’t use GFP_KERNEL in interrupt con-

Ottawa Linux Symposium 2002 546

text because it can schedule (which is correct),
and as a result the following “abstraction” is
found quite often:

static int uhci_submit_iso_urb(

urb_t ∗urb)

{
...

tdm = kmalloc(some_size,

in_interrupt()

? GFP_ATOMIC : GFP_KERNEL);

...

}

from usb-uhci.c in kernel 2.4.9

which appears to take this “interrupt context”
requirement into account. However the entire
cunning plan falls appart when spinlocks en-
ter the picture: in_interrupt() might return false
even though scheduling is not allowed. Since
scheduling by kmalloc() is not the common
case, this bug won’t often show up in casual
testing.

2.2 vmalloc

Most tutorials warn about using kmalloc for al-
locating big areas of memory, and it seems a lot
of people also notice these limits in practice:

static inline void ∗
osi_malloc(unsigned int size)

{
void ∗ptr;

if (size > 2∗PAGE_SIZE)

return vmalloc(size);

ptr = kmalloc(size, GFP_NOFS);

if (ptr)

return ptr;

return vmalloc(size);

}

from OpenGFS 0.99.2

There are several problems with such an

approach. The first one is performance:
vmalloc() ’ed memory requires more
TLB’s, which are a rare resource on most
CPUs.

A more serious problem arises when the
osi_free() routine gets involved: it calls
vfree() for the vmalloc() ed memory,
and it’s illegal to callvfree() from inter-
rupt context. This abstraction makes it okay to
call theosi_free() function from interrupt
context sometimes, but not for big allocations.

A third issue that most tutorials don’t mention
is that while you can usevmalloc() to allo-
cate larger chunks of memory, the total amount
you can allocate is rather limited, in the or-
der of 64 Megabytes on modern machines (de-
pending on what PCI hardware is present).

2.3 Other subtleties

Abstractions of the Linux memory alloca-
tors often also hides the deadlock avoidance
mechanisms Linux provides. In the write
path of a filesystem, usingGFP_KERNELor
GFP_ATOMICwill lead to deadlocks eventu-
ally. Such deadlocks might not show up in
your testing, but Murphy’s law guarantees that
your first big customer will hit the deadlock on
December 24th at 6pm.GFP_NOFSis there
for a reason, as isGFP_NOIOfor block de-
vice drivers. Using an abstraction for the al-
locator might appear to make your life eas-
ier by not having to understand these issues,
but sooner rather than later it’ll come back and
haunt you—or, worse, your users.

3 Synchronisation primitives

The Linux kernel provides a reasonably com-
plete set of synchronisation primitives in the
form of semaphores and spinlocks (both in
the normal form as the reader/writer vari-

Ottawa Linux Symposium 2002 547

ant). Rusty’s hamster even wrote documenta-
tion about when to use what primivive. These
primitives however do not form a perfect match
with that Microsoft Windows or Unixware pro-
vide as primitives.

Not seldom do I find self-written synchronisa-
tion primitives in submitted drivers, and as a
general rule they are all buggy.

/ ∗
∗ EnterCriticalSection:
∗ /

unsigned long

EnterCriticalSection(

DevInfo_pt pDev)

{
int retval;

#ifdef __SMP__

for (;;) {
retval=test_and_set_bit(SEMA_SRL,

&pDev−>Sema);

if (!retval)

break;

sleep_on(&pDev −>WaitQ);

}
return(retval);

#else / ∗ __SMP__ ∗ /

if (pDev −>Sema)

return(−1);

pDev−>Sema=−1;

return(0);

#endif

}

The code above is a typical example of driver-
code that tries to emulate a primitive from an-
other OS. The counterpart was as follows:

/ ∗
∗ LeaveCriticalSection
∗ /

void LeaveCriticalSection(DevInfo_pt

pDev)

{

#ifdef __SMP__

clear_bit(SEMA_SRL,&pDevi −>Sema);

wake_up(&pDev −>WaitQ);

#else

pDev−>Sema0;

#endif

}

It’s tempting to leave the “what’s wrong with
that” as an excercise to the reader; however it’s
better to nip such code in the but so here goes a
two-cpu example with 2 tasks, task A is hold-
ing the lock on cpu 1 and task B is trying to
acquire the lock on cpu 2. Figure 1 shows how
the mentioned code will leave task B sleeping
without it ever getting the critical section.

CPU 1

T0 Task A has has the sema bit set

T1 test_and_set Task B tries and sees someone has the sema bit

T2

T3

T4

T5

Task A releases with a clear_bit()

Task A waits up all waiters on the waitqueue

Task B puts itself on the waitqueue and sleeps

There’s nobody left to wake task B

....

....

....

....

....

....

....

....

clear_bit

wake_up

sleep_on

CPU 2 State

Figure 1: Timing diagram of the deadlock

Now it’s very well possible to try to fix the
above code to not have this deadlock. How-
ever, it’s far simpler to just use the linux
semaphores which provide all the functionality
required for this case.

Another problem with “home made locks” is
that they do not work on architectures that re-
order instructions and/or memory accesses ag-
gressively, such as PowerPC or Power4.

One thing pops up rather often in drivers ported
from other operating systems: recursive locks.
The linux kernel provides no recursive locks
(with the exception of the Big Kernel Lock,
see section 4). The philosophy is that lock-
ing should be taken into account when design-
ing your code, and in that case you don’t need
recursive semaphores or spinlocks. Recursive
locks have all sorts of subtle deadlock issues

Ottawa Linux Symposium 2002 548

which are beyond the scope of this text and
while you can write correct recursive locks,
just say no.

4 SMP

Despite popular belief, SMP safety is not
something you “weld” into your code as a
hindsight. SMP safety is something you need
to take into account right from the start. Make-
ing a (largish) piece of code SMP safe in hind-
sight leads to all kinds of lock-ordering night-
mares, makes you wish there were recursive
locks, and generally results in a suboptimal so-
lution. While I could give numerous drivers as
examples of how to not do it, the main kernel
with the Big Kernel Lock (BKL) is the best ex-
ample of this. The BKL was put in to make the
kernel work on SMP, in hindsight—and well,
it still results with nightmares with dozens and
dozens of races. It has been taking 5 years so
far to fix all the core subsystems to have proper
locking of their own.

With the merging of the preemptible kernel
patch in the 2.5 series of the kernel, SMP safety
is even more important than before. With pre-
emption turned on, your code can be inter-
rupted at any point and acts as if it’s running
on an SMP machine.

There’s a simple list of questions you should
ask yourself for all code you write:

• What prevents the data I’m working on
from beeing freed under me

• What prevents my module from being un-
loaded under me

• What prevents a user from open-
ing/closing my device here

• What do I not want to happen to the
data/device I’m working with right now...

• . . . and what makes sure that that doesn’t
happen

Such a list can never be complete obviously,
and the only weapon you can use to make your
code SMP safe is your brain. Of course it helps
if you have access to SMP hardware, and even
booting an SMP kernel if you have only one
CPU will allow you to find certain types of
deadlocks.

5 All the world is not a VAX

#ifdef ALPHA
#define U32 unsigned int
#else
#define U32 unsigned long
#endif

from drivers/scsi/inia100.h,
kernel 2.4.9

The Linux kernel works on several architec-
tures, not just Intel x86. The kernel API has
evolved in a way that makes drivers basically
automatically portable between architectures.
That is, if the API is followed and no strange
assumptions are made, as was done in the
inia100.h example. Unfortunately, even if you
don’t follow the API the driver might at least
appearto work on a normal PC, since the PC
architecture makes certain consistency guaran-
tees and has certain behavior that other plat-
forms can’t provide.

5.1 PCI posting

One of the most common, and hardest to de-
bug, problems in PCI device drivers is the lack
of dealing withPCI posting. PCI postingis the
effect where the cpu writes some data to a cer-
tain PCI device, the PCI bridge (or, rather, any
component between the CPU and the actual de-
vice) is allowed to buffer this write as long as

Ottawa Linux Symposium 2002 549

it wants. The only constraint to this buffering
is that a read operation from a device will not
complete before all pending writes to this de-
vice are completed, hence effectively forcing a
“flush” of all pending writes.

A typical example of how this can easily go
wrong is shown below:

// —————————————————-
// Procedure: eeprom_stand_by
//

// Description: This routine lowers the
// EEPROM chip select (EECS) for a
// few microseconds.
// —————————————————-
static void

eeprom_stand_by(struct e100_priv

∗adapter)

{
u16 x;

x = readw(&CSR_EEPROM(adapter));

x &= ∼(EECS | EESK);

writew(x, &CSR_EEPROM(adapter));

udelay(EEPROM_STALL_TIME);

x |= EECS;

writew(x, &CSR_EEPROM(adapter));

udelay(EEPROM_STALL_TIME);

}

from the Intel e100 driver in
kernel 2.5.6

The intent of the programmer clearly is to clear
some bit in the cards memory space, wait a cer-
tain amount of time, enable it again and wait
some more time, effectively creating a peri-
odic waveform if the routine is called in se-
quence. However, due to posting, the first
writew() might not reach the card for a long
time and the udelay() is therefore totally miss-
ing the intended goal, it just warms the cpu a
bit. The end result in this case is that the eep-
rom contents is written out incorrectly to the

card.

The fix is obvious (and present in later ker-
nels); just adding areadl() immediately af-
ter bothwritew() to read and discard some
data from the card is enough.

Only recently started the more advanced PC
chipsets to do more aggressive posting, so this
bug probably will not, or only seldom, show
up on home PC’s. IA64 and other architec-
tures have had more aggressive posting in the
chipsets for a longer time already.

5.2 GFP_DMA

The GFP_DMA memory allocation flag was
originally intended to allocate ISA bus DMA-
able memory, however several architectures
give a different meaning to it nowadays. Since
the demise of the ISA bus, GFP_DMA should
not be used in driversat all; the PCI DMA API
has well defined ways of allocating and map-
ping memory for PCI use. The example below
shows the Intel e100 driver abuse GFP_DMA
to work around a performance issue in early
IA64 architecture code that deals with a miss-
ing IOMMU chip.

#if (defined __ia64__)

new_skb =

__dev_alloc_skb(skb_size,

GFP_ATOMIC|GFP_DMA);

// Try to alloc non-DMA skb if
// failed to get from the DMA zone

if (new_skb==NULL) {
new_skb =

dev_alloc_skb(skb_size);

}
#else

new_skb =

dev_alloc_skb(skb_size);

#endif

Ottawa Linux Symposium 2002 550

Intel e100 1.8.38 While the code will
work correctly for current IA64 systems, it’s
not guaranteed that newer IA64 machines
won’t have an IOMMU and that GFP_DMA
doesn’t actually result in PCI-reachable mem-
ory. The obviously right thing here was to fix
the performance bug in the architecture code,
or even making the architecture use the high-
mem mechanism.

5.3 Assuming PC resources

static void
qla2100_putc(int8_t c)
{
...

/ ∗ BAUD rate divisor LSB. ∗ /
OUTB(0x3f8+3, 0x83);
/ ∗ BAUD rate divisor MSB. ∗ /
/ ∗ 0xC = 9600 baud ∗ /
OUTB(0x3f8, 0xc);

...
}

Qlogic 2x00 v5.31 fiber channel
driver The above example is taken from a
fibre channel driver. The purpose is to have
some sort of serial console for tracing and
debugging (let’s pretend for a minute that
Linux doesn’t already have generic serial
console code).

Hardcoding architecture constants like0x3f8
(even if they haven’t changed in the last 20
years) is just inviting trouble. Some day some-
one will want to run your code on an IA64, or
a MIPS or even an ARM machine, and all hell
breaks loose. In addition, these “constants” ac-
tually recently started changing with the advent
of the legacy-free PC’s.

Another serious issue is that this code uses
IO resources without registering them with the
kernel; one can assume that even the most ex-
pensive intelligent UPS gets confused when

a driver like this interferes with the monitor-
ing application which happens to be connected
to this serial port (and yes, sysadmins do get
grumpy when in the middle of the night a bad
sector results the driver turning off the UPS due
to error handling calling this debug code).

5.4 On-disk and wire formats

Two of the major differences between architec-
tures that are actually visible to kernel drivers
are byte order and structure padding.

Both these items you normally don’t have to
care about; however, they do become important
when you put information on persistent stor-
age (when writing a filesystem for example) or
when sending information over a network.

The JFFS2 filesystem was sloppy in this re-
spect and stored its metadata on the (flash)
device in CPU byte order. After the filesys-
tem was in use for several months, on several
architectures, people started complaining that
they couldn’t take their device from one system
(powerpc) to another (x86) while still being
able to read the data. David Woodhouse can
testify that making a filesytem auto-sensing,
bi-endian is not something you want to do.

Using a defined byte order for the on disk for-
mat is certainly preferable. Verifying the cor-
rectness of code in this respect is normally non-
trivial if you only have access to x86 machines;
EXT3 uses the cunning trick to specify all on-
disk data (in the journal) in Big Endian order
so that any missing byte-order correction will
be noticed immediatly on a PC.

Structure padding is a similar issue:

struct example {
char foo;
u64 bar;

};

Ottawa Linux Symposium 2002 551

in the example above the size of
struct example will depend on the
architecture. Different architectures have
different requirements for minimal alignment
of data and the compiler will add invisible
padding betweenfoo andbar to satisfy the
architecture requirements.

This has 3 important consequences when this
structure needs to be written to persistent stor-
age or the network:

1. The size of the structure differs per archi-
tecture

2. The location of thebar data is in a dif-
ferent place in the bytes that make up
struct example

3. The code below isnot enough to clear the
entire structure

struct example ∗blah;
...
blah = kmalloc(sizeof(∗blah),

GFP_KERNEL);
if (!blah)

return −ENOMEM;
blah −>foo = 3;
blah −>bar = 40;
...

The code above does not clear the (invisible)
padding, and for in-kernel use that’s not a prob-
lem. However when exposing this struct out-
side the kernel, it is very important to real-
ize that the padding bytes are uninitialized and
hence can contain just about anything that ever
was in memory, including the root password
or parts of gpg keys. Things like that usually
make sure that your module ends up on bug-
traq just before the meeting with a big potential
customer.

6 Using int for flags

A common bug that causes portability issues
is the use of anint variable for storing the
CPU flags in withspin_lock_irqsave .

void

mgsl_sppp_tx_timeout(

struct net_device ∗dev)

{
struct mgsl_struct ∗info =

dev−>priv;

int flags;

...

spin_lock_irqsave(

&info −>irq_spinlock, flags);

usc_stop_transmitter(info);

spin_unlock_irqrestore(

&info −>irq_spinlock, flags);

}

from drivers/char/synclink.c
kernel 2.4.9

On 64 bit architectures, the CPU flags
are 64 bit, and the code such as quoted
above will fail to work quite spectacularly.
spin_lock_irqsave is specified to take
an unsigned long variable for flags, and
thankfully kernels 2.5.10 and later will cause a
compiler warning if this isn’t the case.

7 Files

Just about all kernel tutorials and books warn
you to not open configuration files from inside
the kernel. Unfortionatly that doesn’t seem to
stop people from doing so anyway.

static void chandev_read_conf(void)

{
#define CHANDEV_FILE \

"/etc/chandev.conf"

...

Ottawa Linux Symposium 2002 552

set_fs(KERNEL_DS);

if(stat(CHANDEV_FILE,

&statbuf)==0)

{
set_fs(KERNEL_DS);

if((fd=open(CHANDEV_FILE,

O_RDONLY,0))!= −1)

{
curr=0;

left=statbuf.st_size;

while((len=read(fd,

&buff[curr],left)) >0)

{
curr+=len;

left −=len;

}
....

}

drivers/char/s390/misc/chandev.c

in kernel 2.4.9/s390

Apart from the aesthetic issues involving the
kernel setting policy on userspace, and the
problem that writing a secure parser is non-
trivial (both of which doesn’t seem to impress
people enough to not write code like this), there
is the issue ofwhichfile is it.

There are several reasons why this isn’t as clear
as it might look on first sigh. In recent 2.4 and
2.5 kernels, each process has its own names-
pace (and hence effectively its own root direc-
tory). Autoloading the driver will result in the
module usinginit ’s namespace, while manu-
ally loading it by root will result in the module
using the namespace root currently happens to
be in. chroot will have similar surprise ef-
fects, as will loading the module from an initial
ramdisk.

The initial ramdisk case just makes a system
harder to administer, but the other two cases
actually carry a slight security risk: while one
needs to be root to load modules, root might
not realize he is not in theinit namespace;

this gives a non-root user the ability to feed a
config file to the kernel (and either merely af-
fect the settings, or worse, exploit vulnerabili-
ties in the parser).

8 Just yuck

8.1 Overriding system calls

There are certain things that should just not
be done in kernel space. The most evil
one is overriding or adding system calls
from modules. For historical reasons, the
sys_call_table symbol is exported for
the use in the Linux ABI patches that allow
the kernel to run binaries from other linux-
like operating systems (Unixware, Solaris etc).
Linux ABI only needed this to call existing
function calls, and has long since been fixed
to do so directly.

Unfortionatly this export seems to have opened
the door for other modules to override exist-
ing system calls with different behavior. The
mix of modules that do this consists of several
filesystems of IBM origin, binary only security
tools, and oprofile, a performance monitoring
tool.

void oplock_init(void)

{
TRACE0(TRACE_SMB, 5,

TRCID_OPLOCK_INIT,

"Loading kernel"

" oplock support\n");

old_sys_fcntl =

sys_call_table[__NR_fcntl];

old_sys_fcntl64 =

sys_call_table[__NR_fcntl64];

sys_call_table[__NR_fcntl] =

(long)&newsys_fcntl;

sys_call_table[__NR_fcntl64] =

(long)&newsys_fcntl64;

}

Ottawa Linux Symposium 2002 553

glue layer for IBM GFPS binary
only (C++) filesystem

Apart from the SMP races in such code (it’s
impossible to get the locking against module
unloading working), overriding system calls is
just too evil for words.

8.2 Depending on userspace program names

Writing kernel code that depends on filenames
of programs in userspace prevents people from
arranging their system the way they want, and
also can lead to “interesting” surprises.

Sometimes filenames are unavoidable; the ker-
nel has a series of filenames forinit it tries
when booting, while allowing a command line
override. modprobe and/sbin/hotplug
are also called by the kernel to provide im-
proved plug-and-play behavior; however the
filenames of both are /proc settings, and the
bootup scripts are expected to set the proper
values if the provided defaults are not correct.

A different kind of problem is if the kernel de-
cides to behave differently based on the name
of the program that is running:

Boolean

cxiIsSambaThread()

{
return (!strcmp(current −>comm,

"smbd"));

}

glue layer for IBM GFPS binary
only (C++) filesystem

There is no guarantee that Samba is the only
binary that is namedsmbd, and changing be-
havior based on such a test can lead to interest-
ing surprises for other programs. There even
can be a security angle if this test is used for
enhancing permissions.

8.3 Long udelay

I have been told that drivers for Microsoft
Windows can sleep in a lot more places than
Linux drivers. Several drivers I’ve seen that are
ported from Windows or are shared with Win-
dows depended on this and the Linux variant
of the driver gets into trouble as a result. The
common solution between such drivers seems
to be to just use the busy-waitingudelay()
macro.

static uint8_t

qla2100_mailbox_command(....)

{
...

cnt = 0x100000 ∗2; / ∗ 22 secs ∗ /

for(; cnt > 0 && !ha −>flags;

cnt −−)

{
/ ∗ Check for pending interrupts. ∗ /

data = RD_REG_WORD(

® −>istatus);

...

udelay(10);

}
}

from Qlogic qla2x00 driver
version 4.28

In the above driver code snippet the
qla2100_mailbox_command()
function, which has to be called with the
io_request_lock spinlock acquired and
local interrupts disabled, busy waits for about
20 seconds. This is thankfully not the common
case, but since the spinlock in question is
required for doing any IO at all, 22 seconds is
usually enough to kill a system (especially if
hardware watchdogs are involved). And even
if it doesn’t, writing a driver like this will not
make you popular with the low latency people.

There is no clear-cut way to fix such problems

Ottawa Linux Symposium 2002 554

in an afternoon. In the qla2x00 case, it re-
quired a complete redesign of all the locking
and some surgery in the structure of the driver.
As a side effect the lock hold times and con-
tention reduced significantly (even ignoring the
long busy waits since those are not really in fast
paths); fixing these issues pays off in more than
one way.

8.4 Floating point

Everybody knows using floating point in the
kernel isn’t allowed (with the exception of
carefully selected places where MMX is used
to speed up RAID XOR performance and
such). However it’s rather easy to put floating
point in by accident:

#define NTSC 14.31818

#define calc_freq(n,m,k) \
((NTSC ∗ (n+8))/((m+2) ∗(1 <<k)))

...

int fi;

fi = calc_freq(n,m,k);

drivers/video/trident_fb.{c,h}
2.4.18pre

The first define is actually in the header file and
all the use is in the C file, where the author
probably no longer realized the NTSC constant
was a float. Compiling the kernel with the
-msoft-float flag finds such problems fast
before random userspace floating point results
get corrupted.

9 Conclusion

This paper only touches the tip of the iceberg of
problems found in kernel modules; however I
hope that it has become clear that adding ab-
straction layers for the Linux kernel API to
glue drivers from other operating systems to
Linux, is a bad idea. Beyond that it’s mostly a

matter of common sense and having a good de-
sign of a driver; due to the open source nature
of the Linux kernel there’s plenty of good (but
also of bad) examples available for borrowing
a design idea.

10 Legalese

The IBM GFPS glue layer code is governed by
the following license:
COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 2001 International Business Machines

All rights reserved.

Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer.
2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
3. The name of the author may not be used to endorse
or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AU-
THOR “AS IS” AND ANY EXPRESS OR IM-
PLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

all other code is copyrighted by the respec-

Ottawa Linux Symposium 2002 555

tive authors and licensed under the terms of the
GNU GPL.

Metanet: Message-Passing Network Daemons

Erik Walthinsen
omega@temple-baptist.com, http://www.omegacs.net/˜omega/

Abstract

MetaNet is a message-passing architecture de-
signed for the construction of network services
daemons. Services are implemented as a series
of mailboxes with attached functions to pro-
vide the functionality. The mailbox namespace
is global across all services, allowing new dae-
mons to hook into existing daemons to mod-
ify their behavior. A simple example is a stock
DHCP daemon hooked by an external applica-
tion that does an LDAP lookup for a machine’s
IP before falling back to the normal DHCP al-
location scheme. This paper covers the archi-
tecture of the MetaNet system, and uses the ex-
ample of a Captive Portal as used for public
wireless network control to show how multi-
ple services can be quite easily tied together to
provide more complex services. Other possible
projects using MetaNet will also be explored.

1 Introduction

Network services on Unix machines are pro-
vided today by separate daemons designed for
each protocol and service. Each has its own in-
ternal structure, configuration files, behaviors,
history, and so on. This works well in most
environments because each service is designed
to be completely standalone, as this is one of
the driving principles behind Unix: “Do one
thing, and do it well.” For the most part, each
of these daemons does indeed do its job rea-
sonably well.
Unfortunately, there are situations where this
myriad of separate daemons can make it dif-

ficult to accomplish the task at hand, or more
likely they are simply too big to fit on the
target device. The platform example used in
this paper is that of an intelligent wireless
access point (AP) running Linux. The M1
from Musenki [Musenki] is just such an access
point, consisting of a Motorola MPC8241 em-
bedded PPC processor, 32MB of RAM, 8MB
of flash, a 10/100 NIC, and a MiniPCI slot for
a wireless card. It runs Linux natively and must
be able to provide all the normal network ser-
vices, as well as be useful to the PersonalTelco
Project [PTP] in its city-wide free networking
projects. This drives some of the more inter-
esting requirements, pushing well beyond the
boundaries of current software.
MetaNet is an attempt at creating an infras-
tructure that enables these services to be not
only small, but capable of extremely complex
interactions. MetaNet itself is only an archi-
tectural design, not a specific implementation.
The reference implementation is currently (as
of this writing) written in Perl for convenience,
but could be and will be implemented in other
languages such as C and Python. More ad-
vanced features ensure that these languages can
be mixed freely in larger systems, allowing
high-speed services to be written in C and other
services or glue code to be written in a scripted
language.

2 Unusual Requirements

The PersonalTelco Project (PTP) has several (4
as of this writing, more on the way) open, pub-
lic access points covering several very public

Ottawa Linux Symposium 2002 557

locations in Portland, OR. The most visible of
these is the node at Pioneer Courthouse Square,
aka “Portland’s Living Room”, in the center of
downtown. A wireless AP covers the Square
and is connected to the Internet by redundant
T-1’s that are otherwise heavily underutilized
by the company donating the space and band-
width. Because the signal is unencrypted and
usable by anyone with a laptop and a wireless
card, some steps are necessary in order to keep
usage under control, and limit or avoid liability.
The solution used is called a “Captive Por-
tal.” The idea behind such a portal is that new
clients on the wireless network are by default
completely firewalled off from the Internet. In
order for the user to gain access to the net-
work they must log in after agreeing to a us-
age policy, etc. Custom client login software is
unworkable because it would have to be dis-
tributed to clients and installed, which most
savvy users wouldn’t even consider. Instead,
the portal uses software the user already has:
a browser. Linux Netfilter [Netfilter] transpar-
ent redirects are used to shuttle all HTTP con-
nections to a web server contained in the por-
tal software itself. When the user successfully
logs in, the firewall is modified to allow that
client access to the Internet.
Once the client is associated and logged into
the portal, there are several other aspects that
have to be dealt with. The first is the fact that
a spammer could trivially send mass quantities
of email through such a wide-open connection,
and could do so untraceably. Another is mak-
ing sure that no single client abuses the up-
stream connection and effectively locks other
clients off the network. Statistics logging and
“Extrusion Detection” are also critical compo-
nents that have to be built into such a system.

3 An Example

Rather than explaining how one might imple-
ment a complete Captive Portal with fully dis-

creet daemons and why it would be nearly im-
possible, a simpler example will suffice to ex-
plain the basic MetaNet concepts.
On many large networks, an LDAP database is
used to hold information about each machine
and user. If this database includes the MAC
address of a machine and the intended IP ad-
dress, this information must be made available
to the DHCP server.
With ISC dhcpd [ISC] as shipped with almost
all Linux distributions, this would have to be
accomplished by extracting the relevant pieces
from the LDAP database and constructing a
dhcpd.conf. This would have to be done ev-
ery time the LDAP database changes, must be
pushed to each DHCP server, and dhcpd has
to be restarted. On a large network this could
become quite a hassle to manage.

