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Abstract

Single-language runtime systems, in the form of Java
virtual machines, are widely deployed platforms for ex-
ecuting untrusted mobile code. These runtimes pro-
vide some of the features that operating systems pro-
vide: inter-application memory protection and basic sys-
tem services. They do not, however, provide the ability
to isolate applications from each other, or limit their re-
source consumption. This paper describes KaffeOS, a
Java runtime system that provides these features. The
KaffeOS architecture takes many lessons from operating
system design, such as the use of a user/kernel bound-
ary, and employs garbage collection techniques, such as
write barriers.

The KaffeOS architecture supports the OS abstraction
of a process in a Java virtual machine. Each process exe-
cutes as if it were run in its own virtual machine, includ-
ing separate garbage collection of its own heap. The dif-
ficulty in designing KaffeOS lay in balancing the goals
of isolation and resource management against the goal of
allowing direct sharing of objects. Overall, KaffeOS is
no more than 11% slower than the freely available JVM
on which it is based, which is an acceptable penalty for
the safety that it provides. Because of its implementation
base, KaffeOS is substantially slower than commercial
JVMs for trusted code, but it clearly outperforms those
JVMs in the presence of denial-of-service attacks or mis-
behaving code.

1 Introduction

The need to support the safe execution of untrusted
programs in runtime systems for type-safe languages has
become clear. Language runtimes are being used in

This research was largely supported by the Defense Advanced Re-
search Projects Agency, monitored by the Air Force Research Labo-
ratory, Rome Research Site, USAF, under agreements F30602–96–2–
0269 and F30602–99–1–0503. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright annotation hereon.

Contact information: {gback,wilson,lepreau}@cs.utah.edu. School
of Computing, 50 S. Central Campus Drive, Room 3190, University of
Utah, SLC, UT 84112-9205. http://www.cs.utah.edu/flux/

many environments for executing untrusted code: for
example, applets, servlets, active packets [41], database
queries [15], and kernel extensions [6]. Current systems
(such as Java) provide memory protection through the
enforcement of type safety and secure system services
through a number of mechanisms, including namespace
and access control. Unfortunately, malicious or buggy
applications can deny service to other applications. For
example, a Java applet can generate excessive amounts
of garbage and cause a Web browser to spend all of its
time collecting it.

To support the execution of untrusted code, type-safe
language runtimes need to provide a mechanism to iso-
late and manage the resources of applications, analogous
to that provided by operating systems. Although other re-
source management abstractions exist [4], the classic OS
process abstraction is appropriate. A process is the basic
unit of resource ownership and control; it provides iso-
lation between applications. On a traditional operating
system, untrusted code can be forked in its own process;
CPU and memory limits can be placed on the process;
and the process can be killed if it is uncooperative.

A number of approaches to isolating applications in
Java have been developed by others over the last few
years. An applet context [9] is an example of an
application-specific approach. It provides a separate
namespace and a separate set of execution permissions
for untrusted applets. Applet contexts do not support re-
source management, and cannot defend against denial-
of-service attacks. In addition, they are not general: ap-
plet contexts are specific to applets, and cannot be used
easily in other environments.

Several general-purpose models for isolating appli-
cations in Java do exist, such as the J-Kernel [23] or
Echidna [21]. However, these solutions superimpose
an operating system kernel abstraction on Java without
changing the underlying virtual machine. As a result,
it is impossible in those systems to account for resources
spent on behalf of a given application: for example, CPU
time spent while garbage collecting a process’s heap.

An alternative approach to separate different applica-
tions is to give each one its own virtual machine, and
run each virtual machine in a different process on an un-



derlying OS [25, 29]. For instance, most operating sys-
tems can limit a process’s heap size or CPU consump-
tion. Such mechanisms could be used to directly limit an
entire VM’s resource consumption, but they depend on
underlying operating system support.

Designing JVMs to support multiple processes is a su-
perior approach. First, it reduces per-application over-
head. For example, applications on KaffeOS can share
classes in the same way that an OS allows applications
to share libraries. Second, communication between pro-
cesses can be more efficient in one VM, since objects can
be shared directly. (One of the reasons for using type-
safe language technology in systems such as SPIN [6]
was to reduce the cost of IPC; we want to keep that goal.)
Third, embedding a JVM in another application, such as
a web server or web browser, is difficult (or impossible)
if the JVM relies on an operating system to isolate dif-
ferent activities. Fourth, embedded or portable devices
may not provide OS or hardware support for managing
processes. Finally, a single JVM uses less energy than
multiple JVM’s on portable devices [19].

Our work consists of supporting processes in a modern
type-safe language, Java. Our solution, KaffeOS, adds a
process model to Java that allows a JVM to run multiple
untrusted programs safely, and still supports the direct
sharing of resources between programs. The difficulty
in designing KaffeOS lay in balancing conflicting goals:
process isolation and resource management versus direct
sharing of objects between processes.

A KaffeOS process is a general-purpose mechanism
that can easily be used in multiple application domains.
For instance, KaffeOS could be used in a browser to sup-
port multiple applets, within a server to support multiple
servlets, or even to provide a standalone “Java OS” on
bare hardware. We have structured our abstractions and
APIs so that they are as broadly applicable as possible,
much as the OS process abstraction is. Because the Kaf-
feOS architecture is designed to support processes, we
have taken lessons from the design of traditional operat-
ing systems, such as the use of a user/kernel boundary.

