CS 5114: Theory of Algorithms

Clifford A. Shaffer
Department of Computer Science
Virginia Tech
Blacksburg, Virginia

Spring 2014
Copyright © 2014 by Clifford A. Shaffer

Review of Mathematical Induction

- The paradigm of **Mathematical Induction** can be used to solve an enormous range of problems.
- **Purpose:** To prove a parameterized theorem of the form:

 \[
 \forall n \geq c. \ P(n).
 \]
- Use only positive integers \(\geq c\) for \(n\).
- **Sample** \(P(n)\):

 \[n + 1 \leq n^2\]

Principle of Mathematical Induction

- IF the following two statements are true:
 1. \(P(c)\) is true.
 2. For \(n > c\), \(P(n - 1)\) is true \(\rightarrow P(n)\) is true.
 ... **THEN** we may conclude: \(\forall n \geq c, \ P(n)\).
- The assumption "\(P(n - 1)\) is true" is the **induction hypothesis**.
- **Typical induction proof form:**
 1. Base case
 2. State induction Hypothesis
 3. Prove the implication (induction step)
 4. **What does this remind you of?**

Creation of algorithms comes through exploration, discovery, techniques, intuition: largely by lots of examples and lots of practice (HW exercises).

We will use Analysis of Algorithms as a tool.
Problem statement (in the software eng. sense) is not important because our problems are easily described, if not easily solved.
Smaller problems may or may not be the same as the original problem.
Divide and conquer is a way of solving a problem by solving one more more smaller problems.
Claim on induction: The processes of constructing proofs and constructing algorithms are similar.
Induction Example 1

Theorem: Let

\[S(n) = \sum_{i=1}^{n} i = 1 + 2 + \cdots + n. \]

Then, \(\forall n \geq 1, S(n) = \frac{n(n+1)}{2}. \)

Induction Example 2

Theorem: \(\forall n \geq 1, \forall x \) such that \(1 + x > 0, (1 + x)^n \geq 1 + nx. \)

Induction Example 3

Theorem: \(2c \) and \(5c \) stamps can be used to form any denomination (for denominations \(\geq 4 \)).

Colorings

4-color problem: For any set of polygons, 4 colors are sufficient to guarantee that no two adjacent polygons share the same color.

Restrict the problem to regions formed by placing (infinite) lines in the plane. How many colors do we need?

Candidates:
- 4: Certainly
- 3: ?
- 2: ?
- 1: No!

Let’s try it for 2...

Base Case: \(P(n) \) is true since \(S(1) = 1 = 1(1 + 1)/2. \)

Induction Hypothesis: \(S(i) = \frac{i(i+1)}{2} \) for \(i < n. \)

Induction Step:

\[S(n) = S(n-1) + n = \frac{(n-1)n}{2} + n \]

Therefore, \(P(n-1) \rightarrow P(n). \)

By the principle of Mathematical Induction, \(\forall n \geq 1, S(n) = \frac{n(n+1)}{2}. \)

MI is often an ideal tool for verification of a hypothesis. Unfortunately it does not help us to construct a hypothesis.

What do we do induction on? Can’t be a real number, so must be a.

\(P(n) : (1 + x)^n \geq 1 + nx. \)

Base Case: \((1 + x)^1 = 1 + x \geq 1 + 1x \)

Induction Hypothesis: Assume \((1 + x)^{n-1} \geq 1 + (n-1)x \)

Induction Step:

\[(1 + x)^n = (1 + x)(1 + x)^{n-1} \geq (1 + x)(1 + (n-1)x) \]

\[= 1 + nx - x + x + nx^2 - x^2 \]

\[= 1 + nx + (n - 1)x^2 \]

\[\geq 1 + nx. \]

If 2 is enough, then of course we can do it with 3 or more.

Induction is useful for much more than checking equations!

If we accept the statement about the general 4-color problem, then of course 4 colors is enough for our restricted version.
Two-coloring Problem

Given: Regions formed by a collection of (infinite) lines in the plane.
Rule: Two regions that share an edge cannot be the same color.

Theorem: It is possible to two-color the regions formed by \(n \) lines.

Strong Induction

IF the following two statements are true:
1. \(P(c) \)
2. \(P(i), i = 1, 2, \ldots, n - 1 \rightarrow P(n) \),

... THEN we may conclude: \(\forall n \geq c, P(n) \).

Advantage: We can use statements other than \(P(n - 1) \) in proving \(P(n) \).

Graph Problem

An Independent Set of vertices is one for which no two vertices are adjacent.

Theorem: Let \(G = (V, E) \) be a directed graph. Then, \(G \) contains some independent set \(S(G) \) such that every vertex can be reached from a vertex in \(S(G) \) by a path of length at most 2.

Example: a graph with 3 vertices in a cycle. Pick any one vertex as \(S(G) \).

Graph Problem (cont)

Theorem: Let \(G = (V, E) \) be a directed graph. Then, \(G \) contains some independent set \(S(G) \) such that every vertex can be reached from a vertex in \(S(G) \) by a path of length at most 2.

Base Case: Easy if \(n \leq 3 \) because there can be no path of length > 2.

Induction Hypothesis: The theorem is true if \(|V| < n\).

Induction Step \((n > 3)\):
Pick any \(v \in V \).
Define: \(N(v) = \{v\} \cup \{w \in V | (v, w) \in E\} \).
\(H = G - N(v) \).

Since the number of vertices in \(H \) is less than \(n \), there is an independent set \(S(H) \) that satisfies the theorem for \(H \).

Picking what to do induction on can be a problem. Lines?
Regions? How can we “add a region?” We can’t, so try induction on lines.

Base Case: \(n = 1 \). Any line divides the plane into two regions.

Induction Hypothesis: It is possible to two-color the regions formed by \(n - 1 \) lines.

Induction Step: Start with the regions formed from \(n - 1 \) lines and 2-color them. Now, introduce the \(n' \)th line. This line cuts some colored regions in two. Reverse the region colors on one side of the \(n' \)th line. A valid two-coloring results.

- Any boundary surviving the addition still has opposite colors.
- Any new boundary also has opposite colors after the switch.

The previous examples were all very straightforward – simply add in the \(n' \)th item and justify that the IH is maintained. Now we will see examples where we must do more sophisticated (creative!) maneuvers such as

- go backwards from \(n' \).
- prove a stronger IH.

to make the most of the IH.
Graph Proof (cont)

There are two cases:
- \(S(H) \cup \{v\} \) is independent.
 Then \(S(G) = S(H) \cup \{v\} \).
- \(S(H) \cup \{v\} \) is not independent.
 Let \(w \in S(H) \) such that \((w, v) \in E\).
 Every vertex in \(N(v) \) can be reached by \(w \) with path of length \(\leq 2 \).
 So, set \(S(G) = S(H) \).

