
Flight Reservation System Using Java RMI

Jing Ma & Jiang Shu Page 1 12/7/2000

CS5204 Operating System Programming Project Report

Flight Reservation System Using Java RMI

By Jing Ma and Jiang Shu

Fall, 2000

Flight Reservation System Using Java RMI

Jing Ma & Jiang Shu Page 2 12/7/2000

Table of Contents

Title Page Number

Cover Page Page 1

Table of Contents Page 2

Abstract Page 3

Introduction Page 3 – Page 4

System Design Page 5 – Page 7

User Cases Page 7 – Page 8

Summary Page 8

Suggested Variations and Extensions Page 9

Reference Page 9

Screen Shots Page 10 – Page 13

Flight Reservation System Using Java RMI

Jing Ma & Jiang Shu Page 3 12/7/2000

Abstract

The system is designed for a Flight Reservation System using the Java Remote Method Invocation
(RMI) as the underlying technology. The system consists of two servers and a client (Notice, multiple
instances of client are implemented). In a nutshell, clients will submit their request via a graphics user
interface (GUI) to Server1. Then after searching its database (MS Access) and consulting with Server2
(which will also look up its database), Server1 will either tell the client to revise his/her request to
submit it again (due to 0 search result) or return all the hits and let the client choose his/her flight and
make the reservation. Then acting upon the reservation request, Server1 will update its database
accordingly. The objective of building this system is to get a better understanding of distributed system
and Java RMI mechanism, and use Java RMI to build a practical distributed system.

Introduction

The system is trying to conduct a typical business function, a Flight Reservation System, in a
distributed fashion. In this case, client GUIs, designed by using Java Swing Package, can be easily run
at all kinds of sale representative machines no matter he/she is taking the order from their cubicles in
the Main Flight Sale Department or from his/her own household to get the job done. (Of course, there
are some other architecture options and design strategies that we can implement this system. We will
come back to this topic in the Suggested Variations and Extensions section). People may wonder who
gives us all these power and flexibilities. The answer is RMI. Since RMI allows an object (in our case,
the client) running in a Java Virtual Machine (VM) to invoke methods on a remote object (in our case,
Server1 and Server2) running in another Java VM. But the most important feature of this remote
communication provided by RMI is its transparency. There is no difference between making a call to a
local method and to a remote method when we are using RMI.

As part of the distributed system, Server1 and Server 2 can act as independent servers sitting in
different departments. Server1 can sit in the Flight Control Department, which controls the flight
information such as flight number, departure location, arrival location, number of passengers,
departure date and return date. All these flight information are stored in a MS Access database. Server1
is using JDBC-ODBC to talk to the database to get desired flight information. A Writer Priority
Monitor is implemented surrounding Server1’s access to the Database since there are possibilities that
multiple clients want to read the available flight information and reserve (write) flight simultaneously.
By distributing Server1, we assume the Flight Control Department can update flight information (such
as add/delete flights, change the flight departure date and time and so forth) independently without
intervening the other parties’ work.

Before Server1 responses to the client, it will also use a RMI call for Server2 to get the price of the
flights, where we assume Server2 is sitting in another Department such as Finance Department, which
can manage price changes independently such as changing the prices due to different seasons or
competitions by giving promotion and coupons. Server2 also talks to its own database residing with it,
upon requests from Server1.

Flight Reservation System Using Java RMI

Jing Ma & Jiang Shu Page 4 12/7/2000

After the client gets responses from Server1, it will display all the available flight combination
including both the departure and return flights if there is any or ask the client to change the request due
to 0 hits are found. When the client makes a reservation, Server1 will either take it if there are still
empty seats available or reject it if possibly one of the multiple readers took up the last seat already.
Please refer to the Figure1 – System Components and Interaction for a better understanding of the
system.

Flight Control Server
– Server1

Flight Info

Database Interface

Controller

 Query
GUI

Data
Process

Controller

Clients

RMI
Price Info

Database Interface

Controller
Business Server –
Server2

RMI

RMI

Figure1 – System Components and Interaction

Flight Reservation System Using Java RMI

Jing Ma & Jiang Shu Page 5 12/7/2000

System Design

• Interface

As we mentioned, by using Java RMI technology, we placed the interface files (Stubs and Skeletons)
under a shared drive for all parties to access. The structure of the interface files – Flight Package is
showed in the following Diagram:

The FlightControl interface connects clients and Server1 by using getFlightInfo() function call when
the clients submit their requests to Server1. The SaleControl interface connects Server1 and Server2
by using getPrice() function to obtain corresponding flight prices.

• Client

Client calls getFlightInfo() to get flight information when user clicks the “submit “ button in SaleClient
interface, and display the search result to users by calling ShowFlightInfo class . When users want to
make a reservation, the reserveFlight() function is activated. Please refer to Figure 3 – Client Package
Diagram for details.

<< Interface>>
FlightControl

getFlightInfo
(query: Vector):
Vector

reserveFlight
(query: Vector):
int

<<Interface>>
SaleControl

getPrice
(goresult:Vector, gocount:int,
backresult:Vector,
backcount:int):
Vector

Flight

Figure 2 – Flight Package Diagram

Flight Reservation System Using Java RMI

Jing Ma & Jiang Shu Page 6 12/7/2000

• Server1

Server1 resides in a machine other than the one that client is running. Acting upon client requests, it
will search flightcontrol database to find available flights, call Server2 to get those flights’ prices by
using remote function call getPrice(), and send the available flight information back to the client .
Server1 will also call reserverFlight() function to update the flightcontrol database when users want to
make a reservation. A writer priority Monitor is implemented in Server1 to ensure exclusive database
access and to reduce the network load by avoiding unnecessary reading and writing. The Writers-
Priority Monitor will give the resource to a writer, if there are writer or both writers and readers are
waiting. Only if there is no writer waiting, it will give its resource to readers if they are any. Figure 4 –
Server1 Package Diagram illustrates the structure of the Server1 package.