Our design makes KaffeOS’s isolation and resource
control mechanisms comprehensive. We focus on the
management of CPU time and memory, although we plan
to address other resources such as network bandwidth.
The runtime system is able to account for and control
all of the CPU and memory resources consumed on be-
half of any process. We have dealt with these issues by
structuring the KaffeOS virtual machine so that it sepa-
rates the resources used by different processes as much
as possible.

To summarize, this paper makes the following contri-
butions:

• We describe how lessons from building traditional
operating systems can and should be used to struc-
ture runtime systems for type-safe languages.

• We describe how software mechanisms in the com-
piler and runtime can be used to implement isolation
and resource management in a Java virtual machine.

• We describe the design and implementation of Kaf-
feOS. KaffeOS implements our process model in
Java, which isolates applications from each other,
provides resource management mechanisms for
them, and also lets them share resources directly.

• We show that the performance penalty for using
KaffeOS is reasonable, compared to the freely avail-
able JVM on which it is based. Even though, due to
that implementation base, KaffeOS is substantially
slower than commercial JVMs on standard bench-
marks, it outperforms those JVMs in the presence
of uncooperative code.

Sections 2 and 3 describe and discuss the design and
implementation of KaffeOS. Section 4 provides some
performance measurements of KaffeOS, and compares
its performance with that of some commercial Java vir-
tual machines. Section 5 describes related work in more
detail, and Section 6 summarizes our conclusions and re-
sults.

2 Design Principles

The following principles drove our design of KaffeOS,
in decreasing order of importance:

• Process separation. We provide the “classical”
property of a process: each process is given the il-
lusion of having the whole virtual machine to itself.

• Safe termination of processes. Processes may ter-
minate abruptly due to either an internal error or an
external event. In both cases, we ensure that the in-
tegrity of other processes and the system itself is not
violated.

• Direct sharing between processes. Processes can
directly share objects in order to communicate with
each other.

• Precise memory and CPU accounting. The mem-
ory and CPU time spent on almost all activities can
be attributed to the application on whose behalf it
was expended.



• Full reclamation of memory. When a process is
terminated, its memory must be fully reclaimed.
In a language-based system, memory cannot be re-
voked by unmapping pages: it must be garbage-
collected. We restrict a process’s heap writes to
avoid uncollectable memory in the presence of di-
rect object sharing.

• Hierarchical memory management. Memory al-
location can be managed in a hierarchy, which pro-
vides a simple model for controlling processes.

The interaction between these design principles is com-
plex. For expository purposes, we discuss these princi-
ples in a slightly different order in the remainder of this
section.

Process separation. A process cannot accidentally or
intentionally access another process’ data, because each
process has its own heap. A heap constitutes of a mem-
ory pool managed by an allocator and a garbage collec-
tor. Each process is given its own name space for its
objects and classes, as well. Type safety provides mem-
ory protection, so that a process cannot access other pro-
cess’s objects.

To ensure process separation, an untrusted process is
not allowed to hold onto system-level resources indefi-
nitely. For instance, global kernel locks are not directly
accessible to user processes. Violations of this restriction
are instances of bad system design. Similarly, faults in
one process must not impact progress in other processes.

Safe termination of processes. KaffeOS is structured
such that critical parts of the system cannot be damaged
when a process is terminated. For example, a process is
not allowed to terminate when it is holding a lock on a
system resource.

We divide KaffeOS into user and kernel parts [2], an
important distinction used in operating system design. A
user/kernel distinction is necessary to maintain system
integrity in the presence of process termination.

Figure 1 illustrates the high-level structure of Kaf-
feOS. User code executes in “user mode,” as do some
of the trusted runtime libraries and some of the garbage
collection code. The remaining parts of the system (the
rest of the runtime libraries and the garbage collector,
as well as the virtual machine itself) must run in kernel
mode to ensure their integrity. Note that “user mode”
and “kernel mode” do not indicate a change in hardware
privileges. Instead, they indicate different environments
with respect to termination and resource consumption:

User mode

User code (untrusted)

Kernel code (trusted)

Runtime Libraries
(trusted)

User
GC

GC
System

Kernel mode

Figure 1: Structure of KaffeOS. System code is divided into
kernel and user modes; user code all runs in user mode. In user
mode, code can be terminated arbitrarily; in kernel mode, code
cannot be terminated arbitrarily.

• Processes running in user mode can be terminated
at will. Processes running in kernel mode cannot be
terminated at an arbitrary time, because they must
leave the kernel in a clean state.

• Resources consumed in user mode are always
charged to a user process, and not to the system as
a whole. Only in kernel mode can a process con-
sume resources that are charged to the entire sys-
tem, although typically such use is charged to the
appropriate user process.

Such a structure echoes that of exokernels [18], where
system-level code executes as a user-mode library. Note
that a language-based system allows the kernel to trust
user-mode code to a great extent, because type safety
prevents user code from damaging any user-mode sys-
tem code.

The KaffeOS kernel is structured so that it can han-
dle termination requests and internal errors cleanly. Ter-
mination requests are deferred, so that a process cannot
be terminated while manipulating kernel data structures.
Kernel code must not abruptly terminate due to internal
exceptions, for the same reason. Violations of these two
restrictions are considered kernel bugs.

Others have suggested that depending on language-
level exception handling is sufficient for safe termina-
tion. We disagree, because exceptions interact poorly
with code in critical sections, which leaves shared data
structures open to corruption. Even if termination re-
quests were deferred during critical sections, one would
need transactional support to ensure the integrity of mu-
tually related data structures in the absence of a kernel.
In addition, such an approach would be a confusing over-
loading of the concepts of mutual exclusion and deferred
termination; preventing termination while any lock is
held would also violate isolation.