4 The MetaNet Approach

MetaNet is designed to split the implemen-
tation of network services into discreet com-
ponents which communicate by passing mes-
sages. The degree to which the software is split
into pieces determines the degree to which it
can be integrated with other services.
The fundamental entity is a “message”, which
is simply a list of tag/type/value tuples sent to a
specific “mailbox”. All control and data trans-
fer takes place via these messages. Objects that
encompass various services such as sockets or
web servers are simply a set of mailboxes with
which other objects interact.
The mailbox names are strings that use
a filesystem-style path syntax, allowing
for an effectively unlimited namespace if
used properly. Common messages include
"/system/socket/new" to create a new
socket, or "/httpd/request" when the
web server gets a remote request. Most such
mailbox names are indeed derived from the
name of the object that created them, such as
in the previous example where the object is

Ottawa Linux Symposium 2002 558

simply named"/httpd" .
In order to capture messages sent to a mail-
box, a “listener” is attached. This is a function
pointer (or reference, in Perl), coupled with
another list of tuples to allow the specific in-
stance of that function pointer to be uniquely
identified. (Mailboxes themselves in fact have
tuples associated with them for the same rea-
son.) Each mailbox maintains an ordered list
of these listeners, so that when a message is
sent to the mailbox, these listeners are called
in order. As a special case, a listener can re-
turn an error code that indicates that no more
listeners should be called.
There are two conceptually different kinds of
mailboxes, with no actual technical difference
between them. The difference lies in who is
listening and who is sending the messages. In
the case of a socket, the"read" message is
sent by the socket code itself, and the nomi-
nal owner of the socket supplies a listener to
catch the data received on the socket. The
"write" request on the other hand works the
other way around, with the owner sending the
message and the socket’s listener responsible
for write()ing the data to the socket. In some
cases both the object and external entities can
provide listeners, for instance as a means of
keeping track of what an object is doing or be-
ing told to do.

5 The Main Loop

At the core of any MetaNet application is the
main loop, which is responsible for dealing
with all the external events the application may
listen for. This is basically a glorified se-
lect() loop capable of sending messages when-
ever a socket is available for reading or writ-
ing, as well as handling timeout routines. In
some cases messages may actually be queued
up for delivery directly from the main loop as
well. The specific implementation details of
the main loop depend entirely on the language

and general program style used to construct the
MetaNet library. The current Perl prototype
does not yet use messages to indicate readable
file descriptors or timeouts, though there is no
technical reason this cannot be changed to a
more consistent style.

6 DHCP and LDAP

In our example scenario, the DHCP server
would be written in such a way as to ex-
pose many mailboxes through which its inter-
nal control passes. Upon creation, it would in-
stantiate a socket to listen for requests. When
a request packet arrives, the socket will send
a "read" message for the server to pick up
and translate from the packed DHCP format
to a more readable set of tuples, which is then
sent as a DHCP-specific message. The DHCP
server then must maintain the whole of the
DHCP state machine internally, likely using
the machine’s MAC address (“chaddr” in dhcp)
as key.
The state machine will at some point need to
find an IP address for the host. Normally
this is done by sending a message to a mail-
box that might be named"lookup" or similar,
which another part of the stock DHCP server
would be listening to. This code would per-
form the usual lookup of a free IP address in
the pool, or find an address recently associated
with that MAC address. It then sends this infor-
mation back to the state machine by sending a
"lookup-response" message, for instance.
This re-engages the state machine and eventu-
ally results in the client being successfully con-
figured.
In order to integrate this DHCP server with and
LDAP database, only a few lines of code must
be written. The first function is attached as a
listener to the"lookup" mailbox, and is re-
sponsible for triggering the LDAP query. It
simply sends a message to a previously instan-
tiated LDAP client object requesting a specific

Ottawa Linux Symposium 2002 559

lookup based on the MAC address of the client.
It then returns an error code that indicates that
it should be the last listener called for this par-
ticular message. Since the listener would have
been prepended to the mailbox, this precludes
the DHCP server’s normal lookup routine from
being called. The second function listens to
the LDAP response mailbox and constructs the
necessary message to be sent back into the
DHCP state machine.
The only thing missing from this design is the
ability for a failed LDAP lookup to fall back
to a lookup from the pool. As a quick hack,
this could be accomplished by triggering the
"lookup" message a second time with a tuple
in place to indicate to the LDAP glue code that
it should not make another attempt to look in
the database, but rather fall through and defer
to the original DHCP server’s listener.

7 Synchronous Operations

The MetaNet architecture as described is obvi-
ously highly asynchronous, since the only way
to return data from a listener is by sending an-
other message. In many cases, such as the
above LDAP attempt, it is very advantageous
to be able to execute certain operations syn-
chronously, waiting for some kind of response.
DNS lookups are an obvious candidate, since a
large system may have to deal with both names
and IP addresses may be doing DNS requests
in many places. A completely asynchronous
system requires that every function that does
a DNS request be split into the part before
and the part after the request. This could very
quickly become a coding nightmare, especially
when error cases are introduced.
The solution is to implement a method for
blocking on the receipt of a given message.
This is done by attaching a special listener to
the mailbox, then sleeping. The listener is re-
sponsible for waking up the suspended code
and providing the tuples from the message that

woke it up.
There are several related mechanisms that can
be used to accomplish this. POSIX threads can
be used to create a new thread into which the
main loop can be "moved" while the original
thread waits on a condition variable. A lis-
tener is attached to the mailbox being waited
on, which wakes up the original thread and en-
sures that one of the threads finishes before the
other continues the main loop. In cases where
threads are rarely created, the initial thread
must be the one to continue, as killing it would
terminate the application.

8 Inter-application Cooperation

If all the services of a given machine were pro-
vided by a single daemon with various objects
to handle different protocols, a bug in any one
service could bring down the entire daemon.
This lack of isolation would be the death of any
such system. To solve this, there must be a way
of separating each service into a separate pro-
cess, while retaining the ability for these dae-
mons to interact with each other.
In order to do this, MetaNet uses IPC in the
form of Unix-domain sockets, with one socket
per daemon, residing in a central location. The
socket is named after the process, avoiding the
pain of having a separate TCP port for each ser-
vice just for message passing. When a given
process needs to send messages to another, it
opens up a connection to that socket, which is
maintained for the life of the processes.
In order to send a message or attach a listeners
to a mailbox in another process, the name of
the process is appended with a colon, such as
"dhcpd:/dhcpd/lookup" . Sending a mes-
sage to that mailbox will cause a packet to be
sent across this on-disk socket to the appropri-
ate application, where it will trigger the listen-
ers in that process. Listeners can be added to
this mailbox remotely as well, which is done
by inserting a dummy listener into the mail-

Ottawa Linux Symposium 2002 560

boxes stack with the necessary code to route
that message back to the originating process.
Using this method, a standalone, fully self-
contained daemon such as dhcpd can have its
behavior modified from the outside. As such,
the dhcpd could be written in a language such
as C, while the glue code to bridge to LDAP
could be written in Python or Perl, assuming
there is a compliant MetaNet implementation
for that language.
Longer term, this IPC mechanism can be ex-
tended to support sending messages between
different daemons on separate machines. This
can be used for statistics gathering, remote
configuration, or even to create prototypes of
new networking protocols.

9 Implementing a Captive Portal

The first test application for the Perl imple-
mentation of MetaNet was a captive portal.
The central piece of the portal is a web server,
which is easily created with:

MetaNet::send("/system/http/server/new",
name => "/captive/server", port => 5280);

A listener is attached to capture the requests
made by remote clients:

MetaNet::append_new_listener(
"/captive/server/request",
\&client_request);

Some firewall tables rules are put in place to
enable this to function:

drop forwarded packets
unless allowed
iptables -P FORWARD DROP
masquerade all the clients
iptables -t nat -A POSTROUTING

-o $pubdev
-s $pubnet -j SNAT --to $extIP

allow any packets that have a
MARK set
iptables -A FORWARD -i $pubdev

-o $extdev
-m mark --mark 0x1 -j ACCEPT

redir all other HTTP connections
to myself
iptables -t nat -A PREROUTING

-i $pubdev -p tcp --dport 80
-m mark ! --mark 0x1
-j REDIRECT --to-port 5280

This blocks all forwarded traffic that doesn’t
have a firewall mark set, except for HTTP con-
nections which are forwarded to the portal dae-
mon on port 5280. Next, an HTTP request han-
dler has to be constructed to handle two cases:
the client requesting a random page from the
Internet, and a client that has been redirected
to the login server:

sub client_request {
my ($mbox, $listener, %tuples) = @_;

if ($tuples{Host} =~
/$tuples{sockhost}:$tuples{sockport}) {

serve_page($tuples{clientname},
$tuples{path});

} else {
my $url =

"http://$tuples{Host}$tuples{path}";
redirect($tuples{clientname},
"http://$tuples{sockhost}:5280/?url=$url");

}

MetaNet::send("$tuples{clientname}/close");
return 1;

}

The first line gathers the arguments that a lis-
tener function gets: the mailbox reference, the
listener reference, and a hash containing all the
tuples sent as part of the message. In this par-
ticular message, the tuples are as follows:

• $tuples{clientname} The base name for
all mailboxes associated with this client
connection

• $tuples{Host} The "Host" HTTP header,
indicating the intended destination

Ottawa Linux Symposium 2002 561

• $tuples{path} The path of the requested
file on the site

• $tuples{sockhost} The host address of
this end of the socket: the portal’s address

• $tuples{sockport} The port connected to
on the portal: 5280

The essence of the code is the check to de-
termine whether the client actually intended to
connect to the captive portal itself or not. If it
did, it serves a page to the client as needed in
order to show the client a login webpage, ac-
ceptable usage policy, logos, etc. If it intended
to go elsewhere, it is redirected to the index
page of the portal:

sub redirect {
my ($client,$newurl) = @_;

print "redirecting browser to ’$newurl’\n";
$headers{code} = 307;
$headers{’Location’} = $newurl;
$headers{’Refresh’} = "1;URL=$newurl";
$headers{’Content-Type’} = "text/html";
$headers{data} =

"<html><head><title>Moved!</title>";
$headers{data} .=

"<meta http-equiv=\"Refresh\"
content=\"1;URL=$newurl\"></head>";

$headers{data} .= "<body>This page has been
moved.</body>
</html>";

MetaNet::send("$client/response", %headers);
}

The redirect function uses several distinct
tricks to try to get the client to jump to the
new page. Once the client has done so, gone
through the login sequence, etc., it is time to
allow the client to surf the web:

sub client_login {
my ($client) = @_;

system("iptables -t mangle
-I PREROUTING 1
-i $pubdev -s $client->{host}
-j MARK --set-mark 0x1");

}

This function obviously assumes the presence
of an object containing various information
about the client, or at least its IP address. A
simple hash of these client objects is stored
globally for quick reference, keyed by the fi-
nal octet of the client’s address.
If that were all there was to the captive portal,
eventually every IP address in the range would
be wide open, and the purpose would be lost.
To avoid this we have to implement a time-
out mechanism to determine if the client is still
actively using their connection, and if they’ve
been idle for some period of time, log them out
automatically. To do this we’ll create a peri-
odic timeout:

MetaNet::add_timeout(time + 5,
\&idle_timeout);

The idle_timeout function is rather too in-
volved in iptables parsing to reproduce
here, but the overall structure is along the lines
of:

sub idle_timeout
foreach client

determine bytes used count
compare to previous count
if current != previous

update last-active time
if (curtime - last-active) >idle_timeout

log client out

The logout function is simply the same as the
login function, with -D instead of -I on the ipt-
ables commandline.
There is a long list of features that can be added
to this basic portal design. The page handler
can support status pages displaying the state of
each client. The traffic statistics can be logged
to an RRDtool database for future graphing. A
DHCP server could be integrated to give the
portal a head-start on new clients. MAC-based
filtering could be done to make sure logged in
IP addresses don’t get hijacked when someone
leaves.

Ottawa Linux Symposium 2002 562

10 Transparent Proxying of POP
and IMAP

The spam problem is a little tougher to solve
while still allowing legitimate users to go about
their normal business. Not having the SMTP
port open for anyone restricts users to web-
mail or perhaps secure SMTP, and that can be
enough of a deterrent to some people to make
the whole experience a waste of time. The goal
would then be to find a way to only open up
SMTP packet forwarding when it is a reason-
ably certainty that spamming is not going to be
done. While this can never be foolproof, the
simple fact that the portal is a complete choke-
point for all traffic makes things much easier to
regulate.
A common technique used by corporate sites
with mobile users, when a VPN is not avail-
able, is to open up SMTP relaying on their
server for a short duration immediately follow-
ing a successful POP or IMAP authentication
from that IP address. This technique relies on
the assumption that remote users will check
their mail before sending mail, or can be eas-
ily trained to do so if their mail client doesn’t
already do this.
The same trick can be used to determine
whether the SMTP port should be opened for a
given client. If it were possible to detect when
the client has made a successful connection at-
tempt to a POP or IMAP server, the port can be
opened. The task of determining whether this
has actually occurred, however, can be prob-
lematic. It requires that the daemon in charge
is able to watch the POP or IMAP traffic gen-
erated by both the client and the server.
The method attempted involves constructing
a transparent proxy for the POP and IMAP
protocols. In HTTP/1.1, transparent proxy-
ing is made possible by the fact that the pro-
tocol requires the host to send the intended
destination of the connection as part of the
connection itself. The proxy acts like a web

server up until the point this information is sent
(which happily is immediately upon connec-
tion), and promptly makes a connection to the
final destination. This is required because ipta-
bles REDIRECT does not in any way give the
server that handles the redirect any indication
of the original destination. Unfortunately, nei-
ther POP nor IMAP (or almost any other pro-
tocol for that matter) are similarly capable of
being transparent proxied as currently defined.
In order to accomplish this, we can take advan-
tage of a feature of the netfilter/iptables called
"ipq", which is an iptables target that sends
packets up to userspace via a netlink socket.
There happens to be a Perl module to interface
with this socket, making interfacing quite triv-
ial. We can start with the necessary firewall
rules:

masquerade all the clients
iptables -t nat -A POSTROUTING -o $pubdev

-s $pubnet -j SNAT --to $extIP
redirect all IMAP connections to our proxy
iptables -t nat -A PREROUTING -i $pubdev

-p tcp --dport 143 -j REDIRECT
--to-port 65143

queue all related SYN packets to userspace
iptables -t mangle -A PREROUTING -s $pubnet

-p tcp --dport 143 --syn -j QUEUE
by default, block all SMTP traffic outbound
iptables -A FORWARD -i $pubdev -p tcp

--dport 25
-j REJECT

To start off the transparent proxy we must cre-
ate a connection to the netlink socket so we can
acquire the SYN packets:

my $queue =
new IPTables::IPv4::IPQueue(

copy_mode => IPQ_COPY_PACKET,
copy_range => 64);

MetaNet::add_fd($queue->get_fd(),
\&ipq_read,
undef, undef, queue => $queue);

The file descriptor for the netlink socket (patch
to IPQueue module required) is added to the
main loop’s list of file descriptors to listen on.

Ottawa Linux Symposium 2002 563

Next, we create a socket to listen for the redi-
rected IMAP connections:

MetaNet::send("/system/socket/new",
name => "/transproxy/socket");

MetaNet::append_new_listener(
"/transproxy/socket/new_client,
\&new_client);

MetaNet::send(
"/transproxy/socket/bind",
protocol => "tcp", port => 65143);

Once the socket is bound and listening, we en-
ter the main loop and wait for something to
happen:

MetaNet::main();

When a packet arrives on the netlink socket,
the ipq_read function is called:

sub ipq_read {
my ($fd, %tuples) = @_;
my ($msg, $ip_header, $src_ip, $dest_ip);

$msg = $tuples->{queue}->get_message(-1);
$ip_header = NetPacket::IP->decode(

$msg->payload());
$src_ip = $ip_header->{src_ip};
$dest_ip = $ip_header->{dest_ip};
$TransProxy::syn_attempts{"$src_ip"} =

$dest_ip;
$queue->set_verdict($msg->packet_id(),

NF_ACCEPT);
}

The client’s IP address and the original in-
tended destination are associated in a global
hash for future reference. The source port
would also be stored, but current experiments
show that the REDIRECT target seems to
cause the source port to change before it gets
to the new destination, making it unusable for
the purpose. This means that multiple connec-
tions on the same port in very close proximity
are likely to be confused with each other.
Almost immediately after the SYN packet is
processed, a connection will be established
with the daemon via the redirect, triggering
new_client:

sub new_client {
my ($mbox, $listener, %tuples) = @_;

$peerhost = $tuples{peerhost};
if (defined($TransProxy::syn_attempts{

"$peerhost"})) {
build_tunnel($tuples{name},

$TransProxy::syn_attempts{"$peerhost"},
143);

undef $TransProxy::syn_attempts{
"$peerhost"};

}
}

If the client address of the socket is found in
the table of previous attempted connections, a
socket tunnel is created between the new con-
nection and the originally intended host. This
is done by creating a new socket, connect-
ing it to the server, then attaching functions to
the two sockets’ "read" mailboxes that send a
"write" to the peer socket.
In order to determine if a successful authen-
tication has occurred, the function that han-
dles incoming packets from the server checks
each packet for the string "OK LOGIN". If the
string is found, the firewall is modified to allow
SMTP traffic for that client:

if ($data =~ /OK LOGIN/) {
system("iptables -I FORWARD 1

-i $pubnet
-p tcp --dport 25
-s $client->{peerhost}
-d $client->{desthost}
-j ACCEPT");

}

A timeout mechanism similar to that used in
the captive portal can be used to close the port
after a certain amount of inactivity. Even more
useful would be interaction between the trans-
parent proxy and the captive portal, automati-
cally closing these holes when the client as a
whole times out.

Ottawa Linux Symposium 2002 564

11 Performance

The primary goal of MetaNet has been flexi-
bility from the very beginning. It is not in-
tended as the basis for large highly-scalable
systems serving hundreds of clients per sec-
ond. The highly unstructured string-based de-
sign doesn’t necessarily lend itself to a highly-
performant implementation, though it is en-
tirely possible that some caching and other lan-
guage tricks could be employed to improve the
speed. If a highly-scalable server is needed
with the ability to send or receive messages,
a small subset could be implemented on top of
an existing architecture.

12 Conclusion

The MetaNet architecture provides the ability
to construct lightweight services very quickly
by building off existing code. More impor-
tantly, it allows separate services to be inte-
grated with a minimum of code. Completely
new services can be built by gluing together
otherwise unrelated subsystems.
The M1 platform from Musenki is the cur-
rent major target of this work, with the goal
of replacing all the software on the machine
with MetaNet-based daemons capable of being
glued together in previously unknown ways.
Such a system would consist of a kernel, init, a
shell and basic utilities, and the MetaNet-based
daemons. Python is a logical choice for this
platform, as the interpreter is less than half a
megabyte, and implicitly allows developers to
script the machine onboard. Such a machine
could then be widely deployed to create the fa-
bled city-wide free wireless network.

13 Acknowledgements

The PersonalTelco group deserves a significant
amount of credit for getting me to think about

these problems, and then actuallydo some-
thing about them. Discussions with Profes-
sor Jim Binkley at Portland State University,
as well as his class on routing protocols, have
been quite helpful. The GStreamer crew also
deserves some credit for being “patient” while
I worked on this project.

References

[Musenki] Musenki
http://www.musenki.com/

[PTP] PersonalTelco Project
http://www.personatelco.net/

[Netfilter] Linux Netfilter
http://netfilter.samba.org/

[ISC] Internet Software Consortium
http://www.isc.org/

How to replicate the fire: HA for netfilter based
firewalls

Harald Welte
Netfilter Core Team + Astaro AG

laforge@gnumonks.org || laforge@astaro.com

http://www.gnumonks.org/

Abstract

With traditional, stateless firewalling (such as
ipfwadm, ipchains) there is no need for spe-
cial HA support in the firewalling subsystem.
As long as all packet filtering rules and rout-
ing table entries are configured in exactly the
same way, one can use any available tool for
IP-Address takeover to accomplish the goal of
failing over from one node to the other.

With Linux 2.4.x netfilter/iptables, the Linux
firewalling code moves beyond traditional
packet filtering. Netfilter provides a modular
connection tracking susbsystem which can be
employed for stateful firewalling. The con-
nection tracking subsystem gathers informa-
tion about the state of all current network flows
(connections). Packet filtering decisions and
NAT information is associated with this state
information.

In a high availability scenario, this connection
tracking state needs to be replicated from the
currently active firewall node to all standby
slave firewall nodes. Only when all connec-
tion tracking state is replicated, the slave node
will have all necessarry state information at the
time a failover event occurs.

The netfilter/iptables does currently not have
any functionality for replicating connection
tracking state accross multiple nodes. How-

ever, the author of this presentation, Har-
ald Welte, has started a project for con-
nection tracking state replication with netfil-
ter/iptables.

The presentation will cover the architectural
design and implementation of the connection
tracking failover sytem. With respect to the
date of the conference, it is to be expected that
the project is still a work-in-progress at that
time.

1 Failover of stateless firewalls

There are no special precautions when in-
stalling a highly available stateless packet fil-
ter. Since there is no state kept, all information
needed for filtering is the ruleset and the indi-
vidual, seperate packets.

Building a set of highly available stateless
packet filters can thus be achieved by using any
traditional means of IP-address takeover, such
as Hartbeat or VRRPd.

The only remaining issue is to make sure the
firewalling ruleset is exactly the same on both
machines. This should be ensured by the fire-
wall administrator every time he updates the
ruleset.

If this is not applicable, because a very dy-
namic ruleset is employed, one can build a

Ottawa Linux Symposium 2002 566

very easy solution using iptables-supplied tools
iptables-save and iptables-restore. The out-
put of iptables-save can be piped over ssh to
iptables-restore on a different host.

Limitations

• no state tracking

• not possible in combination with NAT

• no counter consistency of per-rule
packet/byte counters

2 Failover of stateful firewalls

Modern firewalls implement state tracking (aka
connection tracking) in order to keep some
state about the currently active sessions. The
amount of per-connection state kept at the fire-
wall depends on the particular implementation.

As soon asany state is kept at the packet fil-
ter, this state information needs to be replicated
to the slave/backup nodes within the failover
setup.

In Linux 2.4.x, all relevant state is kept within
the connection tracking subsystem. In order
to understand how this state could possibly be
replicated, we need to understand the architec-
ture of this conntrack subsystem.

2.1 Architecture of the Linux Connection
Tracking Subsystem

Connection tracking within Linux is im-
plemented as a netfilter module, called
ip_conntrack.o.

Before describing the connection tracking sub-
system, we need to describe a couple of defini-
tions and primitives used throughout the con-
ntrack code.

A connection is represented within the con-
ntrack subsystem usingstruct ip_conntrack,
also calledconnection tracking entry.

Connection tracking is utilizingconntrack tu-
ples, which are tuples consisting out of (sr-
cip, srcport, dstip, dstport, l4prot). A con-
nection is uniquely identified by two tu-
ples: The tuple in the original direction
(IP_CT_DIR_ORIGINAL) and the tuple for
the reply direction (IP_CT_DIR_REPLY).

Connection tracking itself does not drop pack-
ets1 or impose any policy. It just associates
every packet with a connection tracking entry,
which in turn has a particular state. All other
kernel code can use this state information2.

2.1.1 Integration of conntrack with netfil-
ter

If the ip_conntrack.o module is registered
with netfilter, it attaches to the
NF_IP_PRE_ROUTING,
NF_IP_POST_ROUTING,
NF_IP_LOCAL_IN and
NF_IP_LOCAL_OUT hooks.

Because forwarded packets are the most com-
mon case on firewalls, I will only describe
how connection tracking works for forwarded
packets. The two relevant hooks for for-
warded packets are NF_IP_PRE_ROUTING
and NF_IP_POST_ROUTING.

Every time a packet arrives at the
NF_IP_PRE_ROUTING hook, connec-
tion tracking creates a conntrack tuple from
the packet. It then compares this tuple to the
original and reply tuples of all already-seen

1well, in some rare cases in combination with NAT it
needs to drop. But don’t tell anyone, this is secret.

2state information is internally represented via the
struct sk_buff.nfctstructure member of a packet.

Ottawa Linux Symposium 2002 567

connections3 to find out if this just-arrived
packet belongs to any existing connection. If
there is no match, a new conntrack table entry
(struct ip_conntrack) is created.

Let’s assume the case where we have al-
ready existing connections but are starting
from scratch.

The first packet comes in, we derive the tuple
from the packet headers, look up the conntrack
hash table, don’t find any matching entry. As
a result, we create a new struct ip_conntrack.
This struct ip_conntrack is filled with all nec-
essarry data, like the original and reply tuple
of the connection. How do we know the reply
tuple? By inverting the source and destination
parts of the original tuple.4 Please note that this
new struct ip_conntrack isnot yet placed into
the conntrack hash table.

The packet is now passed on to other call-
back functions which have registered with a
lower priority at NF_IP_PRE_ROUTING. It
then continues traversal of the network stack as
usual, including all respective netfilter hooks.

If the packet survives (i.e. is not dropped
by the routing code, network stack,
firewall ruleset, . . .), it re-appears at
NF_IP_POST_ROUTING. In this case,
we can now safely assume that this packet will
be sent off on the outgoing interface, and thus
put the connection tracking entry which we
created at NF_IP_PRE_ROUTING into the
conntrack hash table. This process is called
confirming the conntrack.

The connection tracking code itself is not
monolithic, but consists out of a couple of
seperate modules5. Besides the conntrack core,

3Of course this is not implemented as a linear search
over all existing connections.

4So why do we need two tuples, if they can be de-
rived from each other? Wait until we discuss NAT.

5They don’t actually have to be seperate kernel mod-

there are two important kind of modules: Pro-
tocol helpers and application helpers.

Protocol helpers implement the layer-4-
protocol specific parts. They currently exist
for TCP, UDP and ICMP (an experimental
helper for GRE exists).

2.1.2 TCP connection tracking

As TCP is a connection oriented protocol, it is
not very difficult to imagine how conntection
tracking for this protocol could work. There
are well-defined state transitions possible, and
conntrack can decide which state transitions
are valid within the TCP specification. In re-
ality it’s not all that easy, since we cannot as-
sume that all packets that pass the packet filter
actually arrive at the receiving end, . . .

It is noteworthy that the standard connection
tracking code doesnot do TCP sequence num-
ber and window tracking. A well-maintained
patch to add this feature exists almost as long
as connection tracking itself. It will be in-
tegrated with the 2.5.x kernel. The problem
with window tracking is its bad interaction
with connection pickup. The TCP conntrack
code is able to pick up already existing connec-
tions, e.g. in case your firewall was rebooted.
However, connection pickup is conflicting with
TCP window tracking: The TCP window scal-
ing option is only transferred at connection
setup time, and we don’t know about it in case
of pickup . . .