By Strong Induction, the theorem holds for all \(G \).

Fibonacci Numbers

Define Fibonacci numbers inductively as:

\[
F(1) = F(2) = 1 \\
F(n) = F(n-1) + F(n-2), n > 2.
\]

Theorem: \(\forall n \geq 1, F(n)^2 + F(n+1)^2 = F(2n+1) \).

Induction Hypothesis:

\(F(n-1)^2 + F(n)^2 = F(2n-1) \).

Fibonacci Numbers (3)

With a stronger theorem comes a stronger IH!

Theorem:

\[
F(n)^2 + F(n+1)^2 = F(2n+1) \text{ and } F(n)^2 + 2F(n)F(n-1) = F(2n).
\]

Induction Hypothesis:

\(F(n-1)^2 + F(n)^2 = F(2n-1) \) and \(F(n-1)^2 + 2F(n-1)F(n-2) = F(2n-2) \).

Another Example

Theorem: All horses are the same color.

Proof: \(P(n) \): If \(S \) is a set of \(n \) horses, then all horses in \(S \) have the same color.

Base case: \(n = 1 \) is easy.

Induction Hypothesis: Assume \(P(i), i < n \).

Induction Step:

- Let \(S \) be a set of horses, \(|S| = n\).
- Let \(S' = S - \{h\} \) for some horse \(h \).
- By IH, all horses in \(S' \) have the same color.
- Let \(h' \) be some horse in \(S' \).
- IH implies \(\{h, h'\} \) have all the same color.

Therefore, \(P(n) \) holds.

Fibonacci Numbers (4)

\[
F(n)^2 + 2F(n)F(n-1) = F(n)^2 + 2F(n)^2 + 2F(n)F(n-1) = F(n)^2 + 2F(n)F(n-1) + F(n-1)^2 = F(2n).
\]

... which proves the theorem. The original result could not have been proved without the stronger induction hypothesis.

Fibonacci Numbers (2)

Expand both sides of the theorem, then cancel like terms:

\[
F(2n+1) = F(2n) + F(2n-1) \text{ and } F(n)^2 + F(n+1)^2 = F(2n+1) \text{ and } F(n)^2 + 2F(n)F(n-1) = F(2n).
\]

Want: \(F(n)^2 + F(n+1)^2 = F(2n+1) = F(2n) + F(2n-1) \).

Steps above left us with needing to prove:

\(F(n) + F(n+1) = F(n)^2 + F(n+1)^2 = F(2n+1) \) and \(F(n)^2 + 2F(n)F(n-1) = F(2n) \).

To prove the original theorem, we must prove this. Since we must do it anyway, we should take advantage of this in our IH!
Algorithm Analysis

- We want to “measure” algorithms.
- What do we measure?
- What factors affect measurement?
- Objective: Measures that are independent of all factors except input.

Time Complexity

- Time and space are the most important computer resources.
- Function of input: \(T(\text{input}) \)
- Growth of time with size of input:
 - Establish an (integer) size \(n \) for inputs
 - \(n \) numbers in a list
 - \(n \) edges in a graph
- Consider time for all inputs of size \(n \):
 - Time varies widely with specific input
 - Best case
 - Average case
 - Worst case
- Time complexity \(T(n) \) counts steps in an algorithm.

Asymptotic Analysis

- It is undesirable/impossible to count the exact number of steps in most algorithms.
 - Instead, concentrate on main characteristics.
- Solution: Asymptotic analysis
 - Ignore small cases:
 - Consider behavior approaching infinity
 - Ignore constant factors, low order terms:
 - \(2n^2 \) looks the same as \(5n^2 + n \) to us.

O Notation

O notation is a measure for “upper bound” of a growth rate.
- pronounced “Big-oh”

Definition: For \(T(n) \) a non-negatively valued function, \(T(n) \) is in the set \(O(f(n)) \) if there exist two positive constants \(c \) and \(n_0 \) such that \(T(n) \leq cf(n) \) for all \(n > n_0 \).

Examples:
- \(5n + 8 \in O(n) \)
- \(2n^2 + n \log n \in O(n^2) \in O(n^3 + 5n^2) \)
- \(2n^2 + n \log n \in O(n^2) \in O(n^3 + n^2) \)

What do we measure?
Time and space to run; ease of implementation (this changes with language and tools); code size

What affects measurement?
Computer speed and architecture; Programming language and compiler; System load; Programmer skill; Specifics of input (size, arrangement)

If you compare two programs running on the same computer under the same conditions, all the other factors (should) cancel out.
Want to measure the relative efficiency of two algorithms without needing to implement them on a real computer.

Sometimes analyze in terms of more than one variable.
Best case usually not of interest.
Average case is usually what we want, but can be hard to measure.
Worst case appropriate for “real-time” applications, often best we can do in terms of measurement.
Examples of “steps” comparisons, assignments, arithmetic/logical operations. What we choose for “step” depends on the algorithm. Step cost must be “constant” – not dependent on \(n \).

Undesirable to count number of machine instructions or steps because issues like processor speed muddy the waters.

Remember: The time equation is for some particular set of inputs – best, worst, or average case.
O Notation (cont)

We seek the “simplest” and “strongest” f.

Big-O is somewhat like “\leq”:
- $n^2 \in O(n^3)$ and $n^2 \log n \in O(n^3)$, but
 - $n^2 \neq n^2 \log n$
 - $n^2 \in O(n^2)$ while $n^2 \log n \notin O(n^2)$

A common misunderstanding:
- “The best case for my algorithm is $n = 1$ because that is the fastest.” WRONG!
- Big-oh refers to a growth rate as n grows to ∞.
- Best case is defined for the input of size n that is cheapest among all inputs of size n.

Speedups

What happens when we buy a computer 10 times faster?