Full reclamation of memory. Since Java is type-safe,
it does not provide a primitive to reclaim memory. In-
stead, unreachable memory is freed by a garbage collec-
tor. We use the garbage collector to recover all the mem-
ory of a process when it terminates. Therefore, we must
prevent situations where the collector cannot free a ter-
minated process’s objects because another process still
holds references to them.

We use techniques from distributed garbage collection
schemes [31] to restrict cross-process references. Dis-
tributed GC mechanisms are normally used to overcome
the physical separation of machines and create the im-
pression of a global shared heap. We use distributed GC
mechanisms to manage multiple heaps in a single address
space, so that they can be collected independently.

We use write barriers [43] to restrict writes. A write
barrier is a check that happens on every pointer write to
the heap. As we show in Section 4, the cost of using
write barriers, although non-negligible, is reasonable.

Illegal cross-references are those that would prevent a
process’s memory from being reclaimed: for example,
references from one user heap to another. Since those
references cannot exist, it is possible to reclaim a pro-
cess’s heap as soon as the process is terminated. Writes
that would create illegal cross-references are forbidden,
and raise exceptions. We call such exceptions “segmen-
tation violations.” Although it may seem surprising that
a type-safe language runtime could throw such a fault, it
actually follows the analogy to traditional operating sys-
tems closely.

Unlike distributed garbage collection, in KaffeOS
inter-heap cycles do not cause problems. The only form
of inter-heap cycles that can occur are due to data struc-
tures that are split between a user heap and the kernel
heap, since there can be no cycles that span multiple user
heaps. Writes of user-heap references to kernel objects
can only be done by trusted code. The kernel is coded
so that it only writes a user-heap reference to a kernel
object whose lifetime equals that of the user process: for
example, the object that represents the process itself.

KaffeOS is intended to run on a wide range of systems.
We assume that the platforms on which it runs will not
necessarily have a hardware memory management unit
under the control of KaffeOS. We also assume that the
host may not have an operating system that supports vir-
tual memory. For example, a Palm Pilot satisfies both
of these assumptions. Under these assumptions, memory
cannot simply be revoked by unmapping it.

Precise memory and CPU accounting. We account
for memory and CPU on a per-process basis, so as to
limit their consumption by buggy or possibly malicious

code. In addition, to prevent denial-of-service attacks, it
is necessary to minimize the amount of time and memory
spent servicing kernel requests.

Memory accounting is complete. It applies not only to
objects at the Java level, but to all allocations done in the
VM on behalf of a given process. In contrast, bytecode-
rewriting approaches that do not modify the virtual ma-
chine, such as Jres [13, 14], can only account for object
allocations.

We try to minimize the number of objects that are al-
located on the kernel heap through careful coding of the
kernel interfaces. For instance, consider a system call
that creates a new process with a new heap: the process
object itself, which is large, is allocated on the new heap.
The handle that is returned to the creating process to con-
trol the new process is allocated on the creating process’s
heap. The kernel heap only maintains a small entry in a
process table.

We increase the accuracy of CPU accounting by min-
imizing the time spent in non-preemptible sections of
code. In addition, separately collecting user heaps and
the kernel heap reduces the amount of time spent in the
kernel. We again use write barriers: here, to detect cross-
references from a user to the kernel heap, and vice versa.
For each such reference, we create an entry item in the
heap to which it points [31]. In addition, we create a
special exit item in the original heap to remember the
entry item created in the destination heap. Unlike dis-
tributed object systems such as Emerald [26], entry and
exit items are not used for naming non-local objects; we
only use them to decouple the garbage collection of dif-
ferent heaps.

Entry items are reference counted: they keep track of
the number of exit items that point to them. The ref-
erence count of an entry item is decremented when an
exit item is garbage collected. If an entry item’s refer-
ence count reaches zero, the entry item is removed, and
the referenced object can be garbage collected if it is not
reachable through some other path.

A process’s memory is reclaimed upon termination by
merging its heap with the kernel heap. All exit items are
destroyed at this point and the corresponding entry items
are updated. The kernel heap’s collector can then collect
all of the memory, including memory on the kernel heap
that was kept alive by the process. User-kernel cycles
of garbage objects can be collected at this time. Note
that a user process could attempt to create and kill and
large number of new heaps to deny service to other pro-
cesses. Such an attempt can only prevented by imposing
additional restrictions on the number or frequency with
which a process may invoke kernel services.



user process heaps

shared heaps

kernel heap

Figure 2: Heap structure in KaffeOS. The kernel heap can
contain pointers into the user heaps, but the shared heaps and
other user heaps cannot. User heaps can contain pointers into
the kernel heap and shared heaps.

Direct sharing between processes. One of the reasons
for using a language-based system is to allow for di-
rect communication between applications. For example,
the SPIN operating system allowed kernel extensions to
communicate directly through pointers to memory. The
design of KaffeOS retains this design principle. Figure 2
shows the different heaps in KaffeOS, and the kinds of
inter-heap pointers that are legal.

In KaffeOS, a process can dynamically create a shared
heap to communicate with other processes. A shared
heap holds ordinary objects that can be accessed in the
usual manner. Shared objects are not allowed to have
pointers to objects on any user heap, because those point-
ers would prevent this user heap’s full reclamation. This
restriction is again enforced by write barriers; attempts
to assign such pointers will result in an exception.