2.1.3 ICMP tracking

ICMP is not really a connection oriented pro-
tocol. So how is it possible to do connection
tracking for ICMP?

ules; e.g. TCP, UDP and ICMP tracking modules are all
part of the linux kernel module ip_conntrack.o

Ottawa Linux Symposium 2002 568

The ICMP protocol can be split in two groups
of messages

• ICMP error messages, which sort-
of belong to a different connection
ICMP error messages are associated
RELATED to a different connec-
tion. (ICMP_DEST_UNREACH,
ICMP_SOURCE_QUENCH,
ICMP_TIME_EXCEEDED,
ICMP_PARAMETERPROB,
ICMP_REDIRECT).

• ICMP queries, which have a request-
>reply character. So what the conntrack
code does, is let the request have a state of
NEW, and the replyESTABLISHED. The
reply closes the connection immediately.
(ICMP_ECHO, ICMP_TIMESTAMP,
ICMP_INFO_REQUEST,
ICMP_ADDRESS)

2.1.4 UDP connection tracking

UDP is designed as a connectionless datagram
protocol. But most common protocols using
UDP as layer 4 protocol have bi-directional
UDP communication. Imagine a DNS query,
where the client sends an UDP frame to port 53
of the nameserver, and the nameserver sends
back a DNS reply packet from its UDP port 53
to the client.

Netfilter trats this as a connection. The first
packet (the DNS request) is assigned a state of
NEW, because the packet is expected to cre-
ate a new ’connection’. The dns servers’ reply
packet is marked asESTABLISHED.

2.1.5 conntrack application helpers

More complex application protocols involving
multiple connections need special support by

a so-called “conntrack application helper mod-
ule”. Modules in the stock kernel come for
FTP and IRC(DCC). Netfilter CVS currently
contains patches for PPTP, H.323, Eggdrop
botnet, tftp ald talk. We’re still lacking a lot of
protocols (e.g. SIP, SMB/CIFS) - but they are
unlikely to appear until somebody really needs
them and either develops them on his own or
funds development.

2.1.6 Integration of connection tracking
with iptables

As stated earlier, conntrack doesn’t impose any
policy on packets. It just determines the rela-
tion of a packet to already existing connections.
To base packet filtering decision on this sate in-
formation, the iptablesstatematch can be used.
Every packet is within one of the following cat-
egories:

• NEW: packet would create a new connec-
tion, if it survives

• ESTABLISHED : packet is part of an al-
ready established connection (either di-
rection)

• RELATED : packet is in some way related
to an already established connection, e.g.
ICMP errors or FTP data sessions

• INVALID : conntrack is unable to derive
conntrack information from this packet.
Please note that all multicast or broadcast
packets fall in this category.

2.2 Poor man’s conntrack failover

When thinking about failover of stateful fire-
walls, one usually thinks about replication of
state. This presumes that the state is gathered
at one firewalling node (the currently active
node), and replicated to several other passive

Ottawa Linux Symposium 2002 569

standby nodes. There is, howeve, a very dif-
ferent approach to replication: concurrent state
tracking on all firewalling nodes.

The basic assumption of this approach is: In
a setup where all firewalling nodes receive ex-
actly the same traffic, all nodes will deduct the
same state information.

The implementability of this approach is to-
tally dependent on fulfillment of this assump-
tion.

• All packets need to be seen by all nodes.
This is not always true, but can be
achieved by using shared media like tra-
ditional ethernet (no switches!!) and
promiscuous mode on all ethernet inter-
faces.

• All nodes need to be able to process
all packets. This cannot be univer-
sally guaranteed. Even if the hardware
(CPU, RAM, Chipset, NIC’s) and soft-
ware (Linux kernel) are exactly the same,
they might behave different, especially
under high load. To avoid those effects,
the hardware should be able to deal with
way more traffic than seen during opera-
tion. Also, there should be no userspace
processes (like proxes, etc.) running on
the firewalling nodes at all. WARNING:
Nobody guarantees this behaviour. How-
ever, the poor man is usually not inter-
ested in scientific proof but in usability in
his particular practical setup.

However, even if those conditions are fulfilled,
ther are remaining issues:

• No resynchronization after reboot. If a
node is rebooted (because of a hardware
fault, software bug, software update, ..)
it will loose all state information until

the event of the reboot. This means, the
state information of this node after re-
boot will not contain any old state, gath-
ered before the reboot. The effect depend
on the traffic. Generally, it is only as-
sured that state information about all con-
nections initiated after the reboot will be
present. If there are short-lived connec-
tions (like http), the state information on
the just rebooted node will approximate
the state information of an older node.
Only after all sessions active at the time
of reboot have terminated, state informa-
tion is guaranteed to be resynchronized.

• Only possible with shared medium. The
practical implication is that no switched
ethernet (and thus no full duplex) can be
used.

The major advantage of the poor man’s ap-
proach is implementation simplicity. No state
transfer mechanism needs to be developed.
Only very little changes to the existing con-
ntrack code would be needed in order to be able
to do tracking based on packets received from
promiscuous interfaces. The active node would
have packet forwarding turned on, the passive
nodes off.

I’m not proposing this as a real solution to
the failover problem. It’s hackish, buggy and
likely to break very easily. But considering it
can be implemented in very little programming
time, it could be an option for very small instal-
lations with low reliability criteria.

2.3 Conntrack state replication

The preferred solution to the failover problem
is, without any doubt, replication of the con-
nection tracking state.

The proposed conntrack state replication
soltution consists out of several parts:

Ottawa Linux Symposium 2002 570

• A connection tracking state replication
protocol

• An event interface generating event mes-
sages as soon as state information changes
on the active node

• An interface for explicit generation of
connection tracking table entries on the
standby slaves

• Some code (preferrably a kernel thread)
running on the active node, receiving state
updates by the event interface and gener-
ating conntrack state replication protocol
messages

• Some code (preferrably a kernel thread)
running on the slave node(s), receiving
conntrack state replication protocol mes-
sages and updating the local conntrack ta-
ble accordingly

Flow of events in chronological order:

• on active node, inside the network RX
softirq

– connection tracking code is analyz-
ing a forwarded packet

– connection tracking gathers some
new state information

– connection tracking updates local
connection tracking database

– connection tracking sends event
message to event API

• on active node, inside the conntrack-sync
kernel thread

– conntrack sync daemon receives
event through event API

– conntrack sync daemon aggregates
multiple event messages into a state
replication protocol message, re-
moving possible redundancy

– conntrack sync daemon generates
state replication protocol message

– conntrack sync daemon sends
state replication protocol message
(private network between firewall
nodes)

• on slave node(s), inside network RX
softirq

– connection tracking code ignores
packets coming from the interface
attached to the private conntrac sync
network

– state replication protocol messages
is appended to socket receive queue
of conntrack-sync kernel thread

• on slave node(s), inside conntrack-sync
kernel thread

– conntrack sync daemon receives
state replication message

– conntrack sync daemon cre-
ates/updates conntrack entry

2.3.1 Connection tracking state replication
protocol

In order to be able to replicate the state be-
tween two or more firewalls, a state replica-
tion protocol is needed. This protocol is used
over a private network segment shared by all
nodes for state replication. It is designed to
work over IP unicast and IP multicast trans-
port. IP unicast will be used for direct point-to-
point communication between one active fire-
wall and one standby firewall. IP multicast will
be used when the state needs to be replicated to
more than one standby firewall.

The principle design criteria of this protocol
are:

Ottawa Linux Symposium 2002 571

• reliable against data loss, as the un-
derlying UDP layer does only provide
checksumming against data corruption,
but doesn’t employ any means against
data loss

• lightweight, since generating the state up-
date messages is already a very expensive
process for the sender, eating additional
CPU, memory and IO bandwith.

• easy to parse, to minimize overhead at
the receiver(s)

The protocol does not employ any security
mechanism like encryption, authentication or
reliability against spoofing attacks. It is as-
sumed that the private conntrack sync network
is a secure communications channel, not acces-
sible to any malicious 3rd party.

To achieve the reliability against data loss, an
easy sequence numbering scheme is used. All
protocol messages are prefixed by a seuqence
number, determined by the sender. If the slave
detects packet loss by discontinuous sequence
numbers, it can request the retransmission of
the missing packets by stating the missing se-
quence number(s). Since there is no acknowl-
edgement for sucessfully received packets, the
sender has to keep a reasonably-sized backlog
of recently-sent packets in order to be able to
fulfill retransmission requests.

The different state replication protocol mes-
sages types are:

• NF_CTSRP_NEW: New conntrack entry
has been created (and confirmed6)

• NF_CTSRP_UPDATE: State informa-
tion of existing conntrack entry has
changed

6See the above description of the conntrack code for
what is meant byconfirminga conntrack entry

• NF_CTSRP_EXPIRE: Existing con-
ntrack entry has been expired

To uniquely identify (and later reference)
a conntrack entry, aconntrack_id is as-
signed to every conntrack entry trans-
ferred using a NF_CTSRP_NEW message.
This conntrack_id must be saved at the
receiver(s) together with the conntrack
entry, since it is used by the sender for
subsequent NF_CTSRP_UPDATE and
NF_CTSRP_EXPIRE messages.

The protocol itself does not care about the
source of this conntrack_id, but since the cur-
rent netfilter connection tracking implementa-
tion does never change the addres of a con-
ntrack entry, the memory address of the entry
can be used, since it comes for free.

2.3.2 Connection tracking state syn-
cronization sender

Maximum care needs to be taken for the imple-
mentation of the ctsyncd sender.

The normal workload of the active firewall
node is likely to be already very high, so gen-
erating and sending the conntrack state replica-
tion messages needs to be highly efficient.

• NF_CTSRP_NEW will be generated at
the NF_IP_POST_ROUTING hook, at
the time ip_conntrack_confirm() is called.
Delaying this message until conntrack
confirmation happens saves us from repli-
cating otherwise unneeded state informa-
tion.

• NF_CTSRP_UPDATE need to be cre-
ated automagically by the conntrack core.
It is not possible to have any failover-
specific code within conntrack protocol
and/or application helpers. The easiest

Ottawa Linux Symposium 2002 572

way involving the least changes to the
conntrack core code is to copy parts of the
conntrack entry before calling any helper
functions, and then use memcmp() to find
out if the helper has changed any informa-
tion.

• NF_CTSRP_EXPIREcan be added very
easily to the existing conntrack destroy
function.

2.3.3 Connection tracking state syn-
cronization receiver

Impmentation of the receiver is very straight-
forward.

Apart from dealing with lost CTSRP pack-
ets, it just needs to call the respective con-
ntrack add/modify/delete functions offered by
the core.

2.3.4 Necessary changes within netfilter
conntrack core

To be able to implement the described con-
ntrack state replication mechanism, the follow-
ing changes to the conntrack core are needed:

• Ability to exclude certain packets from
being tracked. This is a long-wanted fea-
ture on the TODO list of the netfilter
project and will be implemented by hav-
ing a “prestate” table in combination with
a “NOTRACK” target.

• Ability to register callback functions to be
called every time a new conntrack entry is
created or an existing entry modified.

• Export an API to add externally add, mod-
ify and remove conntrack entries. Since
the needed ip_conntrack_lock is exported,

implementation could even reside outside
the conntrack core code.

Since the number of changes is very low, it is
very likely that the modifications will go into
the mainstream kernel without any big hassle.

Multiple Page Size Support in the Linux Kernel

Simon Winwood‡ §
§School of Computer Science and Engineering

University of New South Wales

Sydney 2052, Australia

sjw@cse.unsw.edu.au

Yefim Shuf‡ ¶
¶Computer Science Department

Princeton University

Princeton, NJ 08544, USA

yshuf@cs.princeton.edu

Hubertus Franke‡
‡IBM T.J. Watson Research Center

P.O. Box 218

Yorktown Heights, NY 10598, USA

{swinwoo, yefim, frankeh}@us.ibm.com

Abstract

The Linux kernel currently supports a single
user space page size, usually the minimum dic-
tated by the architecture. This paper describes
the ongoing modifications to the Linux kernel
to allow applications to vary the size of pages
used to map their address spaces and to reap the
performance benefits associated with the use of
large pages.

The results from our implementation of mul-
tiple page size support in the Linux kernel
are very encouraging. Namely, we find that
the performance improvement of applications
written in various modern programming lan-
guages range from 10% to over 35%. The ob-
served performance improvements are consis-
tent with those reported by other researchers.
Considering that memory latencies continue to
grow and represent a barrier for achieving scal-
able performance on faster processors, we ar-
gue that multiple page size support is a neces-
sary and important addition to the OS kernel
and the Linux kernel in particular.

1 Introduction

To achieve high performance, many processors
supporting virtual memory implement a Trans-
lation Lookaside Buffer (TLB) [8]. A TLB is
a small hardware cache for maintaining virtual
to physical translation information for recently
referenced pages. During execution of any in-
struction, a translation from virtual to physical
addresses needs to be performed at least once.
Thereby, a TLB is effectively reducing the cost
of obtaining translation information from page
tables stored in memory.

Programs with good spatial and temporal lo-
cality of reference achieve high TLB hit rates
which contribute to higher application perfor-
mance. Because of long memory latencies,
programs with poor locality can incur a notice-
able performance hit due to low TLB utiliza-
tion. Large working sets of many modern ap-
plications and commercial middleware [12, 13]
make achieving high TLB hit rates a challeng-
ing and important task.

Adding more entries to a TLB to increase its

Ottawa Linux Symposium 2002 574

coverage and increasing the associativity of a
TLB to reach higher TLB hit rates is not al-
ways feasible as large and complex TLBs make
it difficult to attain short processor cycle times.
A short TLB latency is a critical requirement
for many modern processors with fast physi-
cally tagged caches, in which translation infor-
mation (i.e., a physical page associated with a
TLB entry) needs to be available to perform
cache tag checking [8]. Therefore, many pro-
cessors achieve wider TLB coverage by sup-
porting large pages. Traditionally, operating
systems did not expose large pages to appli-
cation software, limiting this support to the
kernel. Growing working sets of applications
make it appealing to support large pages for ap-
plications, as well as for the kernel itself.

A key challenge for this work was to provide
efficient support for multiple page sizes with
only minor changes to the kernel. This paper
discusses ongoing research to support multiple
page sizes in the context of the Linux operating
system, and makes the following contributions:

• it describes the changes necessary to sup-
port multiple page sizes in the Linux ker-
nel;

• it presents validation data demonstrating
the accuracy of our implementation and
its ability to meet our design goals; and

• it illustrates non-trivial performance ben-
efits of large pages (reaching more than
35%) for Java applications and (reaching
over 15%) for C and C++ applications
from well-known benchmark suites.

We have an implementation of multiple page
size support for the IA-32 architecture and are
currently working on an implementation for
the PowerPC1 architecture.

1This is for the PPC405gp and PPC440 processors,
both of which support multiple page sizes.

The rest of the paper is organized as follows.
In Section 2, we present an overview of the
Linux virtual memory subsystem. We de-
scribe the design and implementation of mul-
tiple page size support in the Linux kernel in
Section 3 and Section 4 respectively. Experi-
mental results obtained from the implementa-
tion are presented and analyzed in Section 5.
Related work is discussed in Section 6. Fi-
nally, we summarize the results of our work
and present some ideas for future work in Sec-
tion 7.

2 The Virtual Memory Subsystem
in Linux

In this section, we give a brief overview of the
Linux Virtual Memory (VM) subsystem2. Un-
less otherwise noted, this section refers to the
2.4 series of kernels after version 2.4.18.

2.1 Address space data structures

Each address space is defined by a
mm_struct data structure3. The
mm_struct contains information about
the address space, including a list ofVirtual
Memory Areas(VMAs), a pointer to the page
directory, and various locks and resource
counters.

A VMA contains information about a single re-
gion of the address space. This includes:

• the address range the VMA is responsible
for;

• the access rights — read, write, and exe-
cute — for that region;

2This section is meant to be neither exhaustive or
complete.

3Note that multiple tasks can share the same address
space

Ottawa Linux Symposium 2002 575

• the file, if any, which backs the region;
and

• any performance hints supplied by an
application, such as memory access be-
haviour.

A VMA is also responsible for populating
the region at page fault time via itsnopage
method. A VMA generally maps a virtual ad-
dress range onto a region of a file, or zero filled
(anonymous) memory.

A VMA exists for each segment in a process’s
executable (e.g., its text and data segments),
its stack, any dynamically linked libraries, and
any other files the process may have mapped
into its address space. All VMAs, except for
those created when a process is initially loaded,
are created with themmapsystem call4. The
mmapsystem call essentially checks that the
process is allowed the desired access to the re-
quested file5 and sets up the VMA.

The page directorycontains mappings from
virtual addresses to physical addresses. Linux
uses a three levelhierarchical page table(PT),
although in most cases the middle level is op-
timised out. Each leaf node entry in the PT,
called apage table entry(PTE), contains the
address of the corresponding physical page, the
current protection attributes for that page6, and
other page attributes such as whether the map-
ping is dirty, referenced, or valid.

Figure 1 shows the relationship between the
Virtual Address Space, themm_struct , the
VMAs, the Physical Address Space, and the
page directory.

4This is not strictly true: theshmat system call is
also used to create VMAs. It is, however, essentially a
wrapper for themmapsystem call.

5This check is trivial if the mapping is anonymous.
6The pages protection attributes may change over the

life of the mapping due to copy-on-write and reference
counting

2.2 Thepage data structure and allocator

The page data structure represents a page of
physical memory, and contains the following
properties:

• its usage count, which denotes whether it
is in the page cache, if it has buffers as-
sociated with it, and how many processes
are using it;

• its associated mapping, which indicates
how a file is mapped onto its data, and its
offset;

• its wait queue, which contains processes
waiting on the page; and

• its various flags, most importantly:

locked This flag is used to lock a page.
When a page is locked, I/O is pend-
ing on the page, or the page is being
examined by the swap subsystem.

error This flag is used to communicate to
the VM subsystem that an error oc-
curred during I/O to the page.

referenced This flag is used by the swap-
ping algorithm. It is set when a page
is referenced, for example, when the
page is accessed by theread sys-
tem call, and when a PTE is found
to be referenced during the page ta-
ble scan performed by the swapper.

uptodate This flag is used by the page
cache to determine whether the
page’s contents are valid. It is set af-
ter the page is read in.

dirty This flag is used to determine
whether the page’s contents has been
modified. It is set when the page
is written to, either by an explicit
write system call, or through a
store instruction.

Ottawa Linux Symposium 2002 576

Virtual Memory Area

mmap

pgd

mm_struct

Page Directory

Page Table

Physical Address Space

Virtual Address Space

Figure 1: Virtual Address Space data structures

lru This flag is used to indicate that the
page is in the LRU list.

active This flag is used to indicate that
the page is in the active list.

launder This flag is used to determine
whether the page is currently under-
going swap activity. It is set when
the page is selected to be swapped
out.

Pages are organised intozones; memory is re-
quested in terms of the target zone. Each zone
has certain properties: theDMA zone consists
of pages whose physical address is below the
16MB limit required by some older devices,
the normal zone contains pages that can be
used for any purpose (aside from that fulfilled
by theDMA zone), and thehighmemzone con-
tains all pages that do not fit into the kernel’s
virtual memory: when the kernel needs to ac-
cess this memory, it needs to be mapped into a
region of the kernels address space. Note that
the DMA zone is only required for support of
legacy devices, and thehighmemzone is only
required on machines with 32 bit (or smaller)
address spaces.

Each zone uses a buddy allocator to allocate
pages, so pages of different orders can be al-
located. Although a client of the allocator re-
quests pages from a specific list of zones and a
specific page order, the pages that are returned
can come from anywhere within the zone. This
means that a page for the slab allocator7 can
be allocated between pages that are allocated
for the page cache. The same can be said for
other non-swappable pages such as task con-
trol blocks and page table nodes.

2.3 The page cache

The page cache implements a general cache
for file data. Most filesystems use the
page cache to avoid re-implementing the page
cache’s functionality. A filesystem takes ad-
vantage of the page cache by setting a file’s
mmapoperation togeneric_file_mmap .
When the file ismmaped, the VMA is set
up such that itsnopage function invokes
filemap_nopage . The file’s read and
write operations will also go through the
page cache.

7The slab allocator[5] provides efficient allocation
of objects, such asinode s. Pages allocated to the slab
allocator cannot be paged out.

Ottawa Linux Symposium 2002 577

The page cache uses the page’s mapping and
offset fields to uniquely identify the file data
that the page contains — when an access oc-
curs, the page cache uses this data to look up
the page in a hash table.

2.4 The swap subsystem

Linux attempts to fully utilise memory. At any
one time, the amount of available memory may
be less than that required by an application. To
satisfy a request for memory, the kernel may
need to free a page that is currently being used.
Selecting and freeing pages is the job of the
swap subsystem.

The swap subsystem uses two lists to record
the activity of pages: a list of pages which have
not been accessed during in a certain time pe-
riod, called theinactivelist, and a list of pages
which have been recently accessed, called the
activelist. The active list is maintained pseudo
LRU, while the inactive list is used by the one-
handed clock replacement algorithm currently
implemented in the kernel. Whenever a page
on the inactive list is referenced, it is moved to
the active list.

The kernel uses a swapper thread to periodi-
cally balance the number of pages in the active
and inactive lists: if a page in the active list has
been referenced, it is moved to the end of the
active list, otherwise it is moved to the end of
the inactive list.

Periodically, the swapper thread sweeps
through the inactive list looking for pages that
can be freed. If the swapper thread is unable to
free enough pages, it starts scanning page ta-
bles: for each PTE examined, the kernel checks
to see whether the page has been referenced
(i.e., whether thereferencedbit is set in the
PTE). If so, the page is moved to the active list,
if it is not already a member. Otherwise, the
page is considered a candidate for swapping.

In this manner reference statistics are gathered
from the page tables in the system, and used to
select pages to be swapped out and freed.

The swapper thread may be woken up when
the amount of memory becomes too low. The
swapper functions may also be called directly
when the amount of free memory becomes crit-
ical: when memory allocation fails, a task may
attempt to swap out pages directly.

2.5 Anatomy of a page fault

When a virtual memory address is accessed,
but a corresponding mapping is not in the TLB,
a TLB missoccurs. When this happens, the
fault addressis looked up in the page table, by
either the hardware in systems with a hardware
loaded TLB, or via the kernel in systems with
a software loaded TLB (note that this implies
an interrupt occurs).

If a mapping exists in the page table, is valid,
and matches permissions with the type of the
access, the entry is inserted into the TLB, the
page table is updated to reflect the access by
setting the referenced bit8, and the faulting in-
struction is restarted.

If a valid mapping does not exist, the kernel’s
page fault handler is invoked. The handler
searches the current address space’s VMA set
for the VMA which corresponds to the fault ad-
dress, and checks whether the access requested
is allowed by the permissions specified in the
VMA.

The kernel then looks up the PTE correspond-
ing to the fault address and allocates a page ta-
ble node if necessary. If the fault is a write to
a PTE marked read-only, the address space re-
quires a private copy of the page. A page is
allocated, the old page is copied, and the dirty

8Note that architectures with a hardware loaded TLB
whose page table doesn’t map directly onto Linux’s need
to simulate this bit

Ottawa Linux Symposium 2002 578

bit is set in the PTE. If the PTE exists but isn’t
valid, the page needs to be swapped in, other-
wise the page needs to be allocated and filled.

If the VMA does not define anopage method,
the memory is defined to be anonymous, i.e.,
zero-filled memory that is not associated with
any device or file. In this case, the kernel allo-
cates a page, zeroes it, and inserts the appropri-
ate entry into the page table. If a validnopage
method exists, it is invoked and the resulting
page is inserted into the PTE.

In the majority of filesystems, thenopage
method goes to the page cache. The mapping
and offset for the fault address are calculated
— the information required for this calculation
is stored in the VMA — and the page cache
hash table is searched for the file data corre-
sponding to the mapping and offset.

If an up-to-date page exists, then no further ac-
tion is required. If the page exists but is not
up-to-date, it is read in. Otherwise, a new page
is allocated, inserted into the page cache, and
read in. In all cases, the page’s reference count
is incremented, and the page is returned.

3 Design

This section discusses the approaches we con-
sidered and justifies our final design. This sec-
tion is organised as follows: Section 3.1 dis-
cusses the goals that guided the design and the
terminology used throughout this and future
sections. Section 3.2 discusses the semantics
of large pages: what aspects of the support for
large pages the kernel exports to user space,
the granularity at which page size decisions are
made, and the high-level abstractions the ker-
nel exports to the user.

It should be noted that this is an ongoing
project, so the approaches describe here may
have been improved upon by the time of publi-

cation.

3.1 Goals

This section discusses the design goals and
guidelines which we attempt to adhere to in the
design of our solution. We consider a good de-
sign to have the following properties:

Low overhead We do not wish to penalise ap-
plications that will not benefit from large
pages, so we aim to minimise the per-
formance impact of our modifications for
these applications.

Generic The Linux kernel runs on numer-
ous different architectures9 and is usually
ported quickly to new architectures. Any
kernel enhancements such as ours should
be easily adaptable to support existing
and future systems, especially consider-
ing that many modern architectures fea-
ture MMUs which support multiple page
sizes.

Flexible While a generic solution allows for
easy portability, it does not indicate how
well such a solution takes advantage of
an architectures support for multiple page
sizes. The design should be flexible
enough to encompass any support.

Simple The more complex a solution is, the
more likely it is to have subtle bugs, and
the harder it is to understand. While we
can foresee a point at which a more com-
plex solution may be necessary, the initial
design should be as simple as possible.

Minimal The Linux kernel is a large and com-
plex system, so a minimalist approach
is required: subsystem modifications that

9A count of the number of architectures in the main-
line kernel reveals 15 implementations that are more or
less complete

Ottawa Linux Symposium 2002 579

are not absolutely required may result in
a solution that is overly complex and un-
wieldy. Therefore, we try to limit our
changes to the VM subsystem only.

3.2 Semantics

This section discusses the semantics associated
with supporting multiple page sizes: how the
page size for a range of virtual addresses is
chosen and whether the kernel considers this
page size mandatory or advisory.

The following terms are used throughout this
and later sections:

Base pageA base pageis the smallest page
supported by the kernel, usually the mini-
mum dictated by the hardware.

Superpage A superpageis a contiguous se-
quence of2n base pages.

Order A superpage’sorder refers to its size.
A superpage of ordern contains2n base
pages.

Sub-superpageA sub-superpageis a super-
page of orderm, contained in a superpage
of ordern, such thatn ≥ m. Note that
a base page is a sub-superpage with order
m = 0

order = 2

order = 4

base page (order = 0)

Figure 2: A superpage and sub-superpage

These concepts are illustrated in Figure 2
which shows a superpage of order 4 contain-
ing a sub-superpage of order 2.

