Intuition for the Z Algorithm

The string S = S[1..n] is processed left to right. In the general case, $3 \ge k \ge n$, and we know the Z_i , l_i , and r_i values for $2 \le i \le k - 1$.

The string

$$\alpha = S[l_{k-1}..r_{k-1}]$$

is the "furthest" Z-box found so far. Hence,

$$\alpha = S[l_{k-1}..r_{k-1}]
= S[1..Z_{k-1}];$$

if $l_{k-1} = 0$, then all of these are the empty string ϵ . The value

$$k' = k - l_{k-1} + 1$$

is the length of the prefix of $S[l_{k-1}..r_{k-1}]$ that is before S(k). We can write these equalities:

$$S[l_{k-1}..r_{k-1}] = S[1..Z_{k-1}]$$

$$S(1) = S(l_{k-1})$$

$$S(k') = S(k)$$

$$S(Z_{k-1}) = S(r_{k-1}).$$

Since the algorithm has matched through $S(Z_{k-1}) = S(r_{k-1})$, the interval

$$\beta = S[k..r_{k-1}]$$

is the "furthest" interval starting at position that has been explored so far. Moreover, we know that

$$S[k..r_{k-1}] = S[k'..Z_{k-1}].$$

We can illustrate our status as this:

$$\overbrace{S(1)\cdots\underbrace{S(k')\cdots S(Z_{k-1})}_{\beta}}^{\alpha}\cdots\overbrace{S(l_{k-1})\cdots\underbrace{S(k)\cdots S(r_{k-1})}_{\beta}}^{\alpha}.$$

Since we know Z'_k , we can compare it to $r_{k-1} - k + 1$ to determine how much of $S[k..r_{k-1}]$ can be part of a prefix of S. The cases in the algorithm follow from these observations.