A shared heap has the following lifecycle. First, one
process picks one or more shared types out of a central
shared namespace, creates the heap, and loads the shared
class or classes into it. While the heap is being created,
the creator is charged for the whole heap. After the heap
is populated with classes and objects, it is frozen and its
size remains fixed for its lifetime. If other processes look
up the shared heap, they are charged that amount. In this
way, all sharers are charged for the heap. Processes ex-
change data by writing into and reading from the shared
objects and by synchronizing on them in the usual way.

If a process drops all references to a shared heap, all
exit items to that shared heap become unreachable. Af-

ter the process garbage collects the last exit item to a
shared heap, that shared heap’s memory is credited to the
sharer’s budget. When the last sharer drops all references
to a shared heap, the shared heap becomes orphaned.
The kernel garbage collector checks for orphaned shared
heaps at the beginning of each GC cycle and merges them
into the kernel heap.

This model guarantees three properties:

• All sharers are charged in full for a shared heap
while they are holding onto the shared heap, whose
size is fixed. As a result, sharers do not have to
be charged asynchronously if another sharer exits.
(If n sharers were each to pay only 1/n of the
cost of a shared heap, when one sharer exited the
others would have to be asynchronously charged
(1/n − 1) − (1/n) of the cost.)

• As already discussed, one process cannot use a
shared object to keep objects in another process
alive.

• Sharers are charged accurately for all metadata,
such as internal class data structures. The metadata
is also allocated on the shared heap. Unfortunately,
this prevents us from applying any optimization that
allocates data structures related to the shared heap
lazily during execution.

Although process heaps can be scanned independently
during GC, thread stacks still need to be scanned dur-
ing GC for inter-heap references. Incremental schemes
could be used to eliminate repeated scans of a stack [12],
and a thread does not need to be scanned more than once
while it is suspended. Some “GC crosstalk” between
processes is still possible, because a process could cre-
ate many threads in an effort to get the system to scan
them all. We decided that the benefit of allowing direct
sharing between processes is worth leaving open such a
possibility.

Hierarchical memory management. We provide a
simple hierarchical model for managing memory. Each
heap is associated with a memlimit, which consists of an
upper limit and a current use. Memlimits form a hierar-
chy: each one has a parent, except for a root memlimit.
All memory allocated to the heap is debited from that
memlimit, and memory collected from that heap is cred-
ited to the memlimit. This process of crediting/debiting
is applied recursively to the node’s parents.

A memlimit can be hard or soft. This attribute influ-
ences how credits and debits percolate up the hierarchy



of memlimits. A hard memlimit’s maximum limit is im-
mediately debited from its parent, which amounts to set-
ting memory aside. Credits and debits are therefore not
propagated past a hard limit. A soft memlimit’s maxi-
mum limit, on the other hand, is just a limit—credits and
debits of a soft memlimit’s current usage are reflected in
the parent.

Hard and soft limits allow different memory manage-
ment strategies. Hard limits allow for memory reserva-
tions, but incur inefficient memory use if the limits are
not used. Memory consumption matters, because we do
not assume there is an underlying operating system; as
a result, KaffeOS may manage physical memory. Soft
limits allow the setting of a summary limit for multiple
activities without incurring the inefficiences of hard lim-
its. They can be used to guard malicious or buggy ap-
plications where temporarily high memory usage can be
tolerated.

Another application of soft limits is during the creation
of shared heaps. Shared heaps are initially associated
with a soft memlimit that is a child of the creating pro-
cess heap’s memlimit. In this way, they are separately
accounted but still subject to their creator’s memlimit,
which ensures that they cannot grow to exceed their cre-
ator’s ability to pay.

3 Discussion

The KaffeOS VM is built on top of the freely avail-
able Kaffe virtual machine, version 1.0b4 [42], which
is roughly equivalent to JDK 1.1. In this section, we
describe the specific issues that had to be dealt with in
implementing KaffeOS. Many implementation decisions
were driven by our desire to modify the Kaffe codebase
as little as possible.

The primary purpose of KaffeOS is to run Java ap-
plications, which expect a well-defined environment of
run-time services and libraries. We provide the standard
Java API within KaffeOS.

We make use of various features of Java to support
KaffeOS processes: Java class loaders, in particular, de-
serve some discussion. We also discuss our use of write
barriers in more detail. Finally, we discuss some aspects
of the Kaffe implementation that affect the performance
that we can achieve with our KaffeOS prototype.

3.1 Write Barriers

An attempt to write a pointer to an object into a field
of another object can have three different outcomes. In
the common case, if a pointer to an object in the same
heap is written, nothing needs to happen. If a pointer to
a foreign heap is written, the write may either be aborted

and trigger an exception, or it will cause the creation of
a pair of exit/entry items to keep track of that allowable
inter-heap reference.

The option of aborting writes ensures that the separa-
tion that is necessary for full reclamation is maintained.
A write barrier exception is either related to a foreign
user heap, or to a shared heap. If a pointer to a for-
eign user heap is written, such a pointer must have been
passed on the stack or in a register as a return value from
a kernel call. Such write barrier violations indicate kernel
bugs, since the kernel is not supposed to return foreign
references to a user process. Write barriers violations on
the shared heap, on the other hand, indicate attempts by
user code to create a connection from the shared heap to
the user heap. Such attempts may either be malicious, or
a sign of a violation of the programming model imposed
on shared objects.