3.2.1 Visibility

There are two basic approaches to supporting
multiple page sizes: restrict knowledge of su-
perpages to the kernel or export page size deci-
sions to user space.

In the former approach, the kernel can create
superpage mappings based on some heuristic,
for example, a dynamic heuristic based on TLB
miss information, or a static heuristic based on
the type of mapping such as whether the map-
ping is for code, data, or whether it is anony-
mous. This approach is transparent to appli-
cations, and should result in all applications
benefiting. It is, however, more complex, and
would rely on effective heuristics to map a vir-
tual address range with large pages.

In the latter approach, an application explic-
itly requests a section of its address space be
mapped with superpages. This request could
come in the form of programmer hints, or via
instrumentation inserted by a compiler. While
this approach requires applications to have spe-
cific knowledge of the operating system’s sup-
port for large pages, it is much simpler from the
kernels perspective. The major problem with
this approach is that it requires the application
programmer to have a good understanding of
the applications memory behaviour.

We have decided on the latter approach, due
to its simplicity: the former approach would
necessitate developing heuristics that require
fine-tuning and rewriting.

3.2.2 Granularity

This section discusses the granularity of con-
trol that the application has over page sizes.
The approaches considered were:

per address spaceWhile making page sizes

Ottawa Linux Symposium 2002 580

per address space would simplify some
aspects of the implementation, it is too re-
strictive. We expect applications to have
regions of their address space where the
use of large pages would be a waste of
memory;

per address space region type10

This approach also has its drawbacks:
there is no clear set of types, although
the region’s attributes (e.g., executable,
anonymous) could be used, so again this
approach is limited without any clear
gains;

per address space regionThis approach is
more flexible than either of the above ap-
proaches, however it does not allow for
hotspot mapping within a region; or

over an arbitrary address space range.
This is the most flexible approach, how-
ever, there are implementation issues: the
kernel would need to keep track of the
applications desired page sizes for the
entire address space.

To allow maximum flexibility while minimis-
ing implementation overhead, we have decided
upon a combination of the last two options: an
application can dictate the page size for an ar-
bitrary address range only if that range belongs
to an address space region. This means that
an application can map a region hotspot with
large pages, but leave the rest of the region at
the system’s default page size.

3.2.3 Interface

This section discusses the guarantees given
about the actual page size used to map an ad-
dress space range.

10A region is a defined part of the address space that
created by themmapsystem call, for example.

The kernel can take a best-effort approach to
mapping a virtual address with the applications
indicated page size, falling back to a smaller
page size if the larger page is not immediately
available. Alternatively, the kernel can block
the application until the desired page size be-
comes available, copying any existing pages to
the newly allocates superpage.

Rather than mandating either behaviour, we
have elected to allow the application to choose
between the two alternatives. In situations
where selecting a larger page size is merely an
opportunistic optimisation for a relatively short
running application, the first behaviour is desir-
able. In cases where the application is expected
to execute for an extended period of time, how-
ever, the expected performance improvement
may be greater than the expected wait time, and
so waiting for a superpage to become available
is justified. If an application is expected to re-
use a large mapping over a number of invoca-
tions (a text page or a data file, for example),
the application will benefit by waiting for the
large page to be constructed.

4 Implementation

This section discusses the implementation of
the design in Section 3.

4.1 Interface

An application requires some mechanism to
communicate a desired page size to the kernel.
A system call is the conventional mechanism
for communicating with the kernel. In this sec-
tion, we discuss our implementation of a sys-
tem call interface for setting the page size for a
region of the address space.

We considered three options: add a parameter
to themmapsystem call which specifying the
page size for the new mapping; implement a

Ottawa Linux Symposium 2002 581

new system call,setpagesize ; and add an-
other operation to themadvise system call.

Using themmapsystem call would appear to
be an obvious solution. It has, however, several
negative aspects: firstly, themmapsystem call
is complex and is frequently used. Modifying
mmap’s argument types would break existing
code, as would adding extra parameters. Sec-
ondly, the application would be restricted to the
one page size for that mapping, for the life of
the mapping.

Using a new system call would be the clean-
est alternative, however this requires signifi-
cant modifications to all architectures, and is
generally frowned upon where an alternative
exists.

Using themadvise system call would allow
an application to modify the page size at any
point during its execution and would not af-
fect existing applications, as any modification
would be orthogonal to current operations.

We therefore added asetregionorder(n) oper-
ation to themadvise system call, wheren is
the new page order. We implemented this us-
ing the advise parameter of themadvise
system call. The upper half of the parameter
word contains the desired page order, while the
lower half indicates that asetregionorderoper-
ation is to be performed.

Within the kernel, themadvise system call
verifies that the requested page order is actually
supported by the processor, and sets the VMA’s
order attribute accordingly.

4.2 Address space data structures

This section discusses the modifications made
to the kernel’s representation of a virtual ad-
dress space. The application can modify the
page size used by a VMA at runtime, either
by an explicitmadvise system call or by in-

structing the kernel to fall back to a smaller
page size if a larger is not available. Conse-
quently, the kernel needs to keep track of the
following: firstly, the page size indicated by
the application, which is associated with the
VMA; secondly, the actual page size used to
map a virtual address.

To communicate the requested page order to
the VMA’s nopage function, another param-
eter was added. This parameter indicates the
desired page order at invocation, and contains
the actual page size upon return. We rely upon
the fact that subsystems which have not been
modified will only return base pages.

16K 4M

Physical memory

Page Table

Page Directory

Figure 3: The modified page table structure

To store the superpage size that actually maps
the virtual address range, the PTE includes the
order of the mapping. To achieve this, we as-
sociated unused bits within the PTE with dif-
ferent page sizes, although the actual bits and
sizes may be dictated by hardware.

The page table structure was also modified: su-
perpages which span a virtual address range
greater or equal to that of a non-leaf page direc-
tory entry are collapsed until they fit into a sin-
gle page table node (see Figure 3). This means
that we can now have valid page table elements
at each level of the address translation hierar-
chy. This affects kernel routines which scan
the page table, for example, the swap routine.

Although the main reason behind this was to

Ottawa Linux Symposium 2002 582

conform to the page table structure defined by
the x86 family, it also has other advantages:
the kernel can use positional information to
determine the page size, rather than relying
solely on the information store in the PTE. This
means that the number of page sizes supported
by the kernel is not restricted by the number
of unused bits in the PTE (which can be quite
few). There may also be some performance ad-
vantage as the TLB refill handler does needs to
traverse fewer page table levels.

4.3 Representing superpages in physical mem-
ory

This section discusses the representation of su-
perpages in thepage data structure. The ker-
nel needs to keep track of various properties of
the superpage, such as whether it is freeable,
whether it needs to be written back, etc. The
superpage can include sub-superpages which
are in use: any superpage operation that affects
the sub-superpage also affects the superpage,
and this needs to be taken into consideration.

We considered the following representations
of superpages: firstly, an explicit hierarchy of
page data structures, with one level for each
possible order. A superpage would then be op-
erated on using thepage data structure at the
appropriate level. This implies that each oper-
ation would only have to look at a single in-
stance of thepage data structure.

This approach is the cleanest in terms of se-
mantics. Unfortunately, the kernel makes cer-
tain assumptions about the one-to-one relation-
ship between thepage data structure and the
actual physical page. Implementing this de-
sign would violate those assumptions and also
involve significant modifications to the lower
levels of the kernel.

The alternative involves a modification to the
existing page data structure, such that each
page contains the order of the superpage it be-

longs to. A superpage of ordern would then be
operated on by iterating over all2n base pages.
This approach conforms to the kernels existing
semantics. It is, however, subject to various
race conditions, and is inelegant.

We implemented a combination of the two ap-
proaches presented: while we do not have an
explicit hierarchy, there is an implicit hierar-
chy created by storing the superpage’s order in
each component base page. We logically parti-
tion the properties of a page into those associ-
ated with superpages, or with base pages.

This partitioning was guided by the usage of
these properties: if the property was used in
the VM subsystem only, it was usually put in
the superpage partition. If the property was
used for I/O, it was put into the base page par-
tition. The properties were then partitioned as
follows:

• the page’susage count is per super-
page. As all allocation are done in terms
of superpages, it follows that a superpage
is only freeable if no sub-superpage is be-
ing used. This means that whenever a sub-
superpage’s usage count is modified, the
actual modification is applied to the super-
page;

• themapping andoffset properties are
per base page, as they are only used to per-
form I/O on the page;

• the wait queue is per base page, as it
is used to signal when I/O has completed;

• theflags are partitioned as follows:

locked is per base page, as it is used pri-
marily to indicate that a page is un-
dergoing I/O;

error is per base page, as it is used to in-
dicate an I/O error in the page;

Ottawa Linux Symposium 2002 583

referenced is per superpage, as it is used
by the VM subsystem only;

uptodate is per base page, as it is set
when I/O successfully completes on
a page;

dirty is per superpage, as it is primarily
used in the VM subsystem;

lru is per superpage, as it indicates
whether a page is in the LRU list,
and the LRU list is now defined to
contain superpages;

active is per superpage, as it indicates
whether a page is in the active list,
and the active list is now defined to
contain superpages;

launder is per superpage, as it is only
used in the swap subsystem, and the
swap subsystem has to deal with su-
perpages.

All other flags are per base page, as they
reflect static properties of the page, (for
example, whether the page is in the high-
mem zone).

Operations that iterate over each base page in a
superpage are required to operate in ascending
order to avoid deadlock or other inconsisten-
cies.

4.4 Page allocation

The current page allocator supports multiple
page sizes, however it has 2 major problems:
firstly, non-swappable pages can be spread
throughout each zone, causing memory frag-
mentation; secondly, if a large page is required,
but a user (i.e. swappable) page is in the way,
there is no efficient way to find all users of that
page.

While the latter problem can be solved by Rik
van Riel’s reverse mapping patch[18], the for-
mer is still an issue. For this implementation,

we have created anotherlargepagezone, which
is used exclusively for large pages. While this
is not a permanent solution, it does aid in de-
bugging, and solves the immediate problem for
specialised users. The size of thelargepage
zone is fixed at boot time.

For maximum flexibility, the current allocator
should be modified so that pages which are not
pageable are allocated in so that they do not
cause fragmentation. Also, pages which are
allocated together will probably be freed to-
gether, so clustering pages at allocation time
may also reduce fragmentation.

4.5 The Page Cache

To support mapping files with superpages, the
page cache needs to be modified. The bulk
of these modifications are in thenopage and
affiliated functions, which attempt to allocate
and read in a superpage of the requested or-
der. To avoid any problems due to overlapping
superpages, we require a superpage of order
n also have file ordern — that is, the align-
ment of the superpage in the virtual, physical,
and file space is the same. For example, a 64K
mapping of a file should be at a file offset that is
a multiple of 64K, a virtual offset that is a mul-
tiple of 64K, and a physical offset of 64K11.

The changes to thenopage function are es-
sentially straightforward. If an application re-
quests a superpage which contained in the page
cache, it get back a sub-superpage whose order
is the minimum of the requested order and the
superpage’s order. If a superpage does not ex-
ist, a page of the requested order is allocated,
each base page is read in, and the superpage is
added to the LRU and active queues.

Because reading in a large page can cause sig-
nificant I/O activity (the amount of time re-

11The virtual and physical alignment constraints are
common to most architectures.

Ottawa Linux Symposium 2002 584

quired to read in 4MB of data from a disk can
be significant), we may need to read in base
pages in a more intelligent fashion. One so-
lution is to read in the sub-superpage which
contains the address of interest first and sched-
ule the remainder of the superpage to be read
in after the first sub-superpage has completed.
When the rest of the superpage has completed
I/O, the address space can be mapped with the
superpage. Note that this is similar to the early
restart method used in some modern processors
to fetch a cache line.

4.6 The swap subsystem

In our current implementation, a region
mapped with superpages will not be swapped
out. Swapping a superpage would negate any
performance gained by its use due to the high
cost of disk I/O. The superpage may need to be
written back, however, and this is handled in
an essentially iterative manner — when the su-
perpage is not being used by any applications,
and it is chosen by the swap subsystem to be
swapped out (i.e. when it appears as a victim
on the LRU list), each base page is flushed to
disk, and the superpage is freed.

In the future, a number of approaches present
themselves. The kernel may, for example, split
up a superpage into smaller superpages over a
series of swap events, until a threshold super-
page order is met, and then swap that out. Al-
ternatively, the kernel may just swap out the
entire page.

4.7 Architecture specifics

This section discusses the architecture specific
aspects of our implementation. Although our
implementation attempts to be generic, the ker-
nel requires knowledge of the architecture’s
support for multiple page sizes and the addi-
tional page table requirements.

The architecture specific layer in our im-
plementation consists mainly of page table
operations, i.e., creating and accessing a
PTE. To constructed a PTE, the kernel now
usesmk_pte_order , which is identical to
mk_pte 12 except for an additionalorder pa-
rameter. This function creates a PTE with
which maps a page of orderorder . To al-
low the kernel to inspect a PTE, apte_order
function is required. This function returns the
order of a PTE.

On architectures which use an additional page
table (usually because it is required by the
hardware), theupdate_mmu_cache needs
to be modified to take superpages into con-
sideration. The kernel also requires a mech-
anism to verify that a page size is sup-
ported. This is achieved by implementing the
pgorder_supported function.

4.8 Anatomy of a large page fault

In systems with a hardware loaded TLB, a TLB
miss is transparent to the kernel, and so is not
different in the case of a large page. In ar-
chitectures with a software TLB refill handler,
the new page table structure needs to be taken
into consideration: the handler needs to check
whether each level in the page table hierarchy
is a valid PTE. The refill handler also needs to
extract the page size from the entry and insert
the correct(V A, PA, size) entry into the TLB.

If there is no valid mapping in the page table, a
page fault occurs. As with the standard kernel,
the VMA is found and the access is validated.
The PTE is then found, although a page table
node is not created if it is required — the page
table node is allocated later on in the page fault
process. This postponement in allocating page
table nodes is required as the kernel does not
know what size the allocated page will be: this

12For backwards compatibility, mk_pte calls
mk_pte_order with order 0

Ottawa Linux Symposium 2002 585

is determined when the page is allocated.

On a write access to a page marked read-only
in the PTE, a private copy is created and re-
places the read-only mapping. This involves
copying the entire superpage, so it is a rela-
tively expensive operation — as with all super-
page operations, there will only be overhead if
the operations would not have been done on
each base page. For example, writing a sin-
gle character to a 4Mb mapping will result in
the whole 4Mb being copied, which would not
have occurred if the region was mapped with
4K pages. Conversely, if most or all of the
base pages are to be written to, copying them
in one operation may reduce the total overhead
due to caching effects and the reduced number
of page faults.

If no mapping exists, the VMA’sorder field
is consulted to determine the application’s de-
sired page size. If there are pages mapped into
the region defined by this order and the fault
address, and the application has elected to op-
portunistically allocate superpages, the kernel
selects the largest supported order that contains
the fault address, no mapped pages, and is less
than or equal to the desired order. Otherwise,
the application’s desired page order is selected.

After the kernel has determined the correct
page order, it examines the VMA’snopage
method. If thenopage method is not defined,
a zeroed superpage is allocated and inserted
into the page table. Otherwise, thenopage
method is called with the calculated page order,
and the result is inserted into the page table.

If the file that backs the VMA is using the page
cache to handle page faults, the kernel searches
the page cache for the file data associated with
the fault address. If a superpage is found, the
minimum of the superpage’s order and the re-
quested order is used to determine the sub-
superpage to be validated. The sub-superpage
is then checked to ensure its contents are valid,

I-TLB 4K pages 128 entries, 4-way SA
I-TLB 4M pages Fragmented into 4K I-

TLB
I-L1 cache 12K micro-ops
D-TLB 4K pages 64 entries, FA
D-TLB 4M pages Shared with 4K D-TLB
D-L1 cache 8K, 64 byte CL, 4-way

SA
unified L2 cache 256K, 64-byte CLS, 8-

way SA

Table 1: Pentium 4 processor’s memory sys-
tem characteristics (Notation: CL - cache lines;
CLS - cache lines, sectored; SA - set associa-
tive; FA - fully associative).

and if so, it is returned. If the sub-superpage’s
contents is not valid, each base page is read in,
and the sub-superpage is returned.

5 Experimental Results

In this section, we present and analyze the ex-
perimental data from our implementation of
multiple page size support in the Linux kernel.

All results in this section were generated on a
1.8GHz Pentium 4 system with 512M of RAM.
The Pentium 4 processor has separate instruc-
tion and data TLBs and supports two different
page sizes: 4K and 4M13. Table 1 shows the pa-
rameters of the memory system of Pentium 4.

5.1 Validating the Implementation with a
Micro-benchmark

This section presents and discusses the data
validating the accuracy of our implementa-
tion and demonstrating the benefits of multi-
ple page size support for a simple microbench-
mark. The use of a simple benchmark makes
it possible to reason in detail about its memory

13Note that with large physical memory support
(>4GB), the large page size on Pentium 4 processors
is 2M.

Ottawa Linux Symposium 2002 586

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

T
im

e
(m

ill
is

ec
on

ds
)

Test size (megabytes)

DTLB micro-benchmark (L1-DCache)
1000 iterations, 128k increments

4k pagesize
4M pagesize

0
1
2
3
4
5
6
7
8
9

0 2 4 6 8 10 12 14 16

4k
:4

M

Test size (megabytes)

DTLB micro-benchmark (L1-DCache)
1000 iterations, 128k increments

4k:4M

Figure 4: The execution times of the microbenchmark with small 4K pages and large 4M pages
(left) and the ratios of execution times (right).

behavior and its interactions with the memory
system.

The benchmark allocates a heap and initializes
it with data. We vary the heap size from 128K
to 32M in 128K increments in order to adjust
the working set of the benchmark. The bench-
mark performs 1000 iterations during each of
which it strides through the heap in the follow-
ing manner: for each 4K page, it accesses one
word of data. Assuming that caches and TLBs
do not contain any information, each data ac-
cess brings one cache line of PTEs and one
cache line of data into the data L1 cache. To
ensure that consecutive accesses do not com-
pete for cache lines in the same cache set, we
increment the offset at which we access data
within a page by the size of a cache line. We
also access every sixteenth page to ensure that
we use only one PTE per L1 cache line14.

We performed two sets of experiments. In the
first set, the heap was mapped with 4K pages.
In the second set, the heap was mapped with
4M pages. Both the 4K and the 4M cases have
several inflection points. The first two inflec-
tion points for the 4K case are at 4M and 6M,
and the first two inflection points for the 4M

14On our Pentium 4 machine, one 64-byte cache line
accommodates sixteen 4-byte PTE entries.

case are at 8M and 10M. The first inflection
point indicates that the important working set
(consisting of data and PTEs) can no longer
fit in the fast L1 cache. Up to this point, the
benchmark achieves full L1 cache reuse (both
data and PTEs fit in the L1 cache)15. Between
the first and the second inflection points, the
benchmark achieves partial cache reuse (some
of the data and PTEs remain in L1 across iter-
ations). After the second inflection point, there
is no L1 cache reuse (neither data nor PTEs re-
main in the L1 cache across iterations). The
working set, however, still fits in the larger L2
cache. The performance of the 4K case de-
grades sooner than that of the 4M case due to
the space overhead of PTEs16. The 4M case
does not suffer from this behavior as it uses
few PTEs and, hence, significantly less space
in the L1 data cache; each cache line can ac-
commodate 16 PTEs mapping a total of 64M
of contiguous address space.

By extending the portion of the graph where

15Coincidentally, because we access one cache line of
data per 4K page and access every sixteenth page, the
64-entry D-TLB begins thrashing at 4M, too.

16Namely, the PTEs occupy the same number of cache
lines as the data. Consequently, the number of L1 misses
begins to grow once the number of distinct pages we
touch exceeds one half the number of cache lines in the
L1 data cache.

Ottawa Linux Symposium 2002 587

the benchmark achieves full L1 cache reuse
(i.e., past the first inflection point to the right),
one can estimate the performance of the bench-
mark on a system with increasingly larger L1
cache. Similarly, by extending the portion of
the graph where the benchmark experiences no
L1 cache reuse, one can estimate the perfor-
mance of the benchmark on a system with a
slower L1 data cache (whose access time is
equal to the access time of the L2 cache of our
configuration). The next inflection point (not
shown on the graph) will occur when the L2
cache starts to saturate.

5.2 Assessing Performance for Traditional
Workloads

This section discuss the performance of mul-
tiple page size support in the context of the
SPEC CPU2000 benchmark suite[16], specif-
ically CINT2000, the integer component of
SPEC CPU2000.

The CINT2000 benchmark suite was designed
to measure the performance of a CPU and
its memory subsystem. There are 12 integer
benchmarks in the suite. These are thegzip
data compression utility,vpr circuit placement
and routing utility, gcc compiler, mcf mini-
mum cost network flow solver,crafty chess
program, parser natural language processor,
eonray tracer,perlbmk17 perl utility, gapcom-
putational group theory,vortexobject oriented
database,bzip2 data compression utility, and
twolf place and route simulation benchmarks.
All applications, except foreon, are written in
C. Theeonbenchmark is written in C++.

We noted that the applications in the
CINT2000 suite use themalloc family
of functions to allocate the majority of their
memory. To provide the application with mem-
ory backed by large pages via themalloc

17Due to compilation difficulties, this benchmark was
excluded from out results

function, we modified thesbrk function.
The memory allocator usessbrk to allocate
memory at page granularity; it then allocates
portions of this memory to the application
upon request. Thesbrk function ensures
that the pages it gives to memory allocator are
valid; i.e., it grows the process’s heap using
thebrk system call when required.

We modified thesbrkfunction so that it returns
memory backed by large pages. At the first re-
quest,sbrk maps a large region of memory,
and uses themadvise system call to map that
region with large pages. Whenever the mem-
ory allocator requests a memory,sbrk returns
the next free page in this region.

If the memory request is greater than some
threshold (128K), the current memory alloca-
tor will allocate pages using themmapsystem
call. To ensure that the memory allocator re-
turned memory backed by large pages, we dis-
abled this feature so that the allocator always
uses oursbrk .

To allow the applications to use our modi-
fied memory allocator andsbrk functions, we
placed these functions in a shared library and
used the dynamic linker’s preload functional-
ity. We set theLD_PRELOADenvironment
variable to out library, so the dynamic linker
will resolve anymalloc function calls in the
application to our implementation. In this way,
no recompilation is necessary for the applica-
tions to use large pages.

Table 2 shows the performance results we ob-
tained using large pages. Overall, the results
obtained are encouraging, many applications
showing approximately 15% improvement in
run time.

Ottawa Linux Symposium 2002 588

Benchmark Improvement (%)
164.gzip 12.31
175.vpr 16.72
176.gcc 9.29
181.mcf 9.43
186.crafty 15.22
197.parser 16.30
252.eon 12.07
254.gap 5.91
255.vortex 22.27
256.bzip2 14.37
300.twolf 12.47

Table 2: Performance improvements for SPEC
CPU2000 integer benchmark suite using large
pages

5.3 Assessing Performance with Emerging
Workloads

This section discusses the impact of large
pages on the performance of Java workloads.
Java applications, and SPECjvm98 [15] ap-
plications in particular, are known to have to
have poor cache and page locality of data ref-
erences [11, 14]. To demonstrate the advan-
tages of large pages for Java programs, we con-
ducted a set of experiments with thefast con-
figuration of Jikes Research Virtual Machine
(Jikes RVM) [1, 2] configured with the mark-
and-sweep memory manager (consisting of an
allocator and a garbage collector) [3, 10].

To get the baseline numbers, i.e., where the
heap is mapped with 4K pages, we ran the
SPECjvm98 applications with the largest avail-
able data size on an unmodified Jikes RVM.
The virtual address space in Jikes RVM con-
sists of three regions: thebootimage region, the
small heap(the heap region intended for small
objects), and thelarge heap(for objects whose
size exceeds 2K). We modified thebootim-
age runnerof Jikes RVM18 to ensure that the

18Thebootimage runneris a program responsible for

small heapis aligned to a 4M boundary and is
mapped by 4M pages.

The decision to map only thesmall heapto
large pages was based on the observation that,
with a few exceptions, most objects created by
SPECjvm98 are small. We then repeated the
experiments by mapping all three heap regions
to large pages. We also varied the size of the
small heapfrom 16M to 128M and computed
the performance improvements with 4M pages
over a configuration that uses only 4K pages.

For each application, Figure 5 shows the min-
imum, the average, and the maximum per-
formance improvements when thesmall heap
is mapped to large pages (left) and when all
three heap regions are mapped to large pages
(right). It can be seen that for several applica-
tions the performance improvements are con-
sistent and range from 15% to 30% even if only
the small heapis mapped to large pages. The
compress benchmark is the only one in the
suite that creates a significant number of large
objects and only a few small objects, and so
does not benefit from large pages in this case.

When all three heap regions are mapped to
large pages, we observe an additional 5% to
10% performance improvement. For many
applications, the performance improvement
ranges from 20% to 40% over the base case.
It can also be seen that thecompress bench-
mark enjoys a significant performance boost.

5.4 Discussion

The observed benefits of large page support
can vary and depend on a number of factors
such as the characteristics of applications and
architecture. In this section, we discuss some
of these factors.

mapping memory for Jikes RVM and the heap, loading
the core of the RVM into memory, and then passing con-
trol to the RVM.

Ottawa Linux Symposium 2002 589

0 5 10 15 20 25 30 35 40 45 50

_201_compress

_202_jess

_205_raytrace

_209_db

_213_javac

_222_mpegaudio

_227_mtrt

_228_jack

Performance improvement (percent)

P
erform

ance im
provem

ent w
ith the sm

all heap
m

apped to large pages

R
atio

0 5 10 15 20 25 30 35 40 45 50

_201_compress

_202_jess

_205_raytrace

_209_db

_213_javac

_222_mpegaudio

_227_mtrt

_228_jack

Performance improvement (percent)

P
erform

ance im
provem

ent w
ith all three heap regions

m
apped to large pages

R
atio

Figure 5: Summary of results for SPECjvm98.

A small number of TLB entries covering large
pages19 may not be sufficient for a realistic ap-
plication to take full advantage of large page
support. If the working set of an application is
scattered over a wide range of address space,
the application is likely to experiencing thrash-
ing of a relatively small 4M page TLB, in some
cases to a much larger extent than with the 64-
entry 4K page data TLB. This is a problem on
processors like Pentium II and Pentium III.