<table>
<thead>
<tr>
<th>$T(n)$</th>
<th>n</th>
<th>n'</th>
<th>Change</th>
<th>n'/n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10n$</td>
<td>1,000</td>
<td>10,000</td>
<td>$n' = 10n$</td>
<td>10</td>
</tr>
<tr>
<td>$20n$</td>
<td>500</td>
<td>5,000</td>
<td>$n' = 10n$</td>
<td>10</td>
</tr>
<tr>
<td>$5n \log n$</td>
<td>250</td>
<td>1,842</td>
<td>$\sqrt{10n} < n' < 10n$</td>
<td>7.37</td>
</tr>
<tr>
<td>$2n^2$</td>
<td>70</td>
<td>223</td>
<td>$n' = \sqrt{10n}$</td>
<td>3.16</td>
</tr>
<tr>
<td>2^n</td>
<td>13</td>
<td>16</td>
<td>$n' = n + 3$</td>
<td>---</td>
</tr>
</tbody>
</table>

n: Size of input that can be processed in one hour (10,000 steps).

n': Size of input that can be processed in one hour on the new machine (100,000 steps).

Some Rules for Use

Definition: f is **monotonically growing** if $n_1 \geq n_2$ implies $f(n_1) \geq f(n_2)$.

We typically assume our time complexity function is monotonically growing.

Theorem 3.1: Suppose f is monotonically growing, $\forall c > 0$ and $\forall a > 1, (f(n))^c \in O(a^n)$

In other words, an **exponential** function grows faster than a **polynomial** function.

Lemma 3.2: If $f(n) \in O(s(n))$ and $g(n) \in O(r(n))$ then
 - $f(n) + g(n) \in O(s(n) + r(n)) = O(\max(s(n), r(n)))$
 - $f(n)g(n) \in O(s(n)r(n))$.
 - If $s(n) \in O(h(n))$ then $f(n) \in O(h(n))$.
 - For any constant k, $f(n) \in O(k s(n))$.

Assume monotonically growing because larger problems should take longer to solve. However, many real problems have “cyclically growing” behavior.

Is $O(2^n) \in O(3^n)$? Yes, but not vice versa.

$3^n = 1.5^n \times 2^n$ so no constant could ever make 2^n bigger than 3^n for all n.

To functional composition
Other Asymptotic Notation

Upper bound: Set $T(n) = O(f(n))$ if there exists two positive constants c and n_0 such that $T(n) \leq cf(n)$ for all $n > n_0$.

- **Definition**: For $T(n)$ a non-negatively valued function, $T(n)$ is in the set $O(g(n))$ if there exist two positive constants c and n_0 such that $T(n) \leq cg(n)$ for all $n > n_0$.

- **Example**: $n^2 \log n \in O(n^2)$.

Lower bound: $T(n) \in \Omega(f(n))$ if $T(n) \geq cf(n)$ for all $n > n_0$.

- **Example**: $5n^2 + 4n^2 + 9n + 7 = \Omega(n^2)$.

Other Asymptotic Notation (cont)

- **Little o Notation**
 - **Definition**: $g(n) \in o(f(n))$ if $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$
 - **Example**: $n^2 \in o(n^3)$.

- **Little Omega ω Notation**
 - **Definition**: $g(n) \in \omega(f(n))$ if $\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$
 - **Example**: $n^2 \in \omega(2n^2)$.

Aim of Algorithm Analysis

Typically want to find “simple” $f(n)$ such that $T(n) = \Theta(f(n))$.

- Sometimes we settle for $O(f(n))$.

Usually we measure T as “worst case” time complexity. Sometimes we measure “average case” time complexity.

Recurrence Relations

Approach: Estimate number of “steps”

- Appropriate step depends on the problem.
- n^2 measures key comparisons for counting steps.

Summation

Since we typically count steps in different parts of an algorithm and sum the counts, techniques for computing sums are important (loops).

- **Recurrence Relations**: Used for counting steps in recursion.

Analyzing Problems

To an algorithm designer, what would it mean to solve a problem?

- **Upper bound**: The upper bound for the best algorithm that we know.
- **Lower bound**: The best (biggest) lower bound possible for any algorithm to solve the problem.

Lower bounds are hard! We know that we understand our problem when the bounds match.

- **Example: Sorting**
- **Example: Find the minimum value in an unsorted list.**

We won’t use these too much.

Aim of Algorithm Analysis (cont)

We prefer Θ over Big-oh because Θ means that we understand our bounds and they met. But if we just can’t find that the bottom meets the top, then we are stuck with just Big-oh. Lower bounds can be hard. For **problems** we are often interested in Ω

- but this is often hard for non-trivial situations!

Often prefer average case (except for real-time programming), but worst case is simpler to compute than average case since we need not be concerned with distribution of input.

For the sorting example, key comparisons must be constant-time to be used as a cost measure.

Analyzing Problems (cont)

Sorting: If you only know simple sorts, your upper bound is $O(n^2)$.

Then you learn better sorts and your upper bound is $O(n \log n)$.

A naive lower bound is $\Omega(n)$. Later we learn the proof that no (general) sorting algorithm can have a worst case better than $\Omega(n \log n)$.

At that point, we know that sorting is $\Theta(n)$. Minimum Finding:

The upper bound is $O(n)$ because we know an algorithm to solve it in that time. The lower bound is $\Omega(n)$ because we have to look at every value to be sure we have the answer.
Summation: Guess and Test

Technique 1: Guess the solution and use induction to test.

Technique 1a: Guess the form of the solution, and use simultaneous equations to generate constants. Finally, use induction to test.

Summation Example

\[S(n) = \sum_{i=0}^{n} i^2. \]

Guess that \(S(n) \) is a polynomial \(\leq n^3 \).

Equivalently, guess that it has the form \(S(n) = an^3 + bn^2 + cn + d. \)

For \(n = 0 \) we have \(S(0) = 0 \) so \(d = 0. \)

For \(n = 1 \) we have \(a + b + c + 0 = 1. \)

For \(n = 2 \) we have \(8a + 4b + 2c = 5. \)

For \(n = 3 \) we have \(27a + 9b + 3c = 14. \)

Solving these equations yields \(a = \frac{1}{3}, b = \frac{1}{2}, c = \frac{1}{6} \).

Now, prove the solution with induction.