Keeping track of entry and exit items ensures the sep-
aration that is necessary for independent garbage collec-
tion and the garbage collection of shared heaps. In the
third case, the write barrier code will maintain entry and
exit items. As a result, a local garbage collector will
know to include all incoming references as roots in its
garbage collection cycle.

Independent garbage collection, which relies on accu-
rate bookkeeping of entry and exit items, is important
in our model. Therefore, write barriers are necessary,
if only to maintain entry and exit items. This statement
holds true even if no shared heaps are being used.

Write barriers could only be optimized away if their
outcome is known. Such is the case within a procedure
if static analysis reveals that an assignment is between
pointers on the same heap (for instance, if newly con-
structed objects are involved), or that a previous assign-
ment must have had the same outcome. In addition, if
a generational collector were used, it should be possi-
ble to reduce the write barrier penalty by combining the
code for the generational and the inter-heap write barrier
checks.

3.2 Namespaces

Separate namespaces are provided in Java through the
use of class loaders [28]. A class loader is an object that
acts as a name server for types, and maps names to types.
We use the Java class loading mechanism to provide Kaf-
feOS processes with different namespaces. This use of
Java class loaders is not novel, but is important because
we have tried to make use of existing Java mechanisms
when possible. When we use standard Java mechanisms,
we can easily ensure that we do not violate the language’s
semantics.

Processes may share types for two reasons: either be-



cause the class in question is part of the run-time library
(i.e., is a system or kernel class), or because it is the
type of a shared object located on a shared heap, which
must be identical in the processes that have access to the
shared heap. We refer to the former as system-shared,
and the latter as user-shared. Process loaders delegate
the loading of all shared types to a shared loader. If we
did not delegate to a single loader, KaffeOS would need
to support a much more complicated type system for its
user-shared objects. Using one shared loader makes the
namespace for user-shared classes global, which requires
global and prior coordination between communicating
partners. We use a simple naming convention for this
shared namespace: the Java package shared.* con-
tains all user-shared classes.

3.3 Java Class Libraries

To determine which classes can be system-shared, we
examined each class in the Java standard libraries [10]
to see how it interacted under the semantics of class
loading. A class’s members and their associated code
are described by a sequence of bytes in a class file.
Classes from identical class files that are loaded [28]
by different class loaders are defined to be different
in Java, even though they have identical behavior rela-
tive to the namespace defined by the loader that loaded
them. We refer to such classes as reloaded classes.
Reloaded classes are analogous to traditional shared li-
braries. Reloading a class gives each instance its own
copies of static fields. In KaffeOS, Java classes could be
reloaded; they could be modified to be shared across pro-
cesses; or they could be used unchanged. For each class,
we decided which alternative to choose, subject to two
goals: to share as many classes as possible, but to make
as few code changes as necessary.

Certain classes must be shared between processes. For
example, the java.lang.Object class, which is the
superclass of all object types, must be shared. If this
type were not shared, it would not be possible for dif-
ferent processes to share generic objects! If a system-
shared class uses static fields, and if these fields can-
not be eliminated, they must be initialized with objects
whose implementation is process-aware. Shared classes
cannot directly refer to reloaded classes, because such
references are represented using direct pointers by the
run-time loader.

Non-shared classes should always be reloaded, so
that each process gets its own instance. Reloaded
classes do not share text in our current implementa-
tion, although they could. Because of some unfortu-
nate decisions in the Java API design, some classes ex-
port static members as part of their public interface,

which forces those classes to be reloaded. For example,
java.io.FileDescriptor must be reloaded, be-
cause it exports the public static variables in, out, and
err (stdin, stdout, and stderr, respectively). Other, pos-
sibly more efficient, ways to accomplish the same thing
as reloading exist [16], but their impact on type safety is
not fully understood. Out of roughly 600 classes in the
core Java libraries, we are able to safely system-share
about 430 (72%) of them. The rest of the classes are
reloaded.

3.4 Java Language Issues
A few language compatability issues arose when

building KaffeOS. For example, the Java language de-
scription assumes that all string literals are interned, and
that equality can therefore be checked with a pointer
comparison (the == operator). Unfortunately, to main-
tain such semantics, the interned string table would have
to be a global (kernel) data structure—and user processes
could allocate strings in an effort to make the kernel run
out of memory. To deal with this problem, we chose to
separately intern strings for each process. As a result, the
Java language use of pointer comparison to check string
equality does not work for strings that were created in
different heaps, and the equals method must be used
instead. It is impractical for the JVM to hide this seman-
tic change from applications. However, this issue arises
only in rare situations, and then only in KaffeOS-aware
applications that directly use KaffeOS features.

3.5 Kaffe Limitations
Kaffe has relatively poor performance compared to

commercial JVMs, for several reasons. First, its garbage
collector is relatively primitive: it is a mark-and-sweep
collector that is neither generational nor incremental.
Second, it has a simple just-in-time bytecode compiler
that translates each instruction individually. As a result,
many unnecessary register spills and reloads are gener-
ated, and the native code that it produces is relatively
poor.

4 Results
KaffeOS currently runs under Linux on the x86. We

plan on porting it to the Itsy pocket computer from Com-
paq WRL; we have already ported Kaffe to the Itsy. To
demonstrate the effectiveness of KaffeOS, we ran the fol-
lowing experiments:

• We measured three implementations of the write
barrier. We ran the SPEC JVM98 benchmarks [35]
on different configurations of KaffeOS, and the ver-
sion of Kaffe on which it is based, and the IBM



JVM, which uses one of the fastest commercial JIT
compilers [36] available. We must note that our re-
sults are not comparable with any published SPEC
JVM98 metrics, as the measurements are not com-
pliant with all of SPEC’s run rules.