Applications executing on processors with
software loaded TLBs are expected to bene-
fit from large pages. The TLB miss overhead
of an application executing on a processor that
handles TLB misses in hardware (such as x86
processors) can also be significant unless most
page tables of an application can fit in the L2
cache and co-reside with the rest of the work-
ing set. This is highly unlikely for applications
of interest: assuming that each L2 cache line

19In Pentium II and Pentium III microprocessors,
there are eight 4M page data TLB entries some of which
are used by the kernel.

is 32 bytes and each PTE is 4 bytes, one L2
cache line can cover eight 4K pages (a total of
32k). Hence, a 512K L2 cache can accommo-
date PTEs to cover only 512M of address space
(this does not leave any space for data in the
L2 cache). Consequently, for applications with
relatively large working sets, it is highly likely
that a significant fraction of PTEs would not
be found in the L2 cache on a TLB miss. Al-
though hardware makes reloading a TLB from
a L2 cache relatively inexpensive, many TLB
misses may need to be satisfied directly from
memory.

The Java platform [7] presents another set of
challenges. For performance reasons, state-of-
the-art JVMs compile Java bytecode into exe-
cutable machine code [1, 2, 9]. In some virtual
machines, such as Jikes RVM [1, 2], generated
machine code is placed into the same heap as
application data and is managed by the same
memory manager. It has been observed that the
code locality of Java programs tends to be bet-
ter than their data locality [14]. This suggests
that application code should reside in small

Ottawa Linux Symposium 2002 590

pages while application data should reside in
large pages. In Jikes RVM, generated code
and data objects are indistinguishable from the
memory manager’s point of view and are in-
termixed in the heap. Because a memory re-
gion can only be mapped to either small or
large pages, a tradeoff must be made. Map-
ping the entire heap region to large pages may
not be effective since application code may not
need to use large pages. What is worse is that
some processors have a very small number of
4M page instruction TLB entries20 which can
lead to thrashing of an instruction TLB. Con-
sequently, for best performance results, a JVM
should be made aware of the constraints im-
posed by the underlying OS and hardware, and
segregate application code and data into sepa-
rate well-defined regions.

For Java programs, some performance gains
are expected to come from better garbage col-
lection (GC) performance. Much work during
garbage collection is spent on chasing point-
ers in objects to find all reachable objects
in the region of the heap that is being col-
lected [4]. Many reachable objects can be scat-
tered throughout the heap. As a result, the lo-
cality of GCs is often worse than that of ap-
plications [11]. This behavior is representa-
tive of systems employing non-moving GCs
which have to be used when some objects can-
not be relocated (e.g., when not all pointers
can be identified reliably by a runtime). Con-
sequently, large pages can improve TLB miss
rates during GC (and overall GC performance).
Applications that perform GC frequently, have
a lot of live data at GC times, or whose live
data are spread around the heap can benefit
from large page support and achieve short GC
pauses. Short pauses are critical for software
systems that are expected to have relatively
predictable response times.

20There are only two 4M page instruction TLB entries
in Pentium II and Pentium III processors.

The availability of large pages can also be ben-
eficial for programs that use data prefetching
instructions. Modern processors squash a data
prefetching request if the appropriate transla-
tion information is not available in the data
TLB. Consequently, high TLB miss rates of
applications can lead to many prefetching re-
quests being squashed, thereby leading to in-
effective utilization of memory bandwidth and
reduced application performance[14]. The use
of large pages can help reduce TLB misses and
take full advantage of prefetching hardware.
Further, a hardware performing automatic se-
quential data and code prefetching stops when
a page boundary is crossed and has to be
restarted at the beginning of the next page21.
Large pages make it possible for such hard-
ware to run for a longer period of time and to
perform more useful work with fewer interrup-
tions.

6 Related work

Ganapathy and Schimmel [6] discussed a de-
sign of general purpose operating system sup-
port for large pages. They implemented their
design in the IRIX operating system for the
SGI ORIGIN 2000 system that employs the
MIPS R10000 processors (which handle TLB
misses in software).

An important aspect of their approach is that it
preserves the format ofpfdat and PTE data
structures of the IRIX OS. Thepfdat struc-
tures represent pages of a base size and contain
no page size information (just as in the original
system). Large pages are simply treated as a
collection of base pages. Consequently, only a
few parts of the OS kernel need to be aware of
large pages and need to be modified.

The PTEs contain the page size information but

21This is due to the fact that such automatic prefetch-
ing hardware uses physical addresses for prefetching.

Ottawa Linux Symposium 2002 591

the page table layout is unchanged. They use
one PTE for each base page of a large page
and create a set of PTEs that correspond to all
addresses falling withing a large page. As ex-
pected, for the large page PTEs, the page frame
numbers are contiguous.

To support multiple page sizes, the TLB miss
handler needs to set a page mask register in the
processor on each TLB miss. To ensure that
programs that do not use large pages do no in-
cur unnecessary runtime overhead, a TLB han-
dler is configured per process. The allocation
policy is specified on a command line (on a per
segment basis) before starting an application.
Hence, applications do not need to be modified
to take advantage of large pages, and applica-
tions that do not use large pages are not put at
disadvantage.

The advantage of this design is that it allows
different processes to map the same large page
with different page sizes. The disadvantages
are (i) this approach does not reduce the size
of page tables for applications that use large
pages and (ii) the information stored in PTEs
that cover a large page needs to be kept consis-
tent.

They demonstrated that applications from
SPEC95 and NAS parallel suite do benefit
from large pages. For these applications,
they registered 80% to 99% reduction in TLB
misses and 10% to 20% performance improve-
ment. A business application like the TPC-C
benchmark (which is known to have poor lo-
cality and large working set) was also shown
to benefit from large pages. The authors report
70% to 90% reduction in TLB misses and 6%
to 9% performance improvement for this appli-
cation.

Subramanian et al. [17] describe their imple-
mentation of multiple page size support in the
HP-UX operating system for the HP-9000 Se-
ries 800 system which uses the PA-8000 mi-

croprocessor.

In their design the VM data structures such
as the page table entry, virtual and physical
page frame descriptors are based on the small-
est page size supported by the processor. A
large page is defined as a set of contiguous
small base size pages. Hence, this design is
conceptually similar to that of Ganapathy and
Schimmel [6].

The authors note that an important advantage
of this approach is that it does not require
changes to many parts of the OS. However,
it neither reduces the sizes of data structures
for applications that use large pages. In ad-
dition, locking, access, and updates of data
structures for large pages are somewhat ineffi-
cient. In spite of the benefits of space efficiency
and the efficiency of updates, they choose not
to use variable page size based data structures
because, as the authors indicate, such an ap-
proach would lead to more changes in the OS
and would have negative performance implica-
tions (e.g., a high page-fault latency in certain
cases).

In their scheme, applications do not need
to be recompiled to take advantage of large
pages. The hints specifying large page sizes are
region-based and are used at page fault time. In
some cases, such as for performance reasons,
the OS can ignore these page size hints and fall
back to mapping small pages.

They implemented their design in the HP-
UX operating system and studied the impact
of large pages on several VM benchmarks,
SPEC95 applications, and one commercial ap-
plication. The reported performance improve-
ments range from 15% to 55%.

Ottawa Linux Symposium 2002 592

7 Conclusions and Further Work

Many modern processors support pages of var-
ious sizes ranging from a few kilobytes to sev-
eral megabytes. The Linux OS uses large pages
internally for its kernel (to reduce the over-
head of TLB misses) but does not expose large
pages to applications. Growing memory la-
tencies and large working sets of applications
make it important to provide support for large
pages to the user-level code as well.

In this paper, we discussed the design and im-
plementation of multiple page size support in
the Linux kernel. We validated our imple-
mentation on a simple microbenchmark. We
also demonstrated that realistic applications
can take advantage of large pages to achieve
significant performance improvements.

This work opens up a number of interesting di-
rection. In the future, we plan to modify ker-
nel’s memory allocator to further support large
pages. We would also like to evaluate the im-
pact of large pages on database and web work-
loads. These types of workloads are known
to have large working sets and poor locality.
Achieving high performance on commercial
workloads is crucial for continuing success of
Linux.

The latency of fetching a large 4M page from
a disk (as a result of a page fault) can be sig-
nificant. We consider implementing the “early
restart” feature that would fetch and map the
critical chunk of data first and complete fetch-
ing the remaining data chunks later, thereby re-
ducing pauses experienced by applications.

Some architectures support a number of differ-
ent page sizes (e.g., 16K, 256K, 4M, and 64M).
We would be interested in evaluating the per-
formance of applications on systems that have
this architectural support.

Acknowledgements

We would like to thank Pratap Pattnaik and
Manish Gupta for supporting this work. We
also like to thank Chris Howson for all of his
helpful advice.

References

[1] B. Alpern, C. R. Attanasio, J. J. Barton,
M. G. Burke, P.Cheng, J.-D. Choi, A. Cocchi,
S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo,
J. R. Russell, V. Sarkar, M. J. Serrano, J. C.
Shepherd, S. E. Smith, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeño
Virtual Machine.IBM System Journal, 39(1),
2000.

[2] B. Alpern, A. Cocchi, D. Lieber, M. Mergen,
and V. Sarkar. Jalapeño - a
compiler-supported Java virtual machine for
servers. InWorkshop on Compiler Support
for Software System (WCSSS 1999), Atlanta,
GA, May 1999.

[3] C. Attansio, D. Bacon, A. Cocchi, and
S. Smith. A comparative evaluation of
parallel garbage collectors. InProc. of
Fourteenth Annual Workshop on Languages
and Compilers for Parallel Computing
(LCPC), Cumberland Falls, Kentucky, Aug.
2001.

[4] H.-J. Boehm. Reducing garbage collector
cache misses. InProc. of ISMM 2000, Oct.
2000.

[5] J. Bonwick. The slab allocator: An
object-caching kernel memory allocator. In
Summer 1994 USENIX Conference, pages
87–98, 1994.

[6] N. Ganapathy and C. Schimmel. General
purpose operating system support for
multiple page sizes. InProc. of the 1998
USENIX Technical Conference, New
Orleans, USA, June 1998.

Ottawa Linux Symposium 2002 593

[7] J. Gosling, B. Joy, and G. Steele.The
Java(TM) Language Specification.
Addison-Wesley, 1996.

[8] J. L. Hennessy and D. A. Patterson.
Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers,
1995.

[9] The Java Hotspot Performance Engine
Architecture.
http://java.sun.com/products
/hotspot/whitepaper.html.

[10] R. Jones and R. Lins.Garbage Collection:
Algorithms for Automatic Dynamic Memory
Management. John Wiley and Sons, 1996.

[11] J.-S. Kim and Y. Hsu. Memory system
behavior of Java programs: Methodology and
analysis. InProc. of SIGMETRICS 2000,
June 2000.

[12] C. Navarro, A. Ramirez, J.-L. Larriba-Pey,
and M. Valero. Fetch engines and databases.
In Proc. of Third Workshop On Computer
Architecture Evaluation Using Commercial
Workloads, Toulouse, France, 2000.

[13] V. Oleson, K. Schwan, G. Eisenhaur,
B. Plale, C. Pu, and D. Aminv. Operational
information systems - an example from the
airline industry. InFirst USENIX Workshop
on Industrial Experiences with Systems
Software (WIESS), San Diego, California,
October 2000.

[14] Y. Shuf, M. J. Serrano, M. Gupta, and J. P.
Singh. Characterizing the memory behavior
of Java workloads: A structured view and
opportunities for optimizations. InProc. of
SIGMETRICS 2001, June 2001.

[15] Standard Performance Evaluation Council.
SPEC JVM98 Benchmarks, 1998.
http://www.spec.org/osg/jvm98/ .

[16] Standard Performance Evaluation Council.
SPEC CPU2000 Benchmarks, 2000.
http://www.spec.org/osg
/cpu2000/ .

[17] I. Subramanian, C. Mather, K. Peterson, and
B. Raghunath. Implementation of multiple
pagesize support in HP-UX. InProc. of the
1998 USENIX Technical Conference, New
Orleans, USA, June 1998.

[18] R. van Riel. Rik van Riel’s Linux kernel
patches.http://www.surriel.com
/patches/.

Embedding Linux

David Woodhouse
Red Hat, Inc.

dwmw2@cambridge.redhat.com

Abstract

Linux is becoming widely accepted in the em-
bedded systems arena. This paper will give a
brief overview of the applications for which it
is currently being used and new applications
for which development is in progress, and will
discuss the requirements and problems which
are unique to such embedded applications.

Some discussion will also be given to situa-
tions in which Linux isnot the most appro-
priate tool for the task at hand, and in which
a smaller, more application-specific operating
system such as eCos may be more useful.
[eCos]

1 Introduction

Linux was developed as a general-purpose op-
erating system. A single kernel is intended to
scale usefully from handheld devices such as
the Compaq iPAQ and Sharp Zaurus to “Big
Iron” such as the IBM zSeries mainframes.

For many years, Linux has commonly been
used on PC machines as a router. More re-
cently, Linux has been used by many com-
panies in embedded “black box” products in-
tended for applications such as network rout-
ing and firewalling, file and print serving,
web serving, and in one well-known case for
recording to hard disk and playback of tele-
vision programmes. These applications typi-
cally use PC-class or similarly powerful hard-

ware, and make no particular requirements on
the kernel that traditional desktop and server
applications do not.

Linux is also becoming widespread on smaller
hardware such as Personal Digital Assistants
(PDAs), especially the Compaq iPAQ and now
the Sharp Zaurus, which is one of the first
PDAs to be shipped with Linuxinstead of
Windows CE, rather shipping with Windows
CE but having Linux available for installation.
These devices have limited battery capacity,
very limited amounts of flash memory avail-
able for storage, and small displays with touch
screens. Therefore, the use of Linux on such
devices has motivated much development in
the areas of power management, flash storage
and code size reduction, and user interfaces tar-
getted at such displays — all of which are dis-
cussed later.

2 Scaling down

A significant criterion affecting decisions re-
garding embedded applications is the cost per
unit. Significant up-front costs and develop-
ment time will be borne in order to reduce the
per-unit cost of hardware and software by pen-
nies. This is partly why Linux in the embed-
ded space is so attractive to many developers
of such products — the per-unit licensing cost
of Linux and most Linux applications is zero.

The importance of per-unit cost means that
hardware resources are often strictly limited.

Ottawa Linux Symposium 2002 595

The cost of extra RAM and storage space
which may be required is equally important
when comparing Linux against alternative op-
erating systems; any wastefulness of resources
cannot be tolerated in mass-production. There-
fore, there is significant effort required to en-
sure that Linux remains “lean and mean,” with-
out gratuitous increases in the demands made
from hardware.

Although Linus is fairly good at guarding
against the introduction of gratuitous bloat, this
is still not a particularly easy task. Figure 1
shows the size of the Linux source tarball since
the first releases1. Since Linux v0.01 with a
gzipped tarball size of 73091 bytes, the Linux
kernel has grown exponentially over time to
reach roughly 32 MiB at the time of writing,
with the 2.5.12 kernel.

0

5

10

15

20

25

30

35

1990 1992 1994 1996 1998 2000 2002 2004

So
ur

ce
 T

ar
ba

ll
Si

ze
 (

M
iB

, g
zi

pp
ed

)

Time of Release

Figure 1: Growth of the Linux kernel.

Thankfully, this exponential increase in source
code size does not translate linearly to an in-
crease in object code size. Much of the in-
crease in the source code size is optional fea-
tures and new architectures and subsystems.

Nevertheless, the kernelis growing steadily.
The transition of theµClinux code base from
the 2.0 series of kernels to 2.4 was delayed sig-
nificantly when it was realised that the result-
ing kernel images woulddoublein size. This

1Graph thanks to James Smaby.
http://virgo.umeche.maine.edu/misc
/kernel_size/

is largely due to expansion in code which has
not been made conditional. Especially in the
networking parts of the kernel, new features
are often added unconditionally, without much
consideration for situations where they will be
unrequired.

There has been a great deal of work recently
on “scalability” of Linux, with a lot of pub-
licity and large companies getting involved.
Mostly, attention has been concentrated on
scalingup to large multi-processor and NUMA
boxes; reducing lock contention and bouncing
of shared cache lines, dealing efficiently with
large amounts of memory and storage space,
etc.

However, there has also been less visible work
on scaling Linuxdown — reducing the stor-
age and RAM footprint of both userspace and
the kernel, and to a certain extent keeping the
other developers honest by ensuring that opti-
misations made for larger boxes are not pes-
simisations for the embedded targets.

Inevitably, there have been some trade-offs re-
quired to accommodate the vast range of tar-
get hardware supported by Linux, but the most
important such choices have been made con-
figurable by the user at compilation time, so
features can be included or omitted at will.

One area which is currently receiving atten-
tion is the support for block devices. Many
embedded boxes have no block devices of any
kind, and do not require any of the support for
block I/O which is currently built into each ker-
nel image. Significant size savings could be
made by stripping this code out. However, the
task is complicated; the block I/O subsystem
has always been present in the Linux kernel
and a large amount of code is written with the
assumption that this will remain true. Large
amounts of file system core (VFS) code need
attention, but mostly to separate the block-
related functions from generic file system code

Ottawa Linux Symposium 2002 596

to allow conditional compilation. More com-
plex is the virtual memory subsystem, which is
littered with assumptions about the presence of
block I/O, which is required for paging.

3 µClinux

µClinux, mentioned above, is a port of Linux
to microcontrollers without memory manage-
ment units. In embedded single-user and
single-application boxes, a memory manage-
ment unit serves little purpose. If the whole
point of the box is to run a single application,
it matters little whether a crash of that applica-
tion can scribble over kernel memory and kill
the kernel too, or whether the application will
take a page fault and be killed — if the applica-
tion dies, the game is over already. Hardware
watchdogs to reset the board in the event of a
malfunction are just as effective as a script to
restart an individual application if it crashes;
and of course neither are a suitable substitute
for ensuring that the application doesn’t crash
in the first place.

The MMU, therefore, is a prime candidate for
removal when counting the pennies which are
being spent for each unit shipped.

Surprisingly, the Linux kernel code is not par-
ticularly intrusive. Most driver, networking
and file system code does not need modifi-
cation to accomodate the lack of MMU sup-
port. The memory management code in the
mm/directory is replaced with equivalent rou-
tines in a parallelmmnommu/directory, and
the architecture-specific code is also replaced
with a new version.

Of course, most kernel code is designed to run
in a single address space with no protection
on memory accesses anyway. In userspace,
the distinction is far more important. Be-
cause applications mustalsoshare a single ad-
dress space, a drastic rearrangement of how

user space programs are loaded was required.
µClinux uses a new type of binary, known as
’flat’ format. µClinux executables contain Po-
sition Independent Code (PIC) and hence the
text segment containing the program instruc-
tions can be loaded anywhere inside the avail-
able address space, as can the data segment.

Although µClinux is not merged with the
mainstream Linux kernel, the unintrusive na-
ture of the port means it remains a possibility,
and key kernel developers have repeatedly ex-
pressed a desire to do so.

µClinux supports a wide range of platforms
and CPUs including Motorola m68k-based
CPUs, ARM, Axis’ ETRAX and the Intel
i960. It is used in a number of products using
µClinux including MP3 players, voice-over-IP
telephones, Network Cameras, routers, etc.

4 Low-fat libraries and utilities

After the kernel, the next obvious large object
in a Linux system is usually the C libraries.
The GNU C library, glibc, is a multi-megabyte
monster which can account for a large propor-
tion of the available storage and RAM space
on a small device. The maintainer of GNU
libc, Ulrich Drepper, has clearly stated that
GNU libc is not targetted at embedded sys-
tems: “...glibc is not the right thing for [an
embedded OS]. It is designed as a native li-
brary (as opposed to embedded). Many func-
tions (e.g., printf) contain functionality which
is not wanted in embedded systems.” [Drepper]

Thankfully, there are alternatives to glibc. The
older Linux libc5, the endpoint of the branch
which was originally taken from GNU libc
1.07.4 to add Linux support, is still maintained
and is significantly smaller than glibc. Also,
there at least two C library implementations
specifically designed for a small footprint.

Ottawa Linux Symposium 2002 597

As mentioned above, theµClinux kernel re-
quired drastic changes to userspace libraries.
A new C library, µClibc, was developed for
use with µClinux. After it became appar-
ent that there was a need for a bloat-free C
library in full MMU-capable Linux systems
too, support for such systems was added to
µClibc. µClibc supports most target architec-
tures on which embedded Linux is found, in-
cluding ARM, MIPS, PowerPC and Hitachi
Super-H.µClibc is licensed under the GNU
Lesser General Public License, and is available
athttp://www.uclibc.org/ .

There is also diet libc, which claims to achieve
even better code size reduction thanµClibc by
rewriting far more routines rather than copy-
ing them intact from other sources. The diet
libc is licensed under the GNU General Pub-
lic License, not the LGPL, and is available at
http://www.fefe.de/dietlibc/ .

Both µClibc and diet libc have multifunction
binaries associated with them which can re-
place a large number of standard utilities such
as cat , mv, cp , ln , etc. By using a single
multifunction binary such as these to replace
a multitude of overly feature-laden GNU utili-
ties, further dramatic improvements in required
space can be achieved.

BusyBox works with both µClibc
and glibc, and is available at
http://www.busybox.net/ .

The set of utilities which works with diet
libc is called “embutils” and is available at
http://www.fefe.de/embutils/ .

5 Power management

Another area which has received much atten-
tion in Linux, and still requires further devel-
opment, is power management. Traditionally,
Linux would power up and initialise devices

at boot time or when the driver module was
loaded, and would keep them powered at all
times thereafter, often not even powering them
down when a driver module was unloaded.
This is extremely wasteful of power, which is
extremely important on battery-powered com-
puters such as laptops and handheld devices.

Obvious improvements are achieved by mod-
ifying drivers to remove power from unused
circuits while devices are inactive. Often, this
precise control over the application of power is
very platform-specific, but hooks are required
in generic code such as UART drivers so that
the platform-specific code can be called at ap-
propriate times when the port becomes active
or inactive.

A great deal of work has therefore been done
on extending the device driver APIs to accom-
modate power management facilities.

Suspend modes

Many battery-powered systems support a mode
where all circuits except the RAM can be dis-
abled and even the CPU can be placed into a
low-power state until woken by an interrupt.

In order to enter this state and correctly return
from it, it is necessary to maintain information
about bus connectivity so that devices can be
powered down before the busses which con-
nect them, and the resumption of power can be
performed in the opposite order.

Once all devices have been powered down,
the entire CPU state can be stored in memory,
the RAM can be switched into a self-refresh
mode and even the CPU can be placed into
an extremely low-powered state, to be woken
only by a specially-configured interrupt. Of-
ten, only a single 32-bit register is retained over
such a sleep state, and the CPU will start to
execute the boot loader from the reset vector
when it wakes just as it would after a normal

Ottawa Linux Symposium 2002 598

power up cycle. The boot loader must then
check the contents of the register and behave
appropriately if it detects that it’s waking from
a sleep state, not a hard reset. Usually, the
value in the register is a return address, and the
boot loader will switch the RAM back to its
normal state and jump back to the kernel code
at the specified address.

This mechanism is used on PDA devices to im-
plement the “instant-on” power mode which is
reached by pressing the power button. A com-
plete reset and reboot is rare, and usually re-
quires pushing or switching a recessed reset or
battery disconnect switch.

Frequency scaling

A CPU will consume less power when running
at slower speeds, and many current CPUs can
dynamically scale their clock speed under soft-
ware control.

In addition to removing power to individual de-
vices and circuits and shutting down the CPU
completely, it is also possible to achieve power
savings by utilising this facility to reduce the
speed at which the CPU runs to match the cur-
rent requirements of the running system.

Scaling CPU speed dynamically requires care-
ful changes to timing-related functions and
CPU-external bus timing. Basic support for
management of CPU clock scaling is being de-
veloped and is present in the 2.4 version of
the kernel for the ARM architecture. CPUs
which are supported include ARM Integra-
tor, SA1100 and SA1110. The various Intel
IA32 clone manufacturers each have their own
method of clock scaling, and CPUFreq con-
tains support for AMD PowerNOW and VIA
Cyrix Longhaul technologies.

Support for the Intel SpeedStep method of
clock scaling is lagging far behind the rest, be-
cause Intel have so far refused to give suffi-

cient documentation; preferring to push ACPI
as their preferred method of accessing such
functionality. Essentially, ACPI provides con-
trol methods in a form of interpreted byte-
code similar in concept to Java, which must
be trusted by the Linux kernel and run in priv-
ileged mode. This is no substitute for true
GPL’d Linux drivers for the hardware in ques-
tion.

Another power-saving feature which is not yet
implemented but which is planned is the pos-
sibility of removing the system timer inter-
rupt. Currently, Linux systems have a fixed-
frequency interrupt, often at a frequency of 100
Hz, which is used for keeping system time and
for running timers. If the CPU is entering a
low-power state during idle periods, it must
wake up and run the interrupt service routine
every 10 ms — usually to find it has nothing
to do but go immediately back to sleep again.
This causes a significant power drain which
should be unnecessary. Therefore, it is planned
to develop code which allows Linux to abolish
the fixed-frequency timer interrupt and instead
use a one-shot timer to set a wake-up time each
time the low-power idle state is entered. The
CPU will be woken either by the first pending
timed event or by interrupts from other sources
such as I/O devices.

This improvement will be useful not only for
embedded devices where power consumption
is paramount, but also at the opposite end of the
spectrum; on mainframe hardware where many
hundreds of Linux kernels may run inside vir-
tualised machines, and the overhead of a timer
interrupt oneveryvirtual Linux machine each
few milliseconds quickly starts to take a signif-
icant proportion of the available CPU time.

Ottawa Linux Symposium 2002 599

6 Hotplug capabilities

Linux has for a long time supported PCM-
CIA and CardBus peripherals; 16-bit PCMCIA
being significantly more common on hand-
held devices than CardBus. The Linux PCM-
CIA code is based heavily on the architecture
laid out in the PCMCIA specification, which
seems to be overly complicated and designed
for legacy drivers and MS-DOS. This level of
complexity appears to be overkill for Linux,
and work has started on a rewrite of the PCM-
CIA support based solely on the reality of
PCMCIA hardware rather than the intricacies
of the PCMCIA specification. This work has
yet to reach a state in which it can be an-
nounced to the public for further development.

In networking and control applications, Linux
is also often required to support hot-swapping
of PCI and CompactPCI peripherals. Basic
support for dynamic addition and removal of
PCI devices is present in the Linux kernel —
each device driver must be individually up-
graded to the new PCI driver API to be capable
of supporting hot-swappable devices, and this
has not yet happened for all drivers.

Support for physical insertion and removal of
devices, probing of new devices and notifica-
tion of drivers is implemented. Recently, some
support for correct handling of the Compact-
PCI procedures for device insertion and re-
moval, involving notification of the opening of
the removal handle, lighting of the appropriate
LED to signal that the system is ready for de-
vice removal etc.