Technique 2: Shifted Sums

Given a sum of many terms, shift and subtract to eliminate intermediate terms.

\[G(n) = \sum_{i=0}^{n} ar^i = a + ar + ar^2 + \ldots + ar^n \]

Shift by multiplying by \(r. \)

\[rG(n) = ar + ar^2 + \ldots + ar^n + ar^{n+1} \]

Subtract.

\[G(n) - rG(n) = G(n)(1 - r) = a - ar^{n+1} \]

\[G(n) = \frac{a - ar^{n+1}}{1 - r}, \quad r \neq 1 \]

Example 3.3

\[G(n) = \sum_{i=1}^{n} i2^i = 1 \times 2 + 2 \times 2^2 + 3 \times 2^3 + \ldots + n \times 2^n \]

Multiply by 2.

\[2G(n) = 1 \times 2^2 + 2 \times 2^3 + 3 \times 2^4 + \ldots + n \times 2^{n+1} \]

Subtract (Note: \(\sum_{i=1}^{n} 2^i = 2^{n+1} - 2 \))

\[2G(n) - G(n) = n2^{n+1} - 2^n \ldots 2^2 - 2 \]

\[G(n) = n2^{n+1} - 2^{n+1} + 2 \]

\[= (n - 1)2^{n+1} + 2 \]
Recurrence Relations

- A (math) function defined in terms of itself.
- Example: Fibonacci numbers:
 \[F(n) = F(n-1) + F(n-2) \] general case
 \[F(1) = F(2) = 1 \] base cases
- There are always one or more general cases and one or more base cases.
- We will use recurrences for time complexity of recursive (computer) functions.
- General format is \(T(n) = E(T, n) \) where \(E(T, n) \) is an expression in \(T \) and \(n \).
 \[T(n) = 2T(n/2) + n \]
- Alternately, an upper bound: \(T(n) \leq E(T, n) \).

Solving Recurrences

We would like to find a closed form solution for \(T(n) \) such that:
\[T(n) = \Theta(f(n)) \]

Alternatively, find lower bound
- Not possible for inequalities of form \(T(n) \leq E(T, n) \).

Methods:
- Guess (and test) a solution
- Expand recurrence
- Theorems

Guessing

\[T(n) = 2T(n/2) + 5n^2 \quad n \geq 2 \]
\[T(1) = 7 \]

Note that \(T \) is defined only for powers of 2.

Guess a solution: \(T(n) \leq c_1 n^2 = f(n) \)
\[T(1) = 7 \] implies that \(c_1 \geq 7 \)

Inductively, assume \(T(n/2) \leq f(n/2) \).
\[T(n) = 2T(n/2) + 5n^2 \]
\[\leq 2c_1(n/2)^2 + 5n^2 \]
\[\leq c_1(n^2/4) + 5n^2 \]
\[\leq c_1n^2 \text{ if } c_1 \geq 20/3. \]

Guessing (cont)

Therefore, if \(c_1 = 7 \), a proof by induction yields:
\[T(n) \leq 7n^3 \]
\[T(n) \in O(n^3) \]

Is this the best possible solution?

We won’t spend a lot of time on techniques… just enough to be able to use them.

Note that “finding a closed form” means that we have \(f(n) \) that doesn’t include \(T \).

Can’t find lower bound for the inequality because you do not know enough… you don’t know how much bigger \(E(T, n) \) is than \(T(n) \), so the result might not be \(\Omega(T(n)) \).

Guessing is useful for finding an asymptotic solution. Use induction to prove the guess correct.

For Big-oh, not many choices in what to guess.
\[7 \times 1^3 = 7 \]

Because \(\frac{20}{3} n^2 + 5n^2 = \frac{35}{3} n^2 \) when \(n = 1 \), and as \(n \) grows, the right side grows even faster.

No - try something tighter.
Guessing (cont)

Guess again.

\[T(n) \leq c_2 n^2 = g(n) \]
\[T(1) = 7 \text{ implies } c_2 > 7. \]

Inductively, assume \(T(n/2) \leq g(n/2) \).

\[
T(n) = 2T(n/2) + 5n^2 \\
\leq 2c_2 (n/2)^2 + 5n^2 \\
= c_2 n^2/2 + 5n^2 \\
\leq c_2 n^2 \text{ if } c_2 \geq 10
\]

Therefore, if \(c_2 = 10 \), \(T(n) \leq 10n^2 \). \(T(n) = O(n^2) \).

Is this the best possible upper bound?

Expanding Recurrences

Usually, start with equality version of recurrence.

\[
T(n) = 2T(n/2) + 5n^2 \\
T(1) = 7
\]

Assume \(n \) is a power of 2; \(n = 2^k \).

Expanding Recurrences (cont)

\[
T(n) = 2T(n/2) + 5n^2 \\
= 2(2T(n/4) + 5(n/2)^2) + 5n^2 \\
= 2(2(2T(n/8) + 5(n/4)^2) + 5(n/2)^2) + 5n^2 \\
= 2^k T(1) + 2^{k-1} \cdot 5(n/2^{k-1})^2 + 2^{k-2} \cdot 5(n/2^{k-2})^2 + \cdots + 2 \cdot 5(n/2)^2 + 5n^2 \\
= 7n + 5 \sum_{i=0}^{k-1} n^2/2^i = 7n + 5n^2 \sum_{i=0}^{k-1} 1/2^i \\
= 7n + 5n^2 (2 - 1/2^{k-1}) \\
= 7n + 5n^2 (2 - 2/n).
\]

This is the exact solution for powers of 2. \(T(n) = \Theta(n^2) \).
Divide and Conquer Recurrences

These have the form:

\[T(n) = aT(n/b) + cn^k \]
\[T(1) = c \]

... where \(a, b, c, k \) are constants.

A problem of size \(n \) is divided into \(a \) subproblems of size \(n/b \), while \(cn^k \) is the amount of work needed to combine the solutions.

Divide and Conquer Recurrences (cont)

Expand the sum; \(n = b^m \).

\[T(n) = a(aT(n/b^2) + c(n/b)^k + cn^k) = a^n T(1) + a^{m-1}c(n/b^{m-1})^k + \cdots + ac(n/b) + cn^k \]
\[= ca^n \sum_{i=0}^{m} (b^k/a)^i \]

\[a^m = a^{\log_b n} = n^{\log_b a} \]

The summation is a geometric series whose sum depends on the ratio \(r = b^k/a \).

There are 3 cases.