• We ran a servlet engine on KaffeOS to demonstrate
that KaffeOS can prevent denial-of-service servlets
from crashing a server. We also compared how the
number of KaffeOS processes scales with how the
number of OS processes scales.

Our measurements were all taken on a 800MHz “Kat-
mai” Pentium III, with 256 Mbytes of SDRAM and a
133 MHz PCI bus, running Red Hat Linux 6.2. The pro-
cessor has a split 32K L1 cache, and combined 256K L2
cache.

4.1 Write Barrier Implementations
To measure the cost of write barriers in KaffeOS, we

implemented several versions:

• No Write Barrier. We execute without a write bar-
rier, and run everything on the kernel heap.

• No Heap Pointer. At each heap pointer write, the
write barrier consists of a call to a routine that finds
an object’s heap ID by looking at the page on which
the object lies and performs the barrier checks. In
order to avoid cache conflict misses, the actual heap
ID is stored in a block descriptor that is not on the
same page. This implementation takes 37 cycles
with a hot cache.

• Heap Pointer. At each heap pointer write, the write
barrier consists of a call to a routine that finds an ob-
ject’s heap ID in the object header and performs the
barrier checks. This implementation takes only 11
cycles with a hot cache, but adds 4 bytes per object.

• Fake Heap Pointer. To measure the impact of the
4 bytes of padding in the Heap Pointer implemen-
tation, we use the third barrier implementation but
add 4 bytes to each object.

The KaffeOS JIT compiler does not yet inline the write
barrier routine. Inlining the write barrier would not nec-
essarily improve performance, as it would lead to sub-
stantial code expansion.

We ran the SPEC JVM98 benchmark suite on IBM’s
JVM, on Kaffe00 and on KaffeOS with different imple-
mentations of the write barrier. Kaffe00 is the code base
upon which the current version of KaffeOS is built. This
version is from June 2000. We instrumented Kaffe00 and
KaffeOS to estimate how many cycles are spent during

garbage collection. For IBM’s JVM, we used a com-
mand line switch (-verbosegc) to obtain the number of
milliseconds spent during garbage collection.

Figure 3 compares the results of our experiments.
Each group of bars corresponds to IBM’s JVM, Kaffe00,
KaffeOS with no write barrier, KaffeOS with no heap
pointer, KaffeOS with heap pointer, and KaffeOS with
a fake heap pointer, in that order. The full bar displays
the benchmark time as displayed by SPEC’s JVM98 out-
put. The upper part of the bar shows the time spent on
those garbage collections that occurred during the actual
benchmark run. Note that we excluded those collections
that occurred while the SPEC test harness executed. The
lower part of the bar represents the time not spent during
garbage collection.

The time spent during garbage collection depends on
the initial and maximum heap sizes, the allocation fre-
quency, and the strategy used to decide when to collect.
Kaffe00 and KaffeOS use a simple strategy: a collection
is triggered whenever newly allocated memory exceeds
125% of the memory in use at the last GC. However,
while Kaffe00 uses the memory occupied by objects as
its measure, KaffeOS uses the number of pages as its
measure, because KaffeOS’s accounting mechanisms are
designed to take internal fragmentation into account. In
addition, KaffeOS decides when to collect for each heap
separately. We do not know what strategy IBM’s JVM
uses, but its GC performance suggests that it is very ag-
gressive at keeping its heap small.

Overall, IBM’s JVM is between 2–5 times faster
than Kaffe00; we will focus on the differences between
Kaffe00 and the different versions of KaffeOS. While
Kaffe00 and KaffeOS use different strategies for decid-
ing when to collect, they use the same conservative non-
moving collector. For this reason, we will focus on the
time not spent on garbage collection.

The difference between Kaffe00 and KaffeOS no write
barrier (excluding GC time) is minimal, which suggests
that the changes done to Kaffe’s run-time do not have
significant performance impact. The difference between
KaffeOS no write barrier and KaffeOS no heap pointer
stems from the write barrier overhead, and is consistently
below 7%.

Table 1 gives the number of write barriers that are ex-
ecuted in each of the SPEC benchmarks. When we com-
pute the time to execute the write barriers by using the
cycle counts for the barriers, we see that it is a fraction
of the actual penalty. This discrepancy occurs because
the microbenchmark uses a hot cache. For most bench-
marks, the heap pointer optimization is effective in re-
ducing the write barrier penalty to less than 5%. Exclud-
ing GC, KaffeOS fake heap pointer performs similarly
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Figure 3: SPEC JVM98 run on various Java platforms. The error bars represent 95% confidence intervals. Each measurement is
the result of three runs using SPEC’s autorun mode. The upper part represents time spent in garbage collection.

Benchmark Barriers Time Percent
compress 0.3M 0.014s 0.00%
jess 8.2M 0.38s 0.85%
db 30.4M 1.40s 2.84%
javac 21.1M 0.97s 1.97%
mpegaudio 5.8M 0.27s 0.75%
mtrt 3.3M 0.15s 0.34%
jack 20.2M 0.93s 1.54%

Table 1: Number of write barriers executed for each SPEC
JVM98 benchmark. “Time” is the total CPU cycle cost for the
write barrier instructions, assuming the No Heap Pointer cost
of 37 cycles; “percent” is the fraction of the No Write Barrier
execution time.

to KaffeOS no heap pointer; however, its overall perfor-
mance is lower because more time is spent during GC.