• Server2

Server2 has the similar structure as Server1. It will communicate with Server1 and respond to
Server1’s invocation solely. It provides the price information by accessing a MS Access database
salecontrol.mdb.

<<Class>>
SaleClient

+orderinfo:Vector
+dep,ret,nump:JtextField
+jday,jmonth,jrday,jrmonth:JcomboBox

<<constructor>> +SaleClient()
+main (args[] string):
+init():
+ticketorder():

<<Class>>
ShowFlightInfo

+tinfo,buyinfo:Vector
+base:int
+button[]:Jbutton
+contentpane:Container

<<constructor>>
+ShowFlightInfo(ticketinfo:Vector)
+init():
+reserverticket():

Client

Figure 3 – Client Package Diagram

Flight Reservation System Using Java RMI

Jing Ma & Jiang Shu Page 7 12/7/2000

Use Cases

A typical use case is a user fills out his/her request in a GUI interface, such as

From: Roanoke
To: Chicago
Total Passengers: 2
Departing Date: Nov 20
Returning Date: Nov 24

Then click the “Submit” button to send this query to Server1. User can also conveniently clear the
current query and compose a new search by pressing the “Reset” button.

Server1

<<Class>>
Server1

monitor: Monitor
con:Connection

<<constructor>> +Server1()
+main (args[] string);
+getFlightInfo (query: Vector): Vector
 +reserveFlight(query: Vector): int

<<Class>>
Monitor

nreaders,nwriters,nrtotal,nwtoral:int

<<constructor>>+Monitor()
+start_read():
+end_read():
+start_write():
+end_write():

<< DataBase>>
flightcontrol.mdb

Server2 has the similar structure as
Server1. While server2 does not have
Monitor class and the corresponding
database name is “salecontrol.mdb”

Figure 4 – Server1 Package Diagram

Flight Reservation System Using Java RMI

Jing Ma & Jiang Shu Page 8 12/7/2000

Server1 acting upon the request will look up its database – flightcontrol.mdb to find corresponding
available flights’ information by matching the locations, dates and available seats and extract those
record sets. Then it will pass them to Server2 by calling getPrice() function to obtain flight price
information. (Notice, the only thing needed to pass here is the flight number. But for the clarity sake,
we pass all the information.)

Sever2 acting upon the request from Server1 will look up its database – salecontrol.mdb to find
according flight prices and return them to Server1.

Then Server1 will pack all these information and return to the client sent out the request. Client will do
a combination to the result (departure flight and return flight) and display all of them to users. By
examining all the available flight information and prices, users can simply click the “Buy Now” button
to place the reservation.

The possible feedback messages users will receive are
1. No requested flights are available. At this point, users have to change the request, such as

destination and dates to try again.

2. Reservation failed message. Possibly anther client took the last seat already to fill up the requested

flight. At this point, users have to also change their request.

Summary

This project involved:

• Application of principles of Distributed Operating System such as network transparency, monitor,

distributed database management

• Application of Java RMI

• Application of Java Swing Package to design user interfaces

• Application of MS Access

• Application of JDBC-ODBC

By integrating all these technology, the project gave us a good opportunity to learn how to build a
practical distributed system and also a chance to work as a team.

Flight Reservation System Using Java RMI

Jing Ma & Jiang Shu Page 9 12/7/2000

Suggested Variations and Extensions

There is also a dilemma how far we should go and how close we want to bring the system to a real life
application while battling with the time constraints and scarce recourses. As we mentioned earlier,
there are other architecture options and design strategies that we can implement this system such as
imbed the system in web page and eliminate the middleman and give customers all the powers; or
make the user interface more complicate to match the real life situation; or recompile the database to
contain more detail data (such as seat type) and formulas (to calculate the price dynamically). But
certainly, by doing so, the project will ask for more developing time and exploring more technology,
which is not feasible for two full time students work load and one semester duration.

But obviously, the application developed serves a good foundation for a much more complex
distributed applications.

Reference

• Dr. Kafura’s Lecture Notes and Class Discussions from CS5204 Operating System in fall of 2000

• JDBC Tutorial by Maydene Fisher

http://java.sun.com/docs/books/tutorial/jdbc/index.html

• RMI Tutorial by Ann Wollrath and Jim Waldo

http://java.sun.com/docs/books/tutorial/rmi/index.html

Flight Reservation System Using Java RMI

Jing Ma & Jiang Shu Page 10 12/7/2000

Screen Shots

Figure 5- Flight Order Graphic User Interface

Flight Reservation System Using Java RMI

Jing Ma & Jiang Shu Page 11 12/7/2000

Figure 6 - Flight Info Graphic User Interface

Figure 7-Reservation Confirmation Window

Flight Reservation System Using Java RMI

Jing Ma & Jiang Shu Page 12 12/7/2000

Figure 8- Feedback Message (No Flight Available) Window

Figure 9- Feedback Message (Requested Flight is Full) Window

Figure 10- Screen Snapshot of Server1 output

Flight Reservation System Using Java RMI

Jing Ma & Jiang Shu Page 13 12/7/2000

Figure 11- Screen Snapshot of Sevver2 output

Figure 12- Screen Snapshot of Client output