D & C Recurrences (cont)

(1) \(r < 1 \).

\[\sum_{i=0}^{m} r^i < 1/(1 - r), \quad a \text{ constant.} \]

\[T(n) = \Theta(a^m) = \Theta(n^{\log_b a}). \]

(2) \(r = 1 \).

\[\sum_{i=0}^{m} r^i = m + 1 = \log_b n + 1 \]

\[T(n) = \Theta(n^{\log_b a} \log n) = \Theta(n^k \log n) \]

D & C Recurrences (Case 3)

(3) \(r > 1 \).

\[\sum_{i=0}^{m} r^i = \frac{r^{m+1} - 1}{r - 1} = \Theta(r^m) \]

So, from \(T(n) = ca^n \sum r^i \),

\[T(n) = \Theta(a^n r^m) = \Theta(a^n (b^k/a)^m) = \Theta(b^m) = \Theta(n^k) \]
Summary

Theorem 3.4:

\[T(n) = \begin{cases}
\Theta(n^{3/2}) & \text{if } a > b^k \\
\Theta(n^2 \log n) & \text{if } a = b^k \\
\Theta(n^2) & \text{if } a < b^k
\end{cases} \]

Apply the theorem:

\[T(n) = 3T(n/5) + 8n^2. \]

\[a = 3, b = 5, c = 8, k = 2. \]

\[b^k/a = 25/3. \]

Case (3) holds: \(T(n) = \Theta(n^2). \)

Examples

- Mergesort: \(T(n) = 2T(n/2) + n. \)
 \[2^{1/2} = 1, \text{ so } T(n) = \Theta(n \log n). \]
- Binary search: \(T(n) = T(n/2) + 2. \)
 \[2^{0/1} = 1, \text{ so } T(n) = \Theta(\log n). \]
- Insertion sort: \(T(n) = (n-1) + n. \)
 Can't apply the theorem. Sorry!
- Standard Matrix Multiply (recursively):
 \[T(n) = 8T(n/2) + n^2. \]
 \[2^{2/8} = 1/2 \text{ so } T(n) = \Theta(n^{\log 8}) = \Theta(n^2). \]

Useful log Notation

- If you want to take the log of \(\log n \), it is written \(\log \log n \).
- \(\log n^2 \) can be written \(\log^2 n \).
- Don't get these confused!
- \(\log n \) means “the number of times that the log of \(n \) must be taken before \(n \leq 1. \)
 - For example, \(65536 = 2^{16} \) so \(\log 65536 = 16 \) since \(\log 65536 = 16, \log 16 = 4, \log 4 = 2, \log 2 = 1. \)

Amortized Analysis

Consider this variation on STACK:

```c
void init(STACK S);
element examineTop(STACK S);
void push(element x, STACK S);
void pop(int k, STACK S);
```

... where `pop` removes \(k \) entries from the stack.

“Local” worst case analysis for `pop`:

\[O(n) \] for \(n \) elements on the stack.

Given \(m_1 \) calls to `push`, \(m_2 \) calls to `pop`:

Naive worst case:

\[m_1 + m_2 \cdot n = m_1 + m_2 \cdot m_1. \]
Alternate Analysis

Use amortized analysis on multiple calls to push, pop:

Cannot pop more elements than get pushed onto the stack.

After many pushes, a single pop has high potential.

Once that potential has been expended, it is not available for future pop operations.

The cost for \(m_1 \) pushes and \(m_2 \) pops:

\[
m_1 + (m_2 + m_1) = O(m_1 + m_2)
\]

Creative Design of Algorithms by Induction

Analogy: Induction ↔ Algorithms

Begin with a problem:
- “Find a solution to problem Q.”

Think of Q as a set containing an infinite number of problem instances.

Example: Sorting
- Q contains all finite sequences of integers.

Solving Q

First step:
- Parameterize problem by size: \(Q(n) \)

Example: Sorting
- \(Q(n) \) contains all sequences of \(n \) integers.

Q is now an infinite sequence of problems:
- \(Q(1), Q(2), ..., Q(n) \)

Algorithm: Solve for an instance in \(Q(n) \) by solving instances in \(Q(i), i < n \) and combining as necessary.

Induction

Goal: Prove that we can solve for an instance in \(Q(n) \) by assuming we can solve instances in \(Q(i), i < n \).

Don’t forget the base cases!

Theorem: \(\forall n \geq 1 \), we can solve instances in \(Q(n) \),
- This theorem embodies the correctness of the algorithm.

Since an induction proof is mechanistic, this should lead directly to an algorithm (recursive or iterative).

Just one (new) catch:
- Different inductive proofs are possible.
- We want the most efficient algorithm!

Alternate Analysis

Actual number of (constant time) push calls + (Actual number of pop calls + Total potential for the pops)

CLR has an entire chapter on this – we won’t go into this much, but we use Amortized Analysis implicitly sometimes.

Creative Design of Algorithms by Induction

Now that we have completed the tool review, we will do two things:

1. Survey algorithms in application areas
2. Try to understand how to create efficient algorithms

This chapter is about the second. The remaining chapters do the second in the context of the first.

I ← A is reasonably obvious – we often use induction to prove that an algorithm is correct. The intellectual claim of Manber is that I → A gives insight into problem solving.

Solving Q

This is a “meta” algorithm – An algorithm for finding algorithms!

Induction

The goal is using Strong Induction. Correctness is proved by induction.

Example: Sorting
- Sort \(n - 1 \) items, add \(r \)th item (insertion sort)
- Sort 2 sets of \(n/2 \), merge together (mergesort)
- Sort values < \(x \) and > \(x \) (quicksort)
Interval Containment

Start with a list of non-empty intervals with integer endpoints.

Example:

[6, 9], [5, 7], [0, 3], [4, 8], [6, 10], [7, 8], [0, 5], [1, 3], [6, 8]

Problem: Identify and mark all intervals that are contained in some other interval.

Example:

- Mark [6, 9] since [6, 9] ⊆ [6, 10]

Interval Containment (cont)

- Q(n): Instances of n intervals
- Base case: Q(1) is easy.
- Inductive Hypothesis: For n > 1, we know how to solve an instance in Q(n - 1).
- Induction step: Solve for Q(n).
 - Solve for first n - 1 intervals, applying inductive hypothesis.
 - Check the nth interval against intervals 1, 2, ...
 - If interval i contains interval n, mark interval n. (stop)
 - If interval n contains interval i, mark interval i.

Analysis:

\[T(n) = T(n - 1) + cn \]

\[T(n) = \Theta(n^2) \]

“Creative” Algorithm

Idea: Choose a special interval as the nth interval.

Choose the nth interval to have rightmost left endpoint, and if there are ties, leftmost right endpoint.

1. No need to check whether nth interval contains other intervals.

2. nth interval should be marked iff the rightmost endpoint of the first n - 1 intervals exceeds or equals the right endpoint of the nth interval.

Solution: Sort as above.

In the example, the nth interval is [7, 8].

Every other interval has left endpoint to left, or right endpoint to right.