On a better system with a more effective JIT, the rel-
ative cost of using write barriers would increase. On the

other hand, a good JIT compiler could perform several
kinds of optimizations to remove write barriers. A com-
piler should be able to remove redundant write barriers,
along the lines of array bounds checking elimination. It
could even perform method splitting to specialize meth-
ods, so as to remove useless barriers along frequently
used call paths. We can only speculate as to what the
performance penalty for implementing KaffeOS on the
IBM JVM would be. Nevertheless, as we will show, the
performance of KaffeOS is much better than that of the
IBM JVM in the presence of uncooperative applications,
despite the raw performance difference between them.

4.2 Servlet Engine

A Java servlet engine provides an environment for run-
ning Java programs (servlets) at a server. Their func-
tionality subsumes that of CGI scripts at Web servers:
for example, servlets may create dynamic content or run
database queries. We use a MemHog servlet to measure



the effects of a denial-of-service attack. MemHog sits in
a loop, repeatedly allocates memory, and keeps it from
being garbage-collected.

We compared KaffeOS’s ability to prevent the
MemHog servlet from denying service with that of
IBM’s JVM. We used Apache 1.3.12, JServ 1.1
(Apache’s servlet engine), and a free version of JSDK
2.0 to run our tests, without modification. JServ runs
servlets in servlet zones, which are virtual servers. A
single JServ instance can host one or more servlet zones.
We ran each JServ in its own KaffeOS process. We com-
pared KaffeOS against IBM’s JVM, in two configura-
tions: one servlet zone per JVM (IBM/1), and multiple
servlet zones in one JVM (IBM/n). Due to time con-
straints, we used an earlier version of KaffeOS for these
benchmarks. This version is about half as fast as the ver-
sion used for the SPEC JVM benchmarks.

When simulating this denial-of-service attack, we did
what a system administrator concerned with availibil-
ity of his services would do: we restarted the JVM(s)
and the KaffeOS process, respectively, whenever they
crashed because of the effects caused by MemHog. In
KaffeOS, MemHog will cause a single JServ to exit with-
out affecting other JServs. If each JServ is started in
its own IBM JVM, the whole JVM will eventually crash
and be restarted. If all servlets are run in a single JServ
on a single IBM JVM, the system runs out of memory
in seemingly random places. This behavior resulted in
exceptions that occurred at random places, which in-
cluded the code that manipulated data structures that
were shared between servlets in the surrounding JServ
environment. Eventually, these data structures became
corrupted, which results in an unhandled exception in
JServ, or in some instances even a crash of the entire
JVM.

Figure 4 illustrates the results of our experiments; note
that the y axis uses a logarithmic scale. Running a sepa-
rate KaffeOS process for each servlet has consistent per-
formance, either with a MemHog running or without.
This graph illustrates the most important feature of Kaf-
feOS: that it can deliver consistent performance, even in
the presence of uncooperative or malicious programs.

The graph shows that running each of the servlets in a
single IBM JVM does not scale. This failure occurs be-
cause starting multiple JVMs eventually causes the ma-
chine to thrash. We estimate that each IBM JVM process
takes about 2MB of virtual memory upon startup. We
limited each JVM’s heap size to 8MB in this configura-
tion. An attempt to start 100 IBM JVMs rendered the
machine inoperable.

If there are no uncooperative servlets running, using
a single IBM JVM has the best performance. If there
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Figure 4: Scaling behavior of JVMs as the number of servlets
increases. “IBM/1” means one IBM JVM per servlet; “IBM/n”
means n servlets in one JVM. The “MemHog” measurements
replace one of the good servlets with a MemHog. The y axis is
the amount of time for the non-MemHog servlets to correctly
respond to 1000 client requests.

is a MemHog servlet running, such a configuration has
worse performance than KaffeOS—despite the fact that
KaffeOS is several times slower for individual servlets!
This degradation is caused by a lack of isolation between
servlets. However, as the ratio of well-behaved servlets
to malicious servlets increases, the scheduler will yield
less often to the malicious servlet. Consequently, the
service of IBM/n,MemHog improves as the number of
servlets increases. This effect is an artifact of our exper-
imental setup and cannot be reasonably used to defend
against denial-of-service attacks.

Finally, we observe a slight service degradation as the
number of KaffeOS processes increases. This degra-
dation is likely due to inefficiencies in the user-mode
threading system and scheduler.

5 Related Work

We classify the related work into three broad cate-
gories: extensible operating systems, resource manage-
ment in operating systems, and Java extensions for re-
source management.

5.1 Extensible Operating Systems

Extensible operating systems have existed for many
years. Most of them were not designed to protect against
malicious users, although a number of them support



strong security features. None of them, however, pro-
vides strong resource controls. Pilot [32] and Cedar [38]
were two of the earliest language-based systems. Their
development at Xerox PARC predates a flurry of re-
search in the 1990’s on such systems. These systems in-
clude Oberon [44] and Juice [20], which are based on the
Oberon language; SPIN [6], which is based on Modula-
3; and Inferno [17], which is based on a language called
Dis. Such systems can be viewed as single-address-space
operating systems (see Opal [11]) that use type safety for
protection.

VINO is a software-based (but not language-based)
extensible system [34] that addresses resource manage-
ment by wrapping kernel extensions within transactions.
When an extension exceeds its resource limits, it can be
safely aborted (even if it holds kernel locks) and its re-
sources can be recovered. Transactions are a very effec-
tive mechanism, but they are also relatively heavyweight.