One severe problem currently faced by the
existing PCI hotswap code is the assignment
of address space resources to newly-inserted
cards. There is a limited amount of physi-
cal address space which may be assigned to
BARs of PCI devices, and this space is fur-
ther subdivided by having to configure ranges

for each PCI bridge in the system, with each
bus getting a single range of each type of ad-
dress space. The current approach is to reserve
some address space for each PCI bus which
may accept hot-swap cards, in the hope that
it will be enough. Yet if multiple PCI busses
are present, then by repeatedly inserting and
removing cards on different busses it is pos-
sible to fragment the allocation of resources to
the extent that a newly-inserted card cannot be
assigned a range of address space on the bus
into which it has been introduced. Therefore,
it is being proposed that another addition to the
Linux PCI driver API be considered, which al-
lows supporting drivers to have the BARs of
their devices moved by the core PCI code to
make room for other devices in the address
space.

In many cases, it should be sufficient for the
driver to momentarily quiesce the card, to pre-
vent interrupts from occurring during the re-
location, change the BARs to the new address
range given by the PCI code, and reenable the
device. Virtual mappings of memory BARs
will need to either torn down and set up again
for the new location, hence the need to quiesce
the hardware rather than simply disabling in-
terrupts while performing the move.

If accepted and implemented, this enhance-
ment will allow for more reliable manage-
ment of resources, assuming that the drivers for
all hot-swapped cards provide support for this
method of relocation.

7 Storage

The storage requirements of embedded devices
differ significantly from traditional Linux in-
stallations. Often, the only storage available
will be flash memory. Flash is a form of solid-
state storage which provides persistant stor-
age with low power requirements and relatively

Ottawa Linux Symposium 2002 600

low cost.

The most common form of flash is NOR flash.
This can be connected directly to the CPU’s ad-
dress and data busses and for reading is treated
as ROM. As with ROM, each bit of storage can
be in one of two states — either it contains a
zero or a one.

Each bit of storage in NOR flash chip will start
containing a one, and by a predefined sequence
of writes of magic numbers to magic addresses,
the contents of each bit can be individually
changed to zeroes.

However, bits which have been cleared can-
not be individually reset to contain ones again.
Bits can only be reset to ones, or “erased,” in
large blocks of typically 64 or 128 KiB in size,
known as “erase blocks.” Furthermore, the life-
time of a flash chip is measured in erase cycles;
typically each block can be erased 100,000
times before it is expected to fail.

It is important to note that the lifetime of flash
chips is measured in erase cyclesper block, not
total erase cycles. Individual erase blocks can
be erased to the point of destruction without
affecting other erase blocks in the chip.

Therefore, by repeatedly erasing a few blocks
it is possible to destroy them while the remain-
der of the chip is still usable — however, even
with appropriate detection of bad blocks this
reduces the storage capacity of the device, and
as the storage available is unlikely to have ex-
ceeded therequiredamount by any significant
margin, would quickly lead to the device being
unusable.

Therefore, it is necessary to perform “wear
levelling” on flash devices, to ensure that the
block erases are evenly distributed over the en-
tire range of the chips rather than concentrated
in particular areas. This is particularly impor-
tant because the normal use of permanent stor-

age will be precisely the opposite of what is
required — typically a device with 16 MiB of
available flash would have 14 MiB of static
data, programs and libraries, 1 MiB of dynamic
data and 1 MiB of space; without wear level-
ling the 14 MiB of static data would never be
moved and the remaining 2 MiB of the chip
would be destroyed very quickly.

In addition to the need for wear levelling, the
large block size of flash means that traditional
file systems cannot easily be used, as they rely
on being able to replace data blocks in-place,
which is not possible on flash without also
erasing and replacing the surrounding data in
the rest of the same block. There is an ex-
tremely naïve driver available for Linux which
does present a flash device to file systems as
a block device with 512-byte sectors, then on
writes will read the whole erase block, mod-
ify the contents as desired and then write back
the new version. This is obviously extremely
unsafe, but can be useful for setting up file sys-
tems which are going to be read-only in pro-
duction.

The traditional approach to using flash has
been to use a form of pseudo-filesystem on
the raw flash to emulate a normal block device
with smaller sectors. This solution evolved in
the days of DOS, where providing an INT 13h
disk service interrupt was sufficient.

In practice, this is very suboptimal. To ensure
reliability, the pseudo-filesystem used must be
a journalling one - it must be able to revert to a
consistent state if power is lost or a crash oc-
curs during a write. Furthermore, the tradi-
tional file system used on the emulated block
device mustalso be a journalling file system,
for precisely the same reasons. The result is
a journalling file system running atop another
journalling file system, which is inefficient in
terms of both speed and wear on the flash de-
vices.

Ottawa Linux Symposium 2002 601

A better approach is that taken by the Jour-
nalling Flash File Systems, which are designed
to operate directly on the underlying flash de-
vice rather than through an intermediate emu-
lation layer.[JFFS]

These file systems are log-structured, writing
packets of data to the flash describing each
changeto the file system, and requiring a com-
plete playback of those logs on remounting
of the file system to recreate the current con-
tents of the file system. As the log progresses,
older log entries (or “nodes”) will be obsoleted
by newer entries which overwrite the old data,
delete files, etc.

When the medium becomes close to full, the
system must perform garbage collection to re-
claim the space taken by such obsoleted nodes.
An erase block is selected for garbage collec-
tion and the nodes which are still relevant are
copied into the remaining empty space, before
the victim block is erased. More details of the
operation of these file systems are given in the
referenced paper.

Since its development in the first quarter of
2001, JFFS2 has rapidly become extremely
common in the deployment of embedded
Linux devices with flash storage.

In addition to the common NOR flash, support
has recently been added to JFFS2 for NAND
flash. NAND differs from NOR flash in that
it is not directly accessible as if it were ROM;
instead data, addresses and commands are ex-
changed a byte at a time over a single 8-bit
bus. NAND flash is smaller erase block sizes
than NOR, typically around 8 KiB, and is fur-
ther subdivided into “pages” of typ. 512 bytes,
each of which is associated with a further range
of “out-of-band” data, used for ECC and meta-
data. NAND flash chips are cheaper than NOR
flash, and tend to have higher production toler-
ances, leading to higher incidence of bit errors
and bad erase blocks.

Execute in place

A feature which is not implemented in Linux is
“execute in place” (XIP). This refers to the ar-
rangement where data are not copied from the
flash medium into RAM, but are used directly
by entering pages of the flash chip directly into
the page tables of user space processes.

In many situations, XIP is not desirable. For
obvious reasons, XIP and compression are mu-
tually exclusive — if data are compressed, they
cannot simply be used in-place. In terms of
cost per byte, flash is generally more expen-
sive than DRAM, hence the cost savings from
using compression and reducing flash require-
ments are more than the cost savings from us-
ing XIP and reducing RAM.

However, XIP becomes a more sensible op-
tion in situations where low power consump-
tion is an extremely important criterion. In this
situation, static RAM may be used instead of
DRAM, and this is normally more expensive
than flash.

The implementation of XIP presents some in-
teresting problems which have yet to be prop-
erly solved. Obviously, it can only work with
NOR flash technology, as NAND flash cannot
be directly accessed. The problem with NOR
flash is that the write and erase commands are
performed by writing magic numbers to magic
addresses within the chip and then reading sta-
tus words back from the chip. When the flash
chip is in a command mode, the values returned
on read accesses are not necessarily valid data.
The flash drivers handle this by keeping a state
machine and ensuring that the chip is always
in the correct mode by sending the appropri-
ate commands before performing any opera-
tion, including any reads from the device.

However, if pages of the flash chip are sim-
ply mapped into user space processes using
the MMU, it is not possible to ensure that the

Ottawa Linux Symposium 2002 602

proper sequences are followed; either schedul-
ing must be disabled during the entirety of each
period for which the flash chip is placed in a
mode other than read mode, or every mapping
of a flash page to user space must be found
and torn down before each such access. As
erase and write operations may take an ex-
tremely long time, the former option is not par-
ticularly feasible. Until recently, the latter was
not possible either — only with the advent of
the memory managment code based on reverse
mappings of physical addresses to virtual was
it possible to find all the mappings of a given
page without scanning the entire address space
of every process in the system.

Now that the rmap VM has made XIP at least
technically feasible, there are plans to adapt the
flash drivers to accommodate this form of map-
ping. However, there remains the problem of
designing a file system which can make use of
this facility. In order for XIP to be used, each
page of file data must be page-aligned in the
flash chip, because no common MMU hard-
ware allows for the remapping of arbitrary byte
ranges. This effectively means that the JFFS2
mode of operation, writing a node header fol-
lowed immediately by a payload, is extremely
suboptimal. An ideal file system designed for
XIP would separate metadata from pages of
data, yet still perform in a broadly similar man-
ner to JFFS2. However, designs for such a file
system have yet to come any closer to comple-
tion than the above.

Removable storage

There are a multitude of forms of removable
solid state storage. The best supported by
Linux is CompactFlash, which presents itself
to the system as an IDE device. It uses a trans-
lation layer as described above to emulate a
block device, but this is performed internally
to the device, and the host computer treats it
exactly as if it were a normal IDE drive. Some

CompactFlash devices perform wear levelling
internally, but some do not. It is often not
easy to tell whether a particular device per-
forms wear levelling or not.

Another common form of removal storage is
SmartMedia. SmartMedia is effectively just
a NAND flash device, and the host computer
must implement a similar translation layer in
software. Linux does not currently support the
SmartMedia translation layer, although there
are drivers under development. However, there
exist USB devices which perform the neces-
sary transformations in their own firmware,
presenting an interface to the host computer
which is a simple USB storage device.

8 User Interface

With the advent of handheld devices running
Linux, the user interface has become extremely
important. Once the initial excitement of
reaching a shell prompt over the serial con-
sole has passed, it rapidly becomes apparent
that traditional Linux graphical user interfaces
based on X Windows are not ideally suited for
use on a 320x200 pixel display.

9 Alternatives

10 Conclusion

Linux has come a long way since Linus first
played with multitasking by making a ker-
nel which would interleave his two processes
printing ‘AAAAAA’ and ‘BBBBBB’. Linux is
becoming widely accepted in the embedded
market, and there has been a great deal of good
work on improving its applicability to these
targets.

Still more development is currently under way
and being planned, and it is clear from the dis-

Ottawa Linux Symposium 2002 603

cussions above that there remains a lot more
work to be done in these areas in the future;
certainly there’s plenty to keep us from getting
bored.

References

[eCos] Red Hat, Inc.,eCos — Embedded
Configurable Operating System.
http://sources.redhat.com/ecos/

[Drepper] Ulrich Drepper
<drepper@cygnus.com> , posting to
bug-glibc@gnu.org mailing list, 24
May 1999.
http://sources.redhat.com/ml

/bug-glibc/1999-05

/msg00039.html

[JFFS] David Woodhouse, Red Hat, Inc.
JFFS: The Journalling Flash File
System, May 2001.
http://sources.redhat.com

/jffs2/jffs2.pdf

Linux Security Module Framework

Chris Wright and Crispin Cowan∗

WireX Communications, Inc.
chris@wirex.com, crispin@wirex.com

James Morris
Intercode Pty Ltd

jmorris@intercode.com.au

Stephen Smalley†

NAI Labs, Network Associates, Inc.
sds@tislabs.com

Greg Kroah-Hartman‡

IBM Linux Technology Center
gregkh@us.ibm.com

Abstract

Computer security is a chronic and growing
problem, even for Linux, as evidenced by the
seemingly endless stream of software security
vulnerabilities. Security research has produced
numerous access control mechanisms that help
improve system security; however, there is lit-
tle consensus on the best solution. Many pow-
erful security systems have been implemented
as research prototypes or highly specialized
products, leaving systems operators with a dif-
ficult challenge: how to utilize these advanced
features, without having to throw away their
existing systems?

The Linux Security Modules (LSM) project
addresses this problem by providing the Linux
kernel with a general purpose framework for
access control. LSM enables loading enhanced
security policies as kernel modules. By pro-
viding Linux with a standard API for policy
enforcement modules, the LSM project hopes
to enable widespread deployment of security
hardened systems. This paper presents the de-

∗This work supported in part by DARPA Contract
N66001-00-C-8032 (Autonomix)

†This work supported by NSA Contract MDA904-
01-C-0926 (SELinux)

‡This work represents the view of the authors and
does not necessarily represent the view of IBM. But that
sentence did.

sign and implementation of the LSM frame-
work, a discussion of performance and secu-
rity impact on the kernel, and a brief overview
of existing security modules.

1 Introduction

Security is a chronic and growing problem: as
more systems (and more money) go on line, the
motivation to attack rises. Linux is not immune
to this threat: the “many eyes make shallow
bugs" argument [25] not withstanding, Linux
systems do experience a large number of soft-
ware vulnerabilities.

An important way to mitigate software vul-
nerabilities is through effective use of access
controls. Discretionary access controls (root ,
user-IDs and mode bits) are adequate for user
management of their own privacy, but are not
sufficient to protect systems from attack. Ex-
tensive research in non-discretionary access
control models has been done for over thirty
years [2, 26, 18, 10, 16, 5, 20] but there has
been no real consensus on which is theone
trueaccess control model. Because of this lack
of consensus, there are manypatchesto the
Linux kernel that provide enhanced access con-
trols [7, 11, 12, 14, 17, 19, 24, 20, 32] but none
of them are astandardpart of the Linux kernel.

Ottawa Linux Symposium 2002 605

The Linux Security Modules (LSM) [30, 27,
31] project seeks to solve this Tower of Ba-
bel [1] quandary by providing a general-
purpose framework for security policy mod-
ules. This allows many different access con-
trol models to be implemented as loadable ker-
nel modules, enabling multiple threads of secu-
rity policy engine development to proceed in-
dependently of the main Linux kernel. A num-
ber of existing enhanced access control im-
plementations, including POSIX.1e capabili-
ties [29], SELinux, Domain and Type Enforce-
ment (DTE) [14] and Linux Intrusion Detec-
tion System (LIDS) [17] have already been
adapted to use the LSM framework.

The remainder of this paper is organized as
follows. Section 2 presents the LSM design
and implementation. Section 3 gives a detailed
look at the LSM interface. Section 4 describes
the impact LSM has on performance and secu-
rity, including a look at some projects that have
been ported to LSM so far. Section 5 presents
our conclusions.

2 Design and Implementation

At the 2001 Linux Kernel Summit, the NSA
presented their work on Security-Enhanced
Linux (SELinux) [19], an implementation of a
flexible access control architecture in the Linux
kernel. Linus Torvalds appeared to accept that
a general access control framework for the
Linux kernel is needed. However, given the
many Linux kernel security projects, and Li-
nus’ lack of expertise in sophisticated security
policy, he preferred an approach that allowed
security models to be implemented as loadable
kernel modules. In fact, Linus’ response pro-
vided the seeds of the LSM design. The LSM
framework must be:

• truly generic, where using a different se-
curity model is merely a matter of loading

a different kernel module;

• conceptually simple, minimally invasive,
and efficient; and

• able to support the existing POSIX.1e
capabilities logic as an optional security
module.

To achieve these goals while remaining agnos-
tic with respect to styles of access control me-
diation, LSM takes the approach of mediating
access to the kernel’s internal objects: tasks,
inodes, open files, etc., as shown in Figure 1.
User processes execute system calls, which
first traverse the Linux kernel’s existing logic
for finding and allocating resources, perform-
ing error checking, and passing the classical
UNIX discretionary access controls. Just be-
fore the kernelattempts toaccess the internal
object, an LSMhook makes an out-call to the
module posing the question, “Is this access ok
with you?” The module processes this policy
question and returns either “yes” or “no.”

One might ask why LSM chose this approach
rather thansystem call interposition(mediat-
ing system calls as they enter the kernel) orde-
vice mediation(mediating at access to physi-
cal devices).1 The reason is that information
critical to sound security policy decisions is
not available at those points. At the system
call interface, userspace data, such as a path
name, has yet to be translated to the kernel
object it represents, such as an inode. Thus,
system call interposition is both inefficient and
prone to time-of-check-to-time-of-use (TOCT-
TOU) races [28, 6]. At the device interface,
some other critical information (such as the
path name of the file to be accessed) has been
thrown away. In between is where the full
context of an access request can be seen, and

1The glib answer is that the Linux kernel already pro-
vides those features and there would be nothing for us to
do :-)

Ottawa Linux Symposium 2002 606

User Level process

open system call Kernel space

inode

 Access

Look up inode

error checks

DAC checks

Examine context
Does request pass policy?

Grant or deny
LSM hook

LSM Module
Policy Engine

Complete request

User space

"OK with you?"

Yes or No

Figure 1: LSM Hook Architecture

where a fully informed access control decision
can be made.

A subtle implication of the LSM architecture
is that access control decisions arerestric-
tive2: the module can really only say “no” [31].
Functional errors and classical security checks
can result in an access request being denied
before it is ever presented to the LSM mod-
ule. This is the opposite of the way manda-
tory access control systems are normally im-
plemented. This design choice limits the flex-
ibility of the LSM framework, but substan-
tially simplifies the impact of the LSM on the
Linux kernel. To do otherwise would have
required implementing many instances of the
samehook throughout the kernel, to ensure that
the module is consulted ateveryplace where a
system call could “error out.”

Composition of LSM modules is another prob-
lematic issue. On the one hand, security
policies do not compose in thegeneral case

2Caveat: thecapable() hook, which is needed
to support POSIX.1e capabilities, can override DAC
checks, see Section 3.8.

because some policies may explicitly con-
flict [13]. On the other hand, it is clearly de-
sirable to compose some combinations of se-
curity policies. Here, LSM effectively punts to
the module writer: to be able to “stack” mod-
ules, the first module loaded must also export
an LSM interface to subsequent LSM modules
to be loaded. The first module is then responsi-
ble for composing the access control decisions
that it gets back from secondary modules.

3 LSM Interface

Having discussed the high-level design
philosophies of LSM in Section 2, we now
turn to the implementation of the LSM in-
terface. At the core, the LSM interface is
a large table of functions, which by default
are populated with calls that implement the
traditional superuser DAC policy. The module
writers are then responsible for providing
implementations of the functions that they
care about. This section provides a detailed

Ottawa Linux Symposium 2002 607

analysis of those functions.3 Section 3.1 shows
how to register a security module. Sections 3.2
through 3.8 are organized by kernel object and
discuss the LSM interface available to mediate
access to each object.

3.1 Policy Registration

The LSM interface is implemented as a struc-
ture of callback methods,security_ops .
A security module is responsible for imple-
menting the callbacks according to the secu-
rity policy it is enforcing. At boot time the
security_ops structure is initialized with
default callbacks, which implement traditional
superuser semantics.

The security module can be built as a dynami-
cally loadable module or statically linked into
the kernel. It is initialized either at module
load time for dynamically loaded modules
or during do_initcalls() for statically
linked modules. During this initialization,
the security module must register its call-
backs with the LSM framework by calling
register_security() . A module
should call unregister_security()
when it is unloaded to return the
security_ops structure to its default
superuser policy.

The LSM framework is aware of only one pri-
mary security policy at any time. Once a secu-
rity policy is registered with the LSM frame-
work, subsequent attempts to register new se-
curity policies will fail. In some cases it
is appropriate to compose security policies,
as noted in Section 2. LSM allows mod-
ules to stack with each other, however, the
framework remains aware of only a single
security_ops structure. In order to regis-
ter additional security policies, the subsequent
modules register with the primary module us-
ing mod_reg_security() . This allows

3However, it is not a programmer’s guide.

the LSM framework to remain simple, push-
ing the policy which defines composition into
the primary security module.

3.2 Task Hooks

Thetask_struct structure is the kernel ob-
ject representing kernel schedulable tasks. It
contains basic task information such as user
and group ID, resource limits, and scheduling
policies and priorities. LSM provides a group
of task hooks,task_security_ops , that
mediate a task’s access to this basic task in-
formation. Interprocess signalling is mediated
by the LSM task hooks to monitor tasks’ abil-
ities to send and receive signals. LSM adds a
security field to thetask_struct to allow
security policies to label a task with a policy
specific security label.

The LSM task hooks have full task life-cycle
coverage. Thecreate() task hook is called,
verifying that a task can spawn children. If
this is successful, a new task is created and
the alloc_security() task hook is used
to manage the new task’s security field. When
a task exits, thekill() task hook is con-
sulted to verify that the task can signal its par-
ent. Similarly, thewait() task hook is called
in the parent task context, verifying the par-
ent task can receive the child’s signal. And fi-
nally, the task’s security field is released by the
free_security() task hook.

During the life of a task it may attempt to
change some of its basic task information. For
example a task may callsetuid(2) . This
is, of course, managed by LSM with a corre-
spondingsetuid() task hook. If this is suc-
cessful the kernel updates the task’s user iden-
tity and then notifies the policy module via the
post_setuid() task hook. The notification
allows the module to update state and, for ex-
ample, update the task’s security field.

Ottawa Linux Symposium 2002 608

To avoid leaking potentially sensitive task in-
formation, LSM mediates the ability to query
another task’s state. So, for example, a query
for the process group ID or the scheduler
policy of an arbitrary task is protected by
thegetpgid() or getscheduler() task
hooks respectively.

3.3 Program Loading Hooks

The linux_binprm structure represents
a new program being loaded during an
execve(2) . LSM provides a set of program
loading hooks,binprm_security_ops , to
manage the process of loading new programs.
Many security models, including Linux ca-
pabilities, require the ability to change privi-
leges when a new program is executed. Con-
sequently, these LSM hooks are called at crit-
ical points during program loading to verify a
task’s ability to load a new program and update
the task’s security field.

LSM adds a security field to the
linux_binprm structure. At the beginning
of an execve(2) after the new program
file is opened, thealloc_security()
program loading hook is called to allocate
the security field. Theset_security()
hook is used to save security information in
the linux_binprm security field. This hook
may be called multiple times during a single
execve(2) to accommodate interpreters.
Either of these program loading hooks can be
used to deny program execution.

In the final stages of program loading, the
compute_creds() program loading hook
is called to set the new security attributes
of a task being transformed byexecve(2) .
Typically, this hook will calculate the task’s
new credentials based on both its old creden-
tials and the security information stored in
the linux_binprm security field. Once the
new program is loaded, the kernel releases the

linux_binprm security field by calling the
free_security() program loading hook.

3.4 File System Hooks

The VFS layer defines three primary ob-
jects which encapsulate the interface that low
level filesystems are developed against: the
super_block , the inode and thefile .
Each of these objects contains a set of opera-
tions that define the interface between the VFS
and the actual filesystem. This interface is a
perfect place for LSM to mediate filesystem ac-
cess. The LSM filesystem hooks are described
in Sections 3.4.1 through 3.4.3.

3.4.1 Super Block Hooks

The kernel’s super_block structure rep-
resents a filesystem. This structure is
used when mounting and unmounting a
filesystem or obtaining filesystem statistics,
for example. The super block hooks,
super_block_security_ops , mediate
the various actions that can be taken on a
super_block . As a simple example, the
statfs() super block hook checks permis-
sion when a task attempts to obtain a file sys-
tem’s statistics.

When mounting a filesystem, the kernel first
validates the request by calling themount()
super block hook. Assuming success, a
new super_block is created4 regardless
of whether it is backed by a block de-
vice or by an anonymous device. The
kernel then allocates space for a security
field in the newsuper_block by calling
thealloc_security() super block hook.
Next, when thesuper_block is to be added
to the global tree, thecheck_sb() super
block hook is called to verify that the filesys-

4In some cases,super_blocks are recycled.

Ottawa Linux Symposium 2002 609

tem can indeed be mounted at the point in the
tree that is being requested. If this is success-
ful, apost_addmount() hook is invoked to
synchronize the security module’s state.

The super block hookumount() is called to
check permission when unmounting a filesys-
tem. If successful, theumount_close()
hook is used to synchronize state and, for ex-
ample, close any files in the filesystem that
are held open by the security module. Once
thesuper_block is no longer referenced, it
will be deleted, and thefree_security()
hook will free the security field.

3.4.2 Inode Hooks

The kernel’s inode structure represents a
basic filesystem object, e.g., a file, direc-
tory, or symlink. The LSM inode hooks
mediate access to this fundamental kernel
structure. A well defined set of opera-
tions, inode_operations , describe the
actions that can be taken on an inode
— create() , unlink() , lookup() ,
mknod() , rename() , and so on. This en-
capsulation defines a nice interface for LSM to
mediate access to theinode object. In addi-
tion, LSM adds a security field to theinode
structure and corresponding inode hooks to
manage security labelling.

The kernel’s inode cache is populated by
either file lookup operations or filesystem
object-creation operations. When a new
inode is created, the security module allo-
cates space for theinode security field with
the alloc_security() inode hook. Ei-
ther post-lookup or post-creation, the newly
created objects are labelled. The label may be
cleared by thedelete() inode hook when
an inode’s link count reaches zero. And
finally, when an inode is destroyed, the
free_security() inode hook is called to

release the space allocated for the security
field.

In many cases, the LSM inode hooks are iden-
tical to the inode_operations . For all
inode_operations that can create new
filesystem objects a “post” inode hook is de-
fined for coherent security labelling. For
example, when a task creates a new sym-
link, the symlink() inode hook is called
to check permission to create the symlink.
Then if the symlink creation is successful, the
post_symlink() hook is called to set the
security label on the newly created symlink.

Whenever possible, LSM leverages the
existing Linux kernel security infrastruc-
ture. The kernel’s standard UNIX DAC
checks compare the uids, guids, and mode
bits when checking for permission to ac-
cess filesystem objects. The VFS layer
already has apermission() function
which is a wrapper for thepermission()
inode_operation . LSM uses this
pre-existing infrastructure and adds its
permission() inode hook to the VFS
wrapper.

3.4.3 File Hooks

The kernel’s file structure represents an
open filesystem object. It contains the
file_operations structure, which de-
scribes the operations that can be done to a
file . For example, afile can be read
from and written to, seeked through, mapped
into memory, and so on. Similar to the in-
ode hooks, LSM provides file hooks to medi-
ate access tofiles , many of which mirror
thefile_operations . A security field has
been added to thefile structure for labelling.

When a file is opened, a newfile
object is created. At this time, the

Ottawa Linux Symposium 2002 610

alloc_security() file hook is called to
allocate a security field and label thefile .
This label persists until thefile is closed,
when thefree_security() file hook is
called to free the security field.

Thepermission() file hook can be used to
revalidate read and write permissions at each
file read or write. This is not effective
against reading and writing of memory mapped
files, and the changes required to support this
page level revalidation are considered too inva-
sive. Actually mapping a file is, however, pro-
tected with themmap() file hook. And chang-
ing the protection bits on mapped file regions
must pass themprotect() file hook.