We must keep track of the current right-most endpoint.
“Creative” Solution Induction

Induction Hypothesis: Can solve for $Q(n - 1)$ AND interval n is the “rightmost” interval AND we know R (the rightmost endpoint encountered so far) for the first $n - 1$ segments.

Induction Step: (to solve $Q(n)$)
- Sort by left endpoints
- Solve for first $n - 1$ intervals recursively, remembering R.
- If the rightmost endpoint of nth interval is $\leq R$, then mark the nth interval.
- Else $R \leftarrow$ right endpoint of nth interval.

Analysis: $\Theta(n \log n) + \Theta(n).

Lesson: Preprocessing, often sorting, can help sometimes.

Maximal Induced Subgraph

Problem: Given a graph $G = (V, E)$ and an integer k, find a maximal induced subgraph $H = (U, F)$ such that all vertices in H have degree $\geq k$.

Example: Scientists interacting at a conference. Each one will come only if k colleagues come, and they know in advance if somebody won’t come.

Example: For $k = 3$.

Solution:

Max Induced Subgraph Solution

$Q(s, k)$: Instances where $|V| = s$ and k is a fixed integer.

Theorem: $\forall s, k > 0$, we can solve an instance in $Q(s, k)$.

Analysis: Should be able to implement algorithm in time $\Theta(|V| + |E|)$.

Celebrity Problem

In a group of n people, a **celebrity** is somebody whom everybody knows, but who knows nobody else.

Problem: If we can ask questions of the form “does person i know person j?” how many questions do we need to find a celebrity, if one exists?

How should we structure the information?
Celebrity Problem (cont)

Formulate as an $n \times n$ boolean matrix M.

$M_{ij} = 1$ iff i knows j.

Example:

$$
\begin{bmatrix}
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
$$

A celebrity has all 0's in his row and all 1's in his column.

There can be at most one celebrity.

Clearly, $O(n^2)$ questions suffice. Can we do better?

Efficient Celebrity Algorithm

Appeal to induction:

- If we have an $n \times n$ matrix, how can we reduce it to an $(n - 1) \times (n - 1)$ matrix?

What are ways to select the n'th person?

Efficient Celebrity Algorithm (cont)

Eliminate one person if he is a non-celebrity.

- Strike one row and one column.

$$
\begin{bmatrix}
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
\end{bmatrix}
$$

Does 1 know 3? No. 3 is a non-celebrity.

Does 2 know 5? Yes. 2 is a non-celebrity.

Observation: Each question eliminates one non-celebrity.

Celebrity Algorithm

Algorithm:

- Ask $n - 1$ questions to eliminate $n - 1$ non-celebrities. This leaves one candidate who might be a celebrity.
- Ask $2(n - 1)$ questions to check candidate.

Analysis:

- $\Theta(n)$ questions are asked.

Example:

- Does 1 know 2? No. Eliminate 2
- Does 1 know 3? No. Eliminate 3
- Does 1 know 4? Yes. Eliminate 1
- Does 4 know 5? No. Eliminate 5

4 remains as candidate.

The celebrity in this example is 4.
Maximum Consecutive Subsequence

Given a sequence of integers, find a contiguous subsequence whose sum is maximum.

The sum of an empty subsequence is 0.

- It follows that the maximum subsequence of a sequence of all negative numbers is the empty subsequence.

Example:

2, 11, -9, 3, 4, -6, -7, 7, -3, 5, 6, -2

Maximum subsequence:
7, -3, 5, 6 Sum: 15

Finding an Algorithm

Induction Hypothesis: We can find the maximum subsequence sum for a sequence of < n numbers.

Note: We have changed the problem.
- First, figure out how to compute the sum.
- Then, figure out how to get the subsequence that computes that sum.

Finding an Algorithm (cont)

Induction Hypothesis: We can find the maximum subsequence sum for a sequence of < n numbers.

Let $S = x_1, x_2, \ldots, x_n$ be the sequence.

- **Base case:** $n = 1$
 - Either $x_1 < 0 \Rightarrow \text{sum} = 0$
 - Or $\text{sum} = x_1$.

- **Induction Step:**
 - We know the maximum subsequence $\text{SUM}(n-1)$ for
 $x_1, x_2, \ldots, x_{n-1}$.
 - Where does x_n fit in?
 - Either it is not in the maximum subsequence or it ends the maximum subsequence.
 - If x_n ends the maximum subsequence, it is appended to trailing maximum subsequence of x_1, \ldots, x_{n-1}.

Finding an Algorithm (cont)

Need: TRAILINGSUM(n-1) which is the maximum sum of a subsequence that ends x_1, \ldots, x_{n-1}.

To get this, we need a stronger induction hypothesis.
Maximum Subsequence Solution

New Induction Hypothesis: We can find $\text{SUM}(n-1)$ and $\text{TRAILINGSUM}(n-1)$ for any sequence of $n - 1$ integers.

Base case:
$\text{SUM}(1) = \text{TRAILINGSUM}(1) = \text{Max}(0, x_i)$.

Induction step:
$\text{SUM}(n) = \text{Max}(\text{SUM}(n-1), \text{TRAILINGSUM}(n-1) + x_n)$.
$\text{TRAILINGSUM}(n) = \text{Max}(0, \text{TRAILINGSUM}(n-1) + x_n)$.

Maximum Subsequence Solution (cont)

Analysis:
Important Lesson: If we calculate and remember some additional values as we go along, we are often able to obtain a more efficient algorithm.

This corresponds to strengthening the induction hypothesis so that we compute more than the original problem (appears to) require.

How do we find sequence as opposed to sum?

The Knapsack Problem

Problem:
- Given an integer capacity K and n items such that item i has an integer size k_i, find a subset of the n items whose sizes exactly sum to K, if possible.
- That is, find $S \subseteq \{1, 2, \ldots, n\}$ such that
 \[\sum_{i \in S} k_i = K. \]

Example:
Knapsack capacity $K = 163$.
10 items with sizes
4, 9, 15, 19, 27, 44, 54, 68, 73, 101

Knapsack Algorithm Approach

Instead of parameterizing the problem just by the number of items n, we parameterize by both n and by K.

$P(n, K)$ is the problem with n items and capacity K.

First consider the decision problem: Is there a subset S?

Induction Hypothesis:
We know how to solve $P(n - 1, K)$.

This version of Knapsack is one of several variations. Think about solving this for 163. An answer is:

$S = \{9, 27, 54, 73\}$

Now, try solving for $K = 164$. An answer is:

$S = \{19, 44, 101\}$.