5.2 Resource Management

Several operating systems projects have focused
on quality-of-service issues and real-time performance
guarantees. Nemesis [27] is a single-address-space OS
that focuses on quality-of-service for multimedia ap-
plications. Eclipse [8] introduced the concept of a
reservation domain, which is a pool of guaranteed re-
sources. Eclipse provides a guarantee of cumulative ser-
vice, which means that processes execute at a predictable
rate. It manages CPU, disk, and physical memory. Our
work is orthogonal, because we examine the software
mechanisms that are necessary to manage computational
resources.

Recent work on resource management has examined
different forms of abstractions for computational re-
sources. Banga et al. [4] describe an abstraction called
resource containers, which are effectively accounts from
which resource usage can be debited. Resource con-
tainers are orthogonal to a process’ protection domain:
a process can contain multiple resource containers, and
processes can share resource containers. In KaffeOS we
have concentrated on the mechanisms to simply allow
resource management; resource-container-like mecha-
nisms could be added in the future.

5.3 Java Extensions

Besides KaffeOS, a number of other research systems
have explored (or are currently exploring) the problem of
supporting processes in Java.

The J-Kernel [23] and JRes [13, 14] projects at Cornell
explore resource control issues without making changes
to the Java virtual machine. The J-Kernel extends Java

by supporting capabilities between processes. These ca-
pabilities are indirection objects that can be used to iso-
late processes from each other. JRes extends the J-Kernel
with a resource management interface whose implemen-
tation is portable across JVMs. The disadvantage of JRes
(as compared to KaffeOS) is that Jres is a layer on top of
a JVM; therefore, it cannot account for JVM resources
consumed on the behalf of applications. Cornell is also
exploring type systems that can support revocation di-
rectly [24].

Alta [39, 40] is a Java virtual machine that enforces
resource controls based on a nested process model. The
nested process model in Alta allows processes to con-
trol the resources and environment of other processes, in-
cluding the class namespace. Additionally, Alta supports
a more flexible sharing model that allows processes to
directly share more than just objects of primitive types.
Like KaffeOS, Alta is based on Kaffe, and, like KaffeOS,
Alta provides support within the JVM for comprehensive
memory accounting. However, Alta only provides a sin-
gle, global garbage collector, so separation of garbage
collection costs is not possible. For a more thorough dis-
cussion of Alta and the J-Kernel, see Back et al [1].

Balfanz and Gong [3] describe a multi-processing
JVM developed to explore the security architecture ram-
ifications of protecting applications from each other, as
opposed to just protecting the system from applications.
They identify several areas of the JDK that assume a
single-application model, and propose extensions to the
JDK to allow multiple applications and to provide inter-
application security. The focus of their multi-processing
JVM is to explore the applicability of the JDK security
model to multi-processing, and they rely on the existing,
limited JDK infrastructure for resource control.

Sun’s original JavaOS [37] was a standalone OS writ-
ten almost entirely in Java. It is described as a first-
class OS for Java applications, but appears to provide a
single JVM with little separation between applications.
It was to be replaced by a new implementation termed
“JavaOS for Business” that also ran only Java applica-
tions. “JavaOS for Consumers” is built on the Chorus mi-
crokernel OS [33] to achieve real-time properties needed
in embedded systems. Both of these systems apparently
require a separate JVM for each Java application, and all
run in supervisor mode.

Joust [22], a JVM integrated into the Scout operating
system [30], provides control over CPU time and net-
work bandwidth. To do so, it uses Scout’s path abstrac-
tion. However, Joust does not support memory limits on
applications.

The Open Group’s Conversant system [5] is another
project that modifies a JVM to provide processes. It pro-



vides each process with a separate address range (within
a single Mach task), a separate heap, and a separate
garbage collection thread. Conversant does not support
sharing between processes, unlike KaffeOS, Alta, and
the J-Kernel.

The Real-Time for Java Experts Group [7] has pub-
lished a proposal to add real-time extensions to Java.
This proposal provides for scoped memory areas with a
limited lifetime, which can be implemented using multi-
ple heaps that resemble KaffeOS’s heaps. The proposal
also dictates the use of write barriers to prevent pointer
assignments to objects in short-lived inner scopes. Real-
Time Java’s main focus is to ensure predictable garbage
collection characteristics in order to meet real-time guar-
antees; it does not address untrusted applications.

6 Conclusions

We have described the design and implementation of
KaffeOS, a Java virtual machine that supports the op-
erating system abstraction of process. KaffeOS enables
processes to be isolated from each other, to have their
resources controlled, and still share objects directly. Pro-
cesses enable the following important features:

• The resource demands of Java processes can be
accounted for separately, including memory con-
sumption and GC time.

• Java processes can be terminated if their resource
demands are too high, without damaging the sys-
tem.

• Termination reclaims the resources of the termi-
nated Java process.

These features enable KaffeOS to run untrusted code
safely, because it can prevent simple denial-of-service
attacks that would disable standard JVMs. The cost of
these features, relative to Kaffe, is reasonable. Because
Kaffe’s performance is poor compared to commercial
JVMs, it is difficult to estimate the cost of adding such
features to a commercial JVM—but we believe that the
overhead should not be excessive. Finally, even though
KaffeOS is substantially slower than commercial JVMs,
it exhibits much better performance scaling in the pres-
ence of uncooperative code.
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