When usingfile locks to synchronize mul-
tiple readers or writers, a task must pass the
lock() file hook permission check before
performing any locking operation on afile .

If the O_ASYNCflag is set on afile , asyn-
chronous I/O ready signals are delivered to
the file owner when thefile is ready for
input or output. The ability to specify the
task that will receive the I/O ready signals is
protected by theset_fowner() file hook.
Also, the actual signal delivery is mediated by
thesend_sigiotask() file hook.

Miscellaneous file operations that come
through theioctl(2) and fcntl(2) in-
terfaces are protected by theioctl() and
fcntl() file hooks respectively. Another
miscellaneous action protected by the file
hooks is the ability to receive an open file de-
scriptor through a socket control message. This
action is protected by thereceive() file
hook.

3.5 IPC Hooks

The Linux kernel provides the standard
SysV IPC mechanisms: shared memory,
semaphores, and message queues. LSM

defines a set of IPC hooks which me-
diate access to the kernel’s IPC objects.
Given the design of the kernel’s IPC data
structures, LSM defines one common set
of IPC hooks, ipc_security_ops , as
well as sets of object specific IPC hooks:
shm_security_ops , sem_security_ops ,
msg_queue_security_ops , and
msg_msg_security_ops .

3.5.1 Common IPC Hooks

The kernel’s IPC object data structures
share a common credential structure,
kern_ipc_perm . This structure is
used by the kernel’sipcperms() func-
tion when checking IPC permissions.
LSM adds a security field to this struc-
ture and an ipc_security_ops hook,
permission() , to ipcperms() to give
the security module access to these exist-
ing mediation points. LSM also defines an
ipc_security_ops hook, getinfo() ,
to mediate info requests for any of the IPC
objects.

3.5.2 Object Specific IPC Hooks

The LSM IPC object specific hooks de-
fine the alloc_security() and
free_security() functions to man-
age the security field in each object’s
kern_ipc_perm data structure. An
IPC object is created with an initial “get”
request, which triggers the object specific
alloc_security . If the “get” request finds
an already existing object, theassociate()
hook is called to check permissions before
returning the object.

IPC object control commands,shmctl(2) ,
semctl(2) , andmsgctl(2) are mediated
by object specific “ctl” hooks. For exam-

Ottawa Linux Symposium 2002 611

ple, when aSHM_LOCKrequest is issued, the
shm_security_ops shmctl() hook is
checked for permission prior to completing the
request.

Any attempt to change a semaphore count
is protected by thesem_security_ops
semop() hook. Attaching to a shared
memory segment is protected by the
shm_security_ops shmat() hook.
Sending and receiving messages on
a message queue are protected by the
msg_queue_security_ops msgsnd()
and msgrcv() hooks. The individual mes-
sages are considered as well as the queue when
verifying permission. When a new message
is created, themsg_msg_security_ops
alloc_security() hook allocates the
security field stored in the actual message data
structure. Upon receipt, themsgrcv() hook
can verify the security field on both the queue
and the message.

3.6 Module Hooks

The LSM interface would surely be incom-
plete if it didn’t mediate loading and unload-
ing kernel modules. The LSM module loading
hooks, module_security_ops , add per-
mission checks protecting the creation and ini-
tialization of loadable kernel modules as well
as module removal.

3.7 Network Hooks

The Linux kernel features an extensive suite of
network protocols and supporting components.
As networking is an important aspect of Linux,
LSM extends the concept of a generalized se-
curity framework to this area of the kernel.

A key implementation challenge was to de-
termine the initial requirements for the net-
work hooks. The existing SELinux implemen-
tation was utilized as a model, as SELinux is it-

self a highly generalized security infrastructure
which was to be ported to LSM. Other Linux
security projects were reviewed, although none
relevant to the version 2.5 kernel series were
found with networking requirements in ex-
cess of SELinux. Potential requirements for
IPSec and traditional labeled networking sys-
tems were also taken into account.

As the Linux network stack utilizes the Berke-
ley sockets model [21], LSM is able to provide
coarse coverage for all socket-based protocols
via the use of hooks within the socket layer.

Additional finer-grained hooks have been im-
plemented for the IPv4, UNIX domain, and
Netlink protocols, which were considered es-
sential for the implementation of a minimally
useful system. Similar hooks for other proto-
cols may be implemented at a later stage.

Coverage of low level network support com-
ponents such as routing tables and traffic clas-
sifiers is somewhat limited due to the in-
vasiveness of the code which would be re-
quired to implement consistent fine-grained
hooks. Accesses to these objects can be in-
terposed at higher levels (e.g., via system calls
such asioctl(2)), although granularity may
be reduced by TOCTTOU issues. The ex-
isting kernel code does however impose a
CAP_NET_ADMINcapability requirement for
tasks which attempt to write to important net-
work support components.

The details of the network hooks are described
in Sections 3.7.1 through 3.7.6.

3.7.1 Sockets and Application Layer

Application layer access to networking is me-
diated via a series of socket-related hooks,
socket_security_ops . When an ap-
plication attempts to create a socket with
the socket(2) system call, thecreate()

Ottawa Linux Symposium 2002 612

hook allows for mediation prior to the actual
creation of the socket. Following successful
creation, thepost_create() hook may be
used to update the security state of the inode
associated with the socket.

Since active user sockets have an associated
inode structure, a separate security field was
not added to thesocket structure or to the
lower-levelsock structure. However, it is pos-
sible for sockets to temporarily exist in a state
where they have nosocket or inode struc-
ture. Hence, the networking hook functions
must take care in extracting the security infor-
mation for sockets.

Mediation hooks are also provided for all of the
socket system calls:

bind(2)
connect(2)
listen(2)
accept(2)
sendmsg(2)
recvmsg(2)
getsockname(2)
getpeername(2)
getsockopt(2)
setsockopt(2)
shutdown(2)

Protocol-specific information is available via
thesocket structure passed as a parameter to
all of these hooks (except forcreate() , as
the socket does not yet exist at this hook). This
facilitates mediation based on transport layer
attributes such as TCP connection state, and
seems to obviate the need for explicit transport
layer hooks.

Thesock_rcv_skb() hook is called when
an incoming packet is first associated with a
socket. This allows for mediation based upon
the security state of receiving application and
security state propagated from lower layers of

the network stack via thesk_buff security
field (see section 3.7.2).

Additional socket hooks are provided for
UNIX domain communication within the ab-
stract namespace, as binding and connect-
ing to UNIX domain sockets in the abstract
namespace is not mediated by filesystem per-
missions. Theunix_stream_connect()
hook allows mediation of stream connections,
while datagram based communications may
be mediated on a per-message basis via the
unix_may_send() hook.

3.7.2 Packets

Network data traverses the network stack in
packets encapsulated by a structure called an
sk_buff (socket buffer). Thesk_buff
structure provides storage for packet data and
related state information, and is considered to
be owned by the current layer of the network
stack.

LSM adds an opaque security field to the
sk_buff structure, so that security state may
be managed across network layers on a per-
packet basis.

A set of sk_buff hooks is provided for
lifecycle management of the security field.
For LSM, the critical lifecycle events for an
sk_buff are:

• Allocation
• Copying
• Cloning
• Setting ownership to sending socket
• Datagram reception
• Destruction

Hooks are provided for each of these events,
although they are only intended to be used for
maintaining the security field data. Encoding,

Ottawa Linux Symposium 2002 613

decoding and interpretation of the security field
data is performed by layer-specific hooks such
as the socket and network layer hooks.

Generally, thesk_buff hooks and security
field only need to be used when the security
state of a packet must be managed between lay-
ers of the network stack. Examples of such
cases include labeled networking via IP op-
tions and management of nested IPSec Secu-
rity Associations [15].

3.7.3 Transport Layer (IPv4)

Explicit hooks are not required for the trans-
port layer, as sufficient protocol state informa-
tion for LSM is available at the socket and net-
work layer hooks (discussed in section 3.7.1).

3.7.4 Network Layer (IPv4)

Hooks are provided at the network layer for
IPv4 to facilitate:

• Integrated packet filtering

• IP options decoding for labeled network-
ing

• Management of fragmented datagrams

• Network layer encapsulation (e.g., secure
IP tunnels)

Existing Netfilter [23] hooks are used to pro-
vide access to IP datagrams in pre-routing, lo-
cal input, forwarding, local output and post-
routing phases. Through these hooks, LSM
intercepts packets before and after the stan-
dard iptables-based access control and transla-
tion mechanisms. Note that the Netfilter hooks
used by LSM do not increase the code footprint
imposed by LSM on the standard kernel.

3.7.5 Network Devices

Within the Linux network stack, hardware and
software network devices are encapsulated by
anet_device structure. LSM adds an secu-
rity field to this structure so that security state
information can be maintained on a per-device
basis.

The security field for thenet_device struc-
ture may be allocated during first-use initial-
ization. A security field management hook is
called when the device is being destroyed, al-
lowing any allocated resources associated with
the associated security field to be freed.

3.7.6 Netlink

Netlink sockets are a Linux-specific mech-
anism for kernel-userspace communication.
They are similar to BSD route sockets, al-
though more generalized.

As Netlink communications are connection-
less and asynchronously processed, security
state associated with an application layer ori-
gin needs to be stored with Netlink packets,
then checked during delivery to the destination
kernel module. Thenetlink_send() hook
is used to store the application layer security
state. Thenetlink_recv() hook is used to
retrieve the stored security state as the packet is
received by the destination kernel module and
mediate final delivery.

3.8 Other System Hooks

LSM defines a miscellaneous set of hooks to
protect the remaining security sensitive actions
that are not covered by the hooks discussed
above. These hooks typically mediate system-
level actions such as setting the system’s host
name or domain name, rebooting the system,
and accessing I/O ports. The existing ca-

Ottawa Linux Symposium 2002 614

pability checks already protect these actions;
however, the LSM hooks provide more finely
grained access control.

The LSM interface leverages the pre-existing
POSIX.1e capabilities infrastructure in the
Linux kernel. The capability checks can
often override standard DAC checks (akin
to root). The checks are limited to a 32
bit vector describing the required capability,
e.g., CAP_DAC_OVERRIDE, and thus give
the module limited context when making ac-
cess control decisions. The system-level
capable() hook is placed in the existing
capable() function which gives LSM easy
compatibility with POSIX.1e capabilities as
well as a moderate ability to override DAC
checks.

The LSM framework adds a security sys-
tem call, which is a thin wrapper around the
sys_security() hook in the LSM inter-
face. This system call is a simple multiplexor
which allows a module to define a set of pol-
icy specific system calls. The LSM secu-
rity system call interface is modeled after the
standard Linux socket system call multiplexor,
sys_socketcall(2) .

4 Testing and Functionality

The true impact of LSM will be felt if and
when LSM is accepted as a standard part of the
Linux kernel, and end-users can adopt security
modules as readily as they adopt other appli-
cations for Linux. To be accepted into Linux,
LSM must be highly cost-effective. Section 4.1
summarizes the performance cost of the LSM
infrastructure. Section 4.2 presents the secu-
rity impact of LSM, in the form of modules
that have already been implemented or ported
to LSM.

4.1 Performance Impact

The performance cost of the LSM framework
is critical to its acceptance; in fact, perfor-
mance cost was a major part of the debate at
the Linux 2.5 developer’s summit that spawned
LSM. To rigorously document the performance
costs of LSM, we performed both microbench-
marks and macrobenchmarks that compared a
stock Linux kernel to one modified with the
LSM patch, but with no modules loaded.5

For microbenchmarks, we used the LM-
Bench [22] tool. LMBench was developed
specifically to measure the performance of core
kernel system calls and facilities, such as file
access, context switching, and memory move-
ment. LMBench has been particularly effective
at establishing and maintaining excellent per-
formance in these core facilities in the Linux
kernel.

LMBench outputs prodigious results. The
worst case overhead was 6.2% forstat() ,
6.6% for open/close , and 7.2% for file
delete. These results are to be expected, be-
cause of the relatively small amount of work
done in each call compared to the work of
checking for LSM mediation. The common
case was much better, often 0% overhead,
ranging up to 2% overhead.

For macrobenchmarking, we used the common
approach of building the Linux kernel from
source. The results here were even better: no
measurable performance impact.6 More de-
tailed performance data can be found in [31].

5The performance costs of each module are the re-
sponsibility of the module’s authors.

6In fact, the LSM case was actually faster, but we
regard that as an experimental anomaly, and do not claim
that LSM is a performance optimization :-)

Ottawa Linux Symposium 2002 615

4.2 Security Impact

Another key factor in the acceptance of the
LSM framework is that it provide some real se-
curity value. This can be viewed in two ways.
First, LSM must not create new security holes
and needs to be thorough and consistent in its
coverage. Second, the LSM framework must
be general enough to support a variety of ac-
cess control models.

Proving the correctness of the LSM framework
has not been handled by the LSM project di-
rectly. However, a project from IBM [9] has
developed tools to do both static and dynamic
analysis of the LSM framework. These tools
have, in fact, helped improve the LSM inter-
face, and can help with ongoing maintenance.

The real value of LSM is delivering effective
security modules. Porting access control mod-
els to the LSM framework proves that it is
functional as a general purpose access con-
trol framework. As the name suggests, LSM
does not impact system security without secu-
rity modules. Presently, LSM supports the fol-
lowing security modules:

• SELinux A Linux implementation of the
Flask [28] flexible access control architec-
ture and an example security server that
supports Type Enforcement, Role-Based
Access Control, and optionally Multi-
Level Security. SELinux was originally
implemented as a kernel patch [19] and
was then reimplemented as a security
module that uses LSM. SELinux can be
used to confine processes to least priv-
ilege, to protect the integrity and con-
fidentiality of processes and data, and
to support application security needs.
The generality and comprehensiveness of
SELinux helped to drive the requirements
for LSM.

• DTE Linux An implementation of Do-
main and Type Enforcement [3, 4] de-
veloped for Linux [14]. Like SELinux,
DTE Linux was originally implemented
as a kernel patch and was then adapted
to LSM. With this module loaded, types
can be assigned to objects and domains to
processes. The DTE policy restricts ac-
cess between domains and from domains
to types. The DTE Linux project also pro-
vided useful input into the design and im-
plementation of LSM.

• LSM port of Openwall kernel patch
The Openwall kernel patch [8] provides a
collection of security features to protect a
system from common attacks, e.g., buffer
overflows and temp file races. A module
is under development that supports a sub-
set of the Openwall patch. For example,
with this module loaded a victim program
will not be allowed to follow malicious
symlinks.

• POSIX.1e capabilitiesThe POSIX.1e ca-
pabilities [29] logic was already present
in the Linux kernel, but the LSM kernel
patch cleanly separates this logic into a se-
curity module. This change allows users
who do not need this functionality to omit
it from their kernels and it allows the de-
velopment of the capabilities logic to pro-
ceed with greater independence from the
main kernel.

• LIDS (Linux Intrusion Detection Sys-
tem) started out as an intrusion detection
system, and then migrated towards intru-
sion prevention in the form of an access
control system similar to SubDomain [7]
that manages access by describing what
files a givenprogrammay access.

Ottawa Linux Symposium 2002 616

5 Conclusions

Linux is a shared playroom, and thus needs
to make most players reasonably happy. LSM
thus needs to meet two criteria: be relatively
painless for people who don’t want it, and be
useful and effective for people who do want it.

We feel that LSM meets these criteria. The
patch is relatively small, and the performance
data in Section 4 shows that the LSM patch im-
poses nearly zero overhead. The broad suite of
security products from around the world that
have been implemented for LSM shows that
the LSM API is useful and effective for devel-
oping Linux security enhancements.

6 Acknowledgements

Thanks to the LSM mailing list for engaging
in the sometimes tedious and heated discus-
sions that helped shape LSM. Special thanks to
the SELinux project that helped kickstart LSM
with the original presentation at the 2001 Ker-
nel Summit.

UNIX is a registered trademark of The Open
Group in the United States and other countries.

Linux is a trademark of Linus Torvalds.

Other company, product, and service names
may be trademarks or service marks of others.

7 Availability

LSM is available as a kernel patch for
both the 2.4 and 2.5 Linux kernels. The
patches are available fromhttp://lsm.
immunix.org .

References

[1] The Holy Bible: Genesis 11:1-8.

[2] J. Anderson. Computer Security Technology
Planning Study. Report Technical Report
ESD-TR-73-51, Air Force Elect. Systems Div.,
October 1972.

[3] L. Badger, D.F. Sterne, and et al. Practical
Domain and Type Enforcement for UNIX. In
Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, May 1995.

[4] Lee Badger, Daniel F. Sterne, David L. Sherman,
Kenneth M. Walker, and Sheila A. Haghighat. A
Domain and Type Enforcement UNIX Prototype.
In Proceedings of the USENIX Security
Conference, 1995.

[5] D. Baker. Fortresses built upon sand. In
Proceedings of the New Security Paradigms
Workshop, 1996.

[6] M. Bishop and M. Digler. Checking for Race
Conditions in File Accesses.Computing Systems,
9(2):131–152, Spring 1996. Also available at
http://olympus.cs.ucdavis.edu/
~bishop/scriv/index.html .

[7] Crispin Cowan, Steve Beattie, Calton Pu, Perry
Wagle, and Virgil Gligor. SubDomain:
Parsimonious Server Security. InUSENIX 14th
Systems Administration Conference (LISA), New
Orleans, LA, December 2000.

[8] Solar Designer. Non-Executable User Stack.
http://www.openwall.com/linux/ .

[9] Antony Edwards and Xiaolan Zhang. Using
CQUAL for Static Analysis of Authorization
Hook Placement. InUSENIX Security
Symposium, San Francisco, CA, August 2002.

[10] M. Abrams et al.Information Security: An
Integrated Collection of Essays. IEEE Comp.,
1995.

[11] Timothy Fraser. LOMAC: Low Water-Mark
Integrity Protection for COTS Environments. In
Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, May 2000.

[12] Timothy Fraser. LOMAC: MAC You Can Live
With. In Proceedings of the FREENIX Track,
USENIX Annual Technical Conference, Boston,
MA, June 2001.

[13] Virgil D. Gligor, Serban I Gavrila, and David
Ferraiolo. On the Formal Definition of
Separation-of-Duty Policies and their
Composition. InProceedings of the IEEE
Symposium on Security and Privacy, Oakland,
CA, May 1998.

Ottawa Linux Symposium 2002 617

[14] Serge Hallyn and Phil Kearns. Domain and Type
Enforcement for Linux. InProceedings of the 4th
Annual Linux Showcase and Conference, October
2000.

[15] S. Kent and R. Atkinson. Security Architecture
for the Internet Protocol. RFC 2401, November
1998.

[16] Jay Lepreau, Bryan Ford, and Mike Hibler. The
persistent relevance of the local operating system
to global applications. InProceedings of the ACM
SIGOPS European Workshop, pages 133–140,
September 1996.

[17] Linux Intrusion Detection System. World-wide
web page available at
http://www.lids.org .

[18] T. Linden. Operating System Structures to
Support Security and Reliable Software.ACM
Computing Surveys, 8(4), December 1976.

[19] Peter Loscocco and Stephen Smalley. Integrating
Flexible Support for Security Policies into the
Linux Operating System. InProceedings of the
FREENIX Track: 2001 USENIX Annual Technical
Conference (FREENIX ’01), June 2001.

[20] Peter A. Loscocco, Stephen D. Smalley, Patrick A.
Muckelbauer, Ruth C. Taylor, S. Jeff Turner, and
John F. Farrell. The Inevitability of Failure: The
Flawed Assumption of Security in Modern
Computing Environments. InProceedings of the
21st National Information Systems Security
Conference, pages 303–314, October 1998.

[21] M. K. McKusick, M. J. Karels, S. J. Leffler, W. N.
Joy, and R. S. Faber.Berkeley Software
Architecture Manual, 4.4BSD Edition. University
of California, Berkeley, Berkeley, CA, 1994.

[22] Larry W. McVoy and Carl Staelin. lmbench:
Portable Tools for Performance Analysis. In
USENIX Annual Technical Conference, 1996.
http://www.bitmover.com/lmbench/ .

[23] Netfilter Core Team. The Netfilter Project: Packet
Mangling for Linux 2.4, 1999.
http://www.netfilter.org/ .

[24] Amon Ott. The Rule Set Based Access Control
(RSBAC) Linux Kernel Security Extension. In
Proceedings of the 8th International Linux
Kongress, November 2001.

[25] Eric S. Raymond.The Cathedral & the Bazaar:
Musings on Linux and Open Source by an
Accidental Revolutionary. O’Reilly & Associates,
1999.http:
//www.oreilly.com/catalog/cb/ .

[26] Jerome H. Saltzer and Michael D. Schroeder. The
Protection of Information in Computer Systems.
Proceedings of the IEEE, 63(9), November 1975.

[27] Stephen Smalley, Timothy Fraser, and Chris
Vance. Linux Security Modules: General Security
Hooks for Linux.
http://lsm.immunix.org/ , September
2001.

[28] Ray Spencer, Stephen Smalley, Peter Loscocco,
Mike Hibler, David Andersen, and Jay Lepreau.
The Flask Security Architecture: System Support
for Diverse Security Policies. InProceedings of
the Eighth USENIX Security Symposium, pages
123–139, August 1999.

[29] Winfried Trumper. Summary about POSIX.1e.
http://wt.xpilot.org/
publications/posix.1e , July 1999.

[30] WireX Communications. Linux Security Module.
http://lsm.immunix.org/ , April 2001.

[31] Chris Wright, Crispin Cowan, Stephen Smalley,
James Morris, and Greg Kroah-Hartman. Linux
Security Modules: General Security Support for
the Linux Kernel. InUSENIX Security
Symposium, San Francisco, CA, August 2002.

[32] Marek Zelem and Milan Pikula. ZP Security
Framework.http://medusa.fornax.sk/
English/medusa-paper.ps .

Mandatory Access Control for Linux Clustered
Servers

Miroslaw Zakrzewski
Open Systems Lab
Ericsson Research

8400 Decarie Blvd

Town of Mont Royal, Quebec

Canada H4P 2N2

Miroslaw.Zakrzewski@ericsson.ca

Abstract

In today’s world, the use of computers and net-
works is growing and the vision of a single
infrastructure for voice and data is becoming
a reality. However, with different technolo-
gies and services using the same networking
infrastructure, the realization of this vision re-
quires higher levels of security to be imple-
mented in computer systems. Current secu-
rity solutions do not address all of the security
challenges facing today’s computer systems,
including clustered platforms, in one compre-
hensive and coherent fashion.

This paper presents the previous work done in
the area of access control and then focus on
new mechanisms for clustered Linux servers
as part of the research project at the Ericsson
Open Systems Lab. In this paper, we address
the design and implementation of a framework
for the mandatory access control in the dis-
tributed security infrastructure (DSI). The on-
going work is mainly based on the Flask archi-
tecture and the Linux Security Module (LSM)
framework with a focus on Linux clustered
servers. The paper also addresses the effects
of the cluster security on the performance of
the distributed system, since enforcing security

may introduce degradation in the performance,
an increase in administration, and some annoy-
ance for the user.

We are implementing cluster-aware access
control mechanisms in the Linux kernel. We
expect that our work will help position Linux
as a secure operating system for clustered
servers.

1 Introduction

The security of computing systems could be
enforced on different levels of the computing
environment such as hardware, operating sys-
tem, application and network level. The pri-
mary subject from the security prospective is
the operating system level, being a fundamen-
tal piece of the security of every computer sys-
tem, and a critical point of failure for the entire
system. Currently implemented security mech-
anisms of operating systems are based on user
privileges and are inadequate to protect against
the various kinds of attacks in today’s com-
plex environments. To address these problems,
security in operating systems has long been a
well-researched topic, which formulated vari-
ous security models and policies.

Ottawa Linux Symposium 2002 619

Various research results have shown that
mandatory security provided by the operat-
ing system is essential for the security of the
whole system [3]; furthermore, they proved
that mandatory access control mechanisms are
very efficient in supporting complex relation-
ships between different entities in the comput-
ing environment.

Several attempts were made to reach a very se-
cure platform. For instance, The FLASK ar-
chitecture [5,12] (on which SE Linux [17] is
based) was created as an attempt to serve as
a generic architecture for the mandatory ac-
cess control. An important design goal was
to provide flexible support for security poli-
cies. The FLASK architecture achieved the
goal by separating the security policy from the
enforcement mechanism and by having secu-
rity checks transparent to the applications. An-
other attempt from SE Linux was to prototype
the access control in the Linux kernel.

However, the existing solutions, including
Flask and SE Linux, do not address the access
control in distributed environments. One such
environment is computer cluster. In our con-
text, a cluster is defined as a collection of inter-
connected stand-alone computers working to-
gether to solve a problem as a single computer.
The cluster can appear as a single system to
users and applications. Since from the logical
point of view we can see a cluster as a single
entity, we should apply this definition to the
cluster security as well and treat the subjects
and resources as if they were located on one
virtual machine.

Even though new security approaches, such as
FLASK, address the problem of mandatory ac-
cess control between subjects and resources
belonging to the same processing node, they
are still missing the mandatory, finer-grained
security checks between the subjects and re-
sources belonging to different nodes.

There exist many security solutions for clus-
tered servers ranging from external solutions,
such as firewalls, to internal solutions such as
integrity checking software. However, there is
no solution dedicated for clusters. The most
commonly used security approach is to pack-
age several existing solutions. Nevertheless,
the integration and management of these dif-
ferent packages is very complex, and often re-
sults in the absence of interoperability between
different security mechanisms. Additional dif-
ficulties are also raised when integrating these
many packages, such as the ease of system
maintenance and upgrade, and the difficulty of
keeping up with numerous security patches and
upgrades.

Carrier class clusters have very tight re-
strictions on performance and response time.
Therefore, much pressure is put on the system
designer while designing security solutions. In
fact, many security solutions cannot be used
due to their high resource consumption.

In a distributed environment, subjects and re-
sources can be located anywhere on the net-
work so the relations between them are more
complex.

In this paper, we present the preliminary results
developing the Linux security module (LSM)
that links all the nodes of the cluster in a trans-
parent fashion; the Linux security module is
also referred to as the distributed security mod-
ule. The security module enforces the secu-
rity checking on a node between subjects and
resources belonging to the same or different
nodes of the cluster. The distributed security
module is a part of the distributed security in-
frastructure (DSI) and cannot be used without
it. The DSI decides about the security policy
and defines mechanisms that control the mod-
ule. In the next section, a brief description of
the distribution security infrastructure is intro-
duced.