There is no relationship between these solutions!
Knapsack Induction

Induction Hypothesis:
We know how to solve $P(n - 1, K)$.

Solving $P(n, K)$:
- If $P(n - 1, K)$ has a solution, then it is also a solution for $P(n, K)$.
- Otherwise, $P(n, K)$ has a solution iff $P(n - 1, K - k_n)$ has a solution.

So what should the induction hypothesis really be?

Knapsack: New Induction

- New Induction Hypothesis:
 We know how to solve $P(n - 1, k), 0 \leq k \leq K$.
- To solve $P(n, K)$:
 - If $P(n - 1, K)$ has a solution,
 - Then $P(n, K)$ has a solution.
 - Else If $P(n - 1, K - k_n)$ has a solution,
 - Then $P(n, K)$ has a solution.
 - Else $P(n, K)$ has no solution.

Algorithm Complexity

- Resulting algorithm complexity:
 $T(n) = 2T(n - 1) + c \quad n \geq 2$
 $T(n) = \Theta(2^n)$ by expanding sum.
- But, there are only $n(K + 1)$ problems defined.
 - It must be that problems are being re-solved many times by this algorithm. Don’t do that.

Efficient Algorithm Implementation

The key is to avoid re-computing subproblems.

Implementation:
- Store an $n \times (K + 1)$ matrix to contain solutions for all the $P(i, k)$.
- Fill in the table row by row.
- Alternately, fill in table using logic above.

Analysis:
$T(n) = \Theta(nK)$.
Space needed is also $\Theta(nK)$.
Example

\[K = 10, \text{ with 5 items having size 9, 2, 7, 4, 1.} \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_1)</td>
<td>9</td>
<td>O</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>I</td>
</tr>
<tr>
<td>(k_2)</td>
<td>2</td>
<td>O</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>O</td>
</tr>
<tr>
<td>(k_3)</td>
<td>7</td>
<td>O</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>O</td>
</tr>
<tr>
<td>(k_4)</td>
<td>4</td>
<td>O</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>O</td>
</tr>
<tr>
<td>(k_5)</td>
<td>1</td>
<td>O</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>⋯</td>
<td>O</td>
</tr>
</tbody>
</table>

Key:
- No solution for \(P(i, k) \)
- \(O \) Solution(s) for \(P(i, k) \) with \(i \) omitted.
- \(I \) Solution(s) for \(P(i, k) \) with \(i \) included.
- \(I/O \) Solutions for \(P(i, k) \) both with \(i \) included and with \(i \) omitted.

Solution Graph

Find all solutions for \(P(5, 10) \).

\[
\begin{align*}
M(1, 0) & \quad M(1, 9) \\
M(2, 2) & \quad M(2, 9) \\
M(3, 9) & \quad M(4, 9) \\
M(5, 10) & \\
\end{align*}
\]

The result is an \(n \)-level DAG.

Dynamic Programming

This approach of storing solutions to subproblems in a table is called **dynamic programming**.

It is useful when the number of distinct subproblems is not too large, but subproblems are executed repeatedly.

Implementation: Nested `for` loops with logic to fill in a single entry.

Most useful for **optimization problems**.

Fibonacci Sequence

```c
int Fib(int n) {
    if (n <= 1) return 1; // Base case
    return Fib(n-1) + Fib(n-2); // Recursion
}
```

- Cost is Exponential. Why?
- If we could eliminate redundancy, cost would be greatly reduced.

Example: \(M(3, 9) \) contains \(O \) because \(P(2, 9) \) has a solution. It contains \(I \) because \(P(2, 2) = P(2, 9 - 7) \) has a solution. How can we find a solution to \(P(5, 10) \) from \(M \)? How can we find all solutions for \(P(5, 10) \)?

Alternative approach:
Do not precompute matrix. Instead, solve subproblems as necessary, marking in the array during backtracking.
To avoid storing the large array, use hashing for storing (and retrieving) subproblem solutions.

Essentially, we are making as many function calls as the value of the Fibonacci sequence itself. It is roughly (though not quite) two function calls of size \(n - 1 \) each.
Fibonacci Sequence (cont)

- Keep a table

```c
int Fibrt(int n, int* Values) {
  // Assume Values has at least n slots, and
  // all slots are initialized to 0
  if (n <= 1) return 1; // Base case
  if (Values[n] == 0) // Compute and store
    Values[n] = Fibrt(n-1, Values) +
    Fibrt(n-2, Values);
  return Values[n];
}
```

- Cost?
- We don’t need table, only last 2 values.
 - Key is working bottom up.

Chained Matrix Multiplication

Problem: Compute the product of \(n \) matrices

\[
M = M_1 \times M_2 \times \cdots \times M_n
\]
as efficiently as possible.

If \(A \) is \(r \times s \) and \(B \) is \(s \times t \), then

\[
\text{COST}(A \times B) = \text{SIZE}(A \times B) =
\]

If \(C \) is \(t \times u \) then

\[
\text{COST}((A \times B) \times C) = \text{COST}((A \times (B \times C))) =
\]

Order Matters

Example:

\[
A = 2 \times 8; B = 8 \times 5; C = 5 \times 20
\]

\[
\text{COST}((A \times B) \times C) = \text{COST}(A \times (B \times C)) =
\]

View as binary trees:

Chained Matrix Induction

Induction Hypothesis: We can find the optimal evaluation tree for the multiplication of \(\leq n - 1 \) matrices.

Induction Step: Suppose that we start with the tree for:

\[
M_1 \times M_2 \times \cdots \times M_{n-1}
\]

and try to add \(M_n \).

Two obvious choices:

- Multiply \(M_{n-1} \times M_n \) and replace \(M_{n-1} \) in the tree with a subtree.
- Multiply \(M_n \) by the result of \(P(n - 1) \): make a new root.

Visually, adding \(M_n \) may radically order the (optimal) tree.
Alternate Induction

Induction Step: Pick some multiplication as the root, then recursively process each subtree.
- Which one? Try them all!
- Choose the cheapest one as the answer.
- How many choices?

Observation: If we know the \(i \)th multiplication is the root, then the left subtree is the optimal tree for the first \(i - 1 \) multiplications and the right subtree is the optimal tree for the last \(n - i - 1 \) multiplications.

Notation: for \(1 \leq i \leq j \leq n \),
\[c[i, j] = \text{minimum cost to multiply} \ M_i \times M_{i+1} \times \cdots \times M_j, \]
So, \(c[1, n] = \min_{1 \leq i < n-1} n_i n_j + c[i, i] + c[i+1, n] \).