Ottawa Linux Symposium 2002 620

Primary
Security
Server Node

Node 1 Node 2 Node 3

SMSS SM SM

Proc123 Proc978 Proc222
K

er
n

el

Secure Communication Channel

Secondary

Data TrafficIn
si

d
e

th
e

C
lu

st
er

Security
and
O&M/IDS

O
u

ts
id

e
th

e
C

lu
st

er

SS Security Server

SM Security Manager

Authenticated
Encrypted
Communications

Primary
Security
Server Node

Node 1 Node 2 Node 3

SMSS SM SM

Proc123 Proc978 Proc222
K

er
n

el

Secure Communication Channel

Secondary

Data TrafficIn
si

d
e

th
e

C
lu

st
er

Security
and
O&M/IDS

O
u

ts
id

e
th

e
C

lu
st

er

SS Security Server

SM Security Manager

Authenticated
Encrypted
Communications

Figure 1: Distributed Architecture of DSI

2 Distributed Security Infrastruc-
ture

2.1 DSI Characteristics

As part of a carrier class Linux cluster, DSI [6]
must comply with carrier class requirements
such as reliability, scalability, and high avail-
ability. Furthermore, DSI supports the follow-
ing requirements: coherent framework, pro-
cess level approach, pre-emptive security, dy-
namic security policy, transparent key manage-
ment, and minimal impact on performance.

2.2 DSI Architecture

DSI has two types of components: the man-
agement components and service components.
DSI management components define a thin
layer of components that includes a security
server, security managers, and a security com-
munication channel (Figure1). The service
components define a flexible layer, which can
be modified or updated by adding, replacing,
or removing services according to the needs.

The security server is the central point of man-
agement in DSI, the entry point for secure op-

Security Context
Repository

Security Context Security Manager

Security Policy Key Repository

Key Management

Auditing
Service

Access Control
Service

Authentication
Service

Integrity
Service

Security Context
Repository

Security Context Security Manager

Security Policy Key Repository

Key Management

Auditing
Service

Access Control
Service

Authentication
Service

Integrity
Service

Figure 2: DSI Services

eration and management, and intrusion detec-
tion systems from outside the cluster. It is the
central security authority for all the security
components in the system. It is responsible
for the distributed security policy. It also de-
fines the dynamic security environment of the
whole cluster by broadcasting changes in the
distributed policy to all security managers.

Security managers enforce security at each
node of the cluster. They are responsible for
locally enforcing changes in the security en-
vironment. Security managers only exchange
security information with the security server.

The secure communication channel provides
encrypted and authenticated communications
between the security agents. All communica-
tions between the security server and the out-
side of the cluster take place through the secure
communication channel.

The DSI architecture at each node is based on
a set of loosely coupled services (Figure 2).
Each service, upon its creation, sends a pres-
ence announcement to the local security man-
ager, which registers these services and pro-
vides their access mechanisms to the internal
modules.

There are two types of services: security ser-
vices (access control, authentication, integra-
tion, auditing) and security service providers
(for example secure key management) that run
at user level and provide services to security

Ottawa Linux Symposium 2002 621

managers.

3 Cluster Access Control

3.1 General Discussion

In general, the Access Control Service (ACS)
can be seen as a layer (software, hardware) that
enforces the security policy as a two-parameter
function. It relies on the notions of subject (or
access request initiator), resource (or target),
environment, decision, and enforcement.

A subject could be a program or process and a
resource can be a file or a communication re-
source. The same process can be a subject in
one access control operation and a resource in
another.

An access control could be interpreted as a ma-
trix where one axis is the list of all possible
subjects and the other is the list of all possible
resources. The entries in the matrix define the
permissions. Even for reasonable-sized sys-
tems the matrix gets complicated, very fast so
there is a need to reduce its complexity. In
order to do this, the term class is introduced.
Class groups the subjects and resources, which
have the same permission and create only one
entry for them in the matrix.

When a Subject tries to access a Resource (Fig-
ure 3), the access request is intercepted by the
access control layer and based on the subject’s
rights, the access either is granted or not. The
access control of an operation system is usually
added in the system call layer (Linux). This is
ideal for the operating system because it makes
the access control transparent for the applica-
tions, and more secure because it’s located in
one of the lowest software layers, in addition
it’s fast because it’s embedded into the opera-
tion system.

The ACS assumes that the subjects have been

Subject

Access Control
Decision = function(Subject,Resource)

Resource

Access Request

Subject

Access Control
Decision = function(Subject,Resource)

Resource

Access Request

Figure 3: Access Control

properly authenticated. One of the important
characteristics of the access control for clus-
ters is that it allows verifying the access control
privileges even when subjects and resources
are located on different nodes in the cluster.

The ACS that runs on the cluster processors is
comprised of two parts:

1. A kernel-space part: This part is respon-
sible for implementing both the enforce-
ment and the decision-making tasks of
access control. These two responsibili-
ties are separated. The kernel-space part
maintains an internal representation of the
information upon which it bases its de-
cisions. This information (security pol-
icy) is supplied by the security server and
stored in the local memory for fast access
(hash table). On Linux, the kernel-space
part is implemented as a Linux Security
Module (LSM).

2. A user-space part: This part has many
responsibilities. It takes the informa-
tion from the Distributed Security Policy
and from the Security Context Repository,
combines them together, and feeds them
to the kernel space part in an easily us-
able form. It also takes care of propagat-
ing back alarms from the kernel space part
to the security manger, which will feed

Ottawa Linux Symposium 2002 622

them to the Auditing and Logging Service
and if necessary propagate to the security
server through SCC.

Both parts, kernel-space and user-space, are
started and monitored by the local Security
Manager (SM) on each node. The SM also in-
troduces them to other services and subsystems
of the DSI infrastructure with which they need
to interact.

The ACS aims to provide fine-grained access
control (at the system call level). It respects
the minimization principles of least privilege
to limit the propagation and damage caused by
eventual security breaches. As such, it pro-
vides defense in depth.

The ACS that is running on a processor must
make as little assumptions as possible about
other processors, including whether they have
been compromised. For that reason, an ACS
instance is always the one making access de-
cisions about resources that are local to its
processor. For the initial design of the ACS,
only grant/deny decision will be considered.
Other more involved decisions would involve
rate limiting and total usage limiting. Actions
other than access control decision, such as in-
terposition and active reactions, are not imple-
mented either.

3.2 Cluster Access Types

The distributed environments allow that the ac-
tors of ACS (subject and resource) can be lo-
cated anywhere in the cyber space.

Based on their mutual location in the cluster
(Figure 4), and to reduce the complexity when
analyzing access control, we can distinguish
the following types of the access control:

• Cluster Local Access: Both subject and
resource are located on the same node in

Node

R

S

RR

SCLUSTER

Node

R

S

RR

SCLUSTER

Figure 4: Cluster Access Control

the cluster

• Cluster Remote Access: Both subject and
resource are located on different nodes in-
side the same cluster

• Cluster Outside Access: Subject is located
on a node inside cluster and resource is
outside the cluster or Subject is located
outside the cluster and resource on a node
inside the cluster.

• No Cluster Access: Both subject and re-
source are outside the cluster

The above classification allows us to reduce
the complexity of the cluster access control
by classifying the various access approaches.
First, we analyze the Cluster Local Access and
next we will move to the Cluster Remote Ac-
cess. The Cluster Outside Access and No Clus-
ter Access are out of the scope of this paper.

3.3 Distributed Access Control Architecture

Finding an efficient solution to the cluster
mandatory access control is a complex task.
There are many factors involved in defining
the access rights because the subjects and re-
sources can be located on different nodes in the

Ottawa Linux Symposium 2002 623

SnID1

SnIDx

Security
Server

Resource
(File)

SnID2

Subject 1
(Process)

Subject 2
(Process)

Resource
(Comm.)

Resource
(Comm.)

SnID, SID

SID

SIDSID

SIDSID

SnID1

SnIDx

Security
Server

Resource
(File)

SnID2

Subject 1
(Process)

Subject 2
(Process)

Resource
(Comm.)

Resource
(Comm.)

SnID, SID

SID

SIDSID

SIDSID

SnID1

SnIDx

Security
Server

Resource
(File)

SnID2

Subject 1
(Process)

Subject 2
(Process)

Resource
(Comm.)

Resource
(Comm.)

SnID, SID

SID

SIDSID

SIDSID

Figure 5: Distributed Access Control

cluster. To simplify the relationships, we can
handle the access control in two levels:

1. Local when subject and resource are lo-
cated on the same node, and

2. Remote when subject and resource are lo-
cated on different nodes.

For local access control, the access rights are
the functions of the security IDs of the subject
(SSID) and the resource (TSID). This is based
on the FLASK architecture:

Access = Function (SSID, TSID)

The FLASK architecture can serve as a solu-
tion for the single node processing. When the
nodes are presented as a cluster, security solu-
tions become more complicated. In this case,
we extend the FLASK architecture to the clus-
ter remote access model. One of the new pa-
rameters is the security node ID (SnID) (Fig-
ure 5), which defines the node in terms of the
security. Access rights are no more just the
function of the subject and target security ID’s,
but as well, the function of the security node
ID.

Access = Function

(SSnID,SSID,TSnID,TSID)

An important part of the distributed system is
the network, which spans the nodes of the clus-
ter. To apply the access control functions in the
cluster, there must be a way to pass the security
parameters between the nodes in a transparent
fashion. In our research, we try to find the ap-
propriate architecture for this problem as well.

Our prototype is based on a cluster of
Linux machines and the implementation of the
mandatory access control will by exercised in
the Linux kernel. By implementing the manda-
tory access control inside the kernel, we can
achieve security transparency in the system.

Another functionality of the access control is
to be able to generate alarms in case of intru-
sion detection. When the security module de-
tects the intrusion, an alarm notification will be
passed to the security manager and later to the
security server. Based on the severity of the
alarm, the security server will take an action.
An example of the action will be a change of
the security node ID, loading a new security
policy, or declaring a node compromised and
disconnecting it from the cluster. In the most
severe case, the security server may ask ACS
to block all accesses except the security path
of the security manager.

4 DSI Security Module

Our security enforcement software for Linux
is built as a Linux module and works in the
kernel space. We based our development on
the Linux Security Module (LSM) infrastruc-
ture (security hooks) introduced in the Linux
kernel.

LSM framework does not supply any addi-
tional security in the Linux kernel. It only
provides the infrastructure to support the se-
curity development as Linux modules. The
LSM kernel patch adds security fields to ker-
nel data structures and inserts calls (called

Ottawa Linux Symposium 2002 624

hooks) at special points in the kernel code
to perform a module specific access con-
trol. LSM adds methods for registering and
un-registering security modules, and a gen-
eral security system call that allows the com-
munication between user programs and the
LSM for security aware applications. Each
LSM hook is a function pointer in a global
structure calledsecurity_ops . Because
the hooks are embedded in the kernel and
are called even before a security module
is installed, this structure is initialized to a
set of functions provided by a dummy se-
curity module. These functions are just
placeholders for more useful security mech-
anisms that can be loaded as a Linux mod-
ule. A register_security method is in-
troduced to allow a security module to set its
own security functions (to overlay the dummy
functions). An unregister_security
method is used to return to the dummy func-
tions.

The LSM methods are organized into two cat-
egories:

• Hooks to handle the security fields

• Hooks to perform access control

We started the development with the kernel
2.4.17 [13] and the appropriate security patch
(lsm-full-2002_01_15-2.4.17.patch

[15]). The DSM module cannot act alone and
rely on the services supplied by DSI. DSM
only enforces the access control but the policy
is decided by the DSI security server. The
security server is responsible for giving the
security policy to the security module. The
security server (SS) is responsible to supply
the security node ID to each node of the cluster
as well. Sending the security node ID to the
node of the cluster means that the node is part
of the cluster from the security point of view
and it can start the security operation. Before

the security node ID is sent to the cluster node,
all the security checks are disabled on this
node.

DSM takes security decisions based on the se-
curity policy decided by the security server and
the security identifiers (SID) assigned to each
subject and resource. Security Identifiers are
non-persistent and are meaningful only on the
local node. The security server provides func-
tionality for converting a SID to its correspond-
ing security context. All the entities for which
security is being enforced are divided into se-
curity classes. A security class is a distinct type
of resource with a distinct set of legal opera-
tions, for example, a process, a file, etc.

When a security decision must be taken, the
security IDs of a subject and a resource are
extracted from their kernel representations and
will be used for the security access decision.
For efficiency, the security policy is repre-
sented in the kernel memory.

4.1 Labels

As already mentioned, all the subjects and re-
sources must be labeled. Since the security
module can be loaded run-time, we distinguish
two modes of subjects labeling. Before the
module is loaded there are no labels attached
to any subject or resource in the system. At
the module initialization time, all the running
tasks are scanned and the labels are attached to
them. When a new process is created after the
security module is loaded, the security hooks
are used to do the labeling.

Because Linux stores the process descriptor
and the Kernel Mode process stack in a sin-
gle 8KB memory area, we can use this fact and
avoid allocating memory for labeling the sub-
jects (Figure 6). The other labels are attached
to the resources run-time, which implies that
the module checks if the label is there. If the

Ottawa Linux Symposium 2002 625

Struct Task_Struct

security

task_security_t
task

Kernel Stack

8 Kb
block

Struct Task_Struct

security

task_security_t
task

Kernel Stack

8 Kb
block

Figure 6: Task Label

label is not attached, a new label will be cre-
ated.

4.2 Network Labels

Because the access in the cluster can be per-
formed from a subject located on one node to
the resource located on another, there is a need
to control such accesses as well.

When a process on one node makes an access
to a resource on another node, first the local ac-
cess to the communications resources (socket,
network interface) is checked. When the lo-
cal access is granted then the message can be
sent to the remote location. In order to iden-
tify the sending subject, the Security Node ID
(security node identifier) and the Security ID
of the subject (security subject identifier) are
added to the message. For the purpose of this
exercise, we use the IP protocol for the security
information transfer. A new option is added
after the IP header based on the hooks in the
IP protocol stack. On the receiving side, these
two information (Security Node ID and Secu-
rity SID) are extracted (based on the hooks in
the IP stack) and are used to build the network
security ID (NSID).

NSID = Function (SnID, SID)

This function is specified by the security server
in form of the conversion table. The receiving
side looks up into the table by specifying SnID
and SID and extract the Security Network ID.
Now the security network ID can be used as a
local label to all the access controls.

For instance, a client process tries to access
a server’s process. The client node does not
know what is the security of the server node,
so it can only perform access control checks
based on the security attributes of the com-
munications resources (sockets, network inter-
face). The server node can perform access con-
trol checks based on the security attributes of
the client process, the source node, and the
server process. When a process attempts to ac-
cept a connection or receive a packet, if the pol-
icy prohibits the server process from receiving
data from the client process, the connection or
the packet is dropped and alarm is generated.

4.3 Implementation status

We are in the process of building the work-
ing prototype of the cluster security infrastruc-
ture. The kernel module has been implemented
where the subjects (tasks) have been labeled.
The local access to the communication objects
(sockets) has been implemented and we are
currently working on the remote access imple-
mentation.

In the current implementation, the security in-
formation is added to the IP message after the
IP header as an option. There is no imple-
mentation of the interface to other parts of
the distributed security architecture. The ac-
tions of the security server are simulated by the
user mode programs (load policy, load secu-
rity node ID). The alarms generated by the dis-
tributed security module are sent to the special
user mode program as well. The current imple-

Ottawa Linux Symposium 2002 626

mentation is not optimized for the performance
and it is built in order to check the overall logic
of the cluster security.

5 Performance Challenges

Enforcing security does not come free; there
is always a performance price to pay. At the
same time, an over secured system is almost
unusable; therefore the security introduced to
the system must be properly balanced. This
section discusses the impact of the security im-
plementation on the overall performance of the
system.

We performed testing for three different kernel
configurations: the first testing was done with
kernel 2.4.17; the second was done with the
same kernel and our security module loaded
plus the IP packet modification; the third was
done with the same kernel and the security
module but without IP packet modification.
These tests were executed on a Pentium III 650
MHz Dell laptop with 265 MB RAM.

5.1 Test Types

We performed three types of testing: process
creation with fork, UDP local access, and UDP
remote access. The purpose of the testing was
to get a preliminary performance evaluation of
the security module, to answer the question of
how much performance we lose when adding
extra security features. The UDP tests were
performed with and without IP packet modi-
fication in order to see how much performance
was lost during IP packet modification. In the
following subsection, we explain the testing
procedure per testing type.

Process Creation Testing

This test measures the time a process can fork
a child that immediately exits. The parent pro-
cess loops 100,000 performing fork and wait

calls. The test was performed 5 times and the
average was calculated. Later the average time
of the single loop (fork, wait) was calculated.

UDP Local Access Testing

The UDP Local Access test measures the time
needed by a process to send a UDP message.
This test sends 500,000 UDP messages in a
loop. The test was performed 5 times and the
average was calculated. Later the average time
of the single loop (send) was calculated. The
sending process does not check if the message
was sent outside the node; in addition, it does
not wait for the confirmation. In this case, it
is not important whether the server has DSM
installed or not.

UDP Remote Access Testing

The UDP Remote Access test measures the
time needed by a process to send a UDP mes-
sages and receive a UDP response from a
server. The client process will send a new mes-
sage after receiving the confirmation from the
server. It is important, in this case, that the
server runs the DSM software for the permis-
sion to be checked on the receiving side. In this
test, the second server is a Pentium II 300 MHz
desktop with 128 MB RAM. This test sends
and receives 100,000 UDP messages in a loop.
The test was performed 5 times and the aver-
age was calculated. Later the average time of
the single loop (send, recv) was calculated.

5.2 Test Results and Interpretation

Based on the testing performed, we present the
results in Table1 and 2. All numbers are in mi-
croseconds.

Process Creation Testing
Results

The average fork test with kernel 2.4.17 and the
DSM module was completed in 167 microsec-

Ottawa Linux Symposium 2002 627

Linux Linux Overhead
2.4.17 2.4.17 %

with DSM

Fork 167 169 +1.20%
UDP
Local Access 16.388 19.7 +20%
(Send Message)
UDP
Remote Access 133.44 173.88 +30%
(Loopback)

Table 1: Performance Analysis with IP packet
modification

Linux Linux Overhead
2.4.17 2.4.17 %

with DSM

UDP
Local Access 16.388 17.084 +4.2%
(Send Message)
UDP
Remote Access 133.44 140.64 +5.4%
(Loopback)

Table 2: Performance Analysis without IP
packet modification

onds, compared to 169 microseconds with ker-
nel 2.4.17 without the DSM module. As a re-
sult, we have a 1.2% increase as overhead. This
is because the system had to perform a permis-
sion check on the fork operation and to spend
some extra time on labeling of the child pro-
cess.

UDP Local Access Testing Results

In this case, the average overhead for the set-
ting with DSM module against the setting with-
out the DSM module is 20%. This overhead
consists of performing permission check on the
socket send message andsk_buff label at-
tachment for each message sent plus the la-
beling of IP messages. When the IP packet
modification is disabled (Table 2) the overhead
drops to 4.2%. As we can see most of the over-
head is related to IP packet modification. Only
a small fraction of the overhead is caused by
the security module.

UDP Remote Access Testing Results

In this case, the average overhead for the set-
ting with DSM module against the setting with-
out the DSM module is 30%. The overhead
consists of the following:

• Performing a permission check on the
send socket side,

• Attaching a label tosk_buff ,

• Attaching the security information to the
IP message,

• Retrieving the security information on the
receive side,

• Attaching the network security ID to
sk_buff ,

• Performing the permission checking on
sk_buff ,

Ottawa Linux Symposium 2002 628

• Performing the security checking on the
socket, and,

• Repeating all the above operations on the
return message.

When the IP packet modification is disabled
(Table 2), the overhead drops to 5.4%. As we
can see most of the overhead is related to IP
packet modification. Only a small fraction of
the overhead is caused by the security module.

5.3 Discussion

One of the most frequently asked questions is
how adding security mechanisms will affect
the performance of the system. Based on the
testing results (Table 1), the percentage over-
head for some operations, such as the UDP re-
mote access, is considerable. The simple test,
like fork, has relatively small overhead because
there is only one security check. Neverthe-
less, some more complicated tests, like loop-
back, have high overhead because the security
is checked in many points on the way of the
traveling message. As it is shown in Table 2,
the most of the overhead is added by the IP
packet modification.

These results must be regarded as an upper case
of the performance because no single security
operation has been optimized. Nevertheless,
the results demonstrated the challenges facing
the development of efficient distributed secu-
rity.

We believe that after optimizing the implemen-
tation, we will decrease the percentage over-
head significantly.

6 Conclusion

6.1 Lessons learned

One of our objectives was to prototype a dis-
tributed security module for Linux clusters.
During the process, we acquired a lot of com-
petence in the area of Linux kernel internals,
which allowed us to set up the task security
structure without memory allocation.

It is always important to divide complex prob-
lems into smaller parts in order to simplify the
solution. In our case, we approached the prob-
lem of distributed access control in the way that
we tried to answer three important questions:

1. How to perform the local access control?

2. How to perform the remote access con-
trol?

3. How to transfer the security information
from one node to another in a transparent
way?

While building the first prototype, we managed
to crash the kernel many times. We realized
that the swapper task (task 0) is not on the
for_each_task list and has to be handled
separately.

One of the lessons was that the system could
not be over secured because it becomes unus-
able. By loading a very strict policy, we were
not able to interact with the operating system
up to the point where we had to reboot the sys-
tem.

6.2 Final remarks

We were able to achieve our first goal of build-
ing the framework of the mandatory access
control for Linux cluster. The security checks
can be performed on the subjects and resources

Ottawa Linux Symposium 2002 629

located on the same (local access) and different
nodes (remote access) of the cluster.

We tested the framework with buffer overflow
attacks and it proved that the current solution
could guard against these types of attacks.

We continue to work implementing the new
functionality in DSM for Linux clusters. In
addition, we are in the process on building a
benchmarking environment (Security Evalua-
tion Lab) that is capable of testing the perfor-
mance and the resistance of the system against
various possible attacks such as denial of ser-
vice attacks.

The distributed security module (DSM) is an
integral part of the distributed security infras-
tructure (DSI). It relies on the services of DSI
and provides access control services to DSI.
The development of DSM and DSI are ongo-
ing at full speed.

In the short term, we plan to implement inter-
faces between some services of DSI and DSM.
One of the examples could be the interface be-
tween the security manager on a node and the
DSM. This interface will be used to load a new
policy and to pass a new node security node ID
downloaded by the security manage to a node.
In addition, we plan to introduce the mecha-
nisms to pass alarms from DSM to SM and
later to SS.

7 Future Work

We are in the early stage of the prototyping and
in the first stage of building the mandatory ac-
cess control for Linux clusters. Our first goal
is to prototype the framework of the distributed
access control to check the logic of the dis-
tributed access.

Based on the limited functionality (socket level
network access), we plan to exercise the server

security as a function of the received connec-
tion (traffic) from the clients with different se-
curity ID’s. When a server accesses resources
on the local node the access control does not
know whether the access is a local access or
is performed on behalf of a remote client. In
this case, there must be a change of the server
access rights based on the clients connected to
it.

In the current implementation, the security in-
formation sent on the network is not protected;
they can be sniffed and used in possible at-
tacks. Our next objective is to securely trans-
mit this information without any performance
degradation.

The security information is attached as options
to the IP packet. Because the IP protocol is
relatively high level, there is a need to imple-
ment this feature on lower levels of the network
stack.

One of our next steps is to investigate the rela-
tionships when a subject or a resource is out-
side the cluster. Since we are at an early pro-
totype phase, the performance optimization is
not done yet. Therefore, improving the perfor-
mance of the secure system is the next chal-
lenge.

Finally, we plan to test our security mech-
anisms built into the servers of the cluster
through generating different types of attacks to
verify how the new security mechanisms can
improve the overall system security.

Acknowledgments

Ibrahim Haddad, Ericsson Research Canada,
for commenting and reviewing this paper.
David Gordon, Ericsson Research Canada, for
contributing to the IP options implementation
and buffer overflow exercise.

Ottawa Linux Symposium 2002 630

References

[1] A. Chitturi “Implementing Mandatory
Network Security in a Policy-Flexible
System,” Masters Thesis, University of Utah,
June 1998.

[2] P. Loscocco, S. Smallay “Integrating
Flexible Support for Security Policies into
Linux Operating System” Technical Report,
NSA and NAI Labs, Oct 2000.

[3] P. Loscocco, S. Smallay, P.A.
Muckelbauer, R.C. Taylor, S.J. Turner, J.F.
Farrell “The Inevitability of Failure: The
Flawed Assumption of Security in Modern
Computing Environments” InProceeding of
the 21st National Information Systems
Security Conference, Oct 1998.

[4] P. Loscocco, S. Smallay “Meeting Critical
Security Objectives with Security Enhanced
Linux” Technical Report, NSA and NAI Labs,
Oct 2000.

[5] R. Spencer, P. Loscocco, S. Smallay, M.
Hibler, D. Andersen, J. Lepreau “The Flask
Architecture: System Support for Diverse
Security Policies,” NSA, SCC, University of
Utah.

[6] M. Dagenais, I. Haddad, C. Levert, M.
Pourzandi, M Zakrzewski “A New
Architecture for Security in Carrier Class
Clusters,” Apr. 2002.

[7] G. Nutt Kernel Projects for Linux, Addison
Wesley Longman, 2001.

[8] A. Rubini, J. CorbetLinux Device Drivers,
O’Reilly, 2001, Second Edition.

[9] M. Beck, H. Boehme, M. Dziadzka, U.
Kunitz, R. Magnus, D. VerwornerLinux
Kernel Internals, Addison Wesley Longman,
1998, Second Edition

[10] D.P. Bovet, M. CesatiUnderstanding the
Linux Kernel, O’Reilly, 2001, First Edition.

[11] Buffer Overflow,
http://www.insecure.org/stf

/smashstack.txt

[12] Flask Architecture,
http://www.cs.utah.edu/flux/fluke

/html/flask.html

[13] Linux Kernel,
http://www.kernel.org

[14] Linux Kernel Module Programming,
http://metalab.unc.edu/mdw/LDP

/lkmpg/mpg.html

[15] LSM Patches to Kernel,
http://lsm.immunix.org

[16] Network Patch (selopt),
http://www.intercode.com.au

/jmorris/selopt/old/

[17] SELinux,http://www.nsa.org

/selinux

Glossary

ACS Access Control Service

DSI Distributed Security Architecture

DSM Distributed Security Module

LSM Linux Security Module

NSID Network Security ID

SCC Secure Communication Channel

SM Security Manager

SnID Security Node ID

SS Security Server

SSID Source Security ID

Ottawa Linux Symposium 2002 631

SSnID Source Security Node ID

TSID Target Security ID

TSnID Target Security Node ID