Analysis

Base Cases: For \(1 \leq k \leq n \), \(c[k, k] = 0 \).
More generally:
\[c[i, j] = \min_{1 \leq k < j} n_i n_j + c[i, k] + c[k + 1, j] \]

Solving \(c[i, j] \) requires \(2(j - i) \) recursive calls.

Analysis:
\[
T(n) = \sum_{k=1}^{n-1} (T(k) + T(n-k)) = 2 \sum_{k=1}^{n-1} T(k)
\]
\[
T(1) = 1
\]
\[
T(n + 1) = T(n) + 2T(n) = 3T(n)
\]
\[
T(n) = \Theta(3^n)
\]

But there are only \(\Theta(n^2) \) values \(c[i, j] \) to be calculated!

Dynamic Programming

Make an \(n \times n \) table with entry \(c[i, j] = c[i, j] \).

Only upper triangle is used.
Fill in table diagonal by diagonal.
\(c[i, i] = 0 \).
For \(1 \leq i < j \leq n \),
\[c[i, j] = \min_{i \leq k < j-1} n_i n_j + c[i, k] + c[k+1, j] \]

Dynamic Programming Analysis

- The time to calculate \(c[i, j] \) is proportional to \(j - i \).
- There are \(\Theta(n^2) \) entries to fill.
- \(T(n) = O(n^3) \).
- Also, \(T(n) = \Omega(n^3) \).
- How do we actually find the best evaluation order?

For middle diagonal of size \(n/2 \), each costs \(n/2 \).
For each \(c[i, j] \), remember the \(k \) (the root of the tree) that minimizes the expression.
So, store in the table the next place to go.
Summary

- Dynamic programming can often be added to an inductive proof to make the resulting algorithm as efficient as possible.
- Can be useful when divide and conquer fails to be efficient.
- Usually applies to optimization problems.
- Requirements for dynamic programming:
 1. Repeated solution of subproblems
 2. Small number of subproblems, small amount of information to store for each subproblem.
 3. Base case easy to solve.
 4. Easy to solve one subproblem given solutions to smaller subproblems.

Sorting

Each record contains a field called the key. Linear order: comparison.

The Sorting Problem

Given a sequence of records \(R_1, R_2, ..., R_n \) with key values \(k_1, k_2, ..., k_n \), respectively, arrange the records into any order such that records \(R_{i_1}, R_{i_2}, ..., R_{i_n} \) have keys obeying the property \(k_{i_1} \leq k_{i_2} \leq ... \leq k_{i_n} \).

Measures of cost:
- Comparisons
- Swaps

Insertion Sort

```c
void insort(Elem * A, int n) { // Insertion Sort
    for (int i=1; i<n; i++) // Insert i'th record
        for (int j=i; (j>0) && (A[j].key<A[j-1].key); j--)
            swap(A, j, j-1);
}
```

Best Case: \(0 \) swaps
Worst Case: \(n(n-1)/2 \) swaps
Average Case: \(n^2/4 \) swaps and compares.

Insertion sort has great best-case performance.

Exchange Sorting

- **Theorem**: Any sort restricted to swapping adjacent records must be \(\Omega(n^2) \) in the worst and average cases.
- **Proof**:
 - For any permutation \(P \), and any pair of positions \(i \) and \(j \), the relative order of \(i \) and \(j \) must be wrong in either \(P \) or the inverse of \(P \).
 - Thus, the total number of swaps required by \(P \) and the inverse of \(P \) MUST be
 \[
 \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}.
 \]

Average Case:
- \(n^2/4 \) is the average distance from a record to its position in the sorted output.
Quicksort

Divide and Conquer: divide list into values less than pivot and values greater than pivot.

void qsort(Elem* A, int i, int j) { // Quicksort
 int pivotindex = findpivot(A, i, j); // Find pivot index
 swap(A, pivotindex, j); // Swap to end
 int k = partition(A, i-1, j, A[j].key); // k will be first position in right subarray
 swap(A, k, j); // Put pivot in place
 if ((k-i) > 1) qsort(A, i, k-1); // Sort left
 if ((j-k) > 1) qsort(A, k+1, j); // Sort right
}

int findpivot(Elem* A, int i, int j) { return (i+j)/2; }

Quicksort Partition

int partition(Elem* A, int l, int r, int pivot) {
 do { // Move bounds inward until they meet
 while (A[++l].key < pivot); // Move right
 } while (r && (A[--r].key > pivot)); // Left
 swap(A, l, r); // Swap out-of-place vals
 return l; // Return first position in right
}

The cost for Partition is $\Theta(n)$.

Partition Example

Initial

<table>
<thead>
<tr>
<th>l</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
</tbody>
</table>

Pass 1

<table>
<thead>
<tr>
<th>l</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
</tbody>
</table>

Swap 1

<table>
<thead>
<tr>
<th>l</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
</tbody>
</table>

Pass 2

<table>
<thead>
<tr>
<th>l</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
</tbody>
</table>

Swap 2

<table>
<thead>
<tr>
<th>l</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
</tbody>
</table>

Pass 3

<table>
<thead>
<tr>
<th>l</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>60</td>
</tr>
</tbody>
</table>

Final Sorted Array

<table>
<thead>
<tr>
<th>l</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>48</td>
</tr>
<tr>
<td>48</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>72</td>
</tr>
<tr>
<td>72</td>
<td>73</td>
</tr>
<tr>
<td>73</td>
<td>83</td>
</tr>
<tr>
<td>83</td>
<td>85</td>
</tr>
<tr>
<td>85</td>
<td>88</td>
</tr>
<tr>
<td>6</td>
<td>42</td>
</tr>
<tr>
<td>42</td>
<td>48</td>
</tr>
<tr>
<td>48</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>72</td>
</tr>
<tr>
<td>72</td>
<td>73</td>
</tr>
<tr>
<td>73</td>
<td>83</td>
</tr>
<tr>
<td>83</td>
<td>85</td>
</tr>
<tr>
<td>85</td>
<td>88</td>
</tr>
</tbody>
</table>

Quicksort Example

Pivot = 6

Pivot = 12

Pivot = 57

Pivot = 60

Pivot = 85

Pivot = 88

Final Sorted Array
Cost for Quicksort

Best Case: Always partition in half.

Worst Case: Bad partition.

Average Case:
\[f(n) = n - 1 + \frac{1}{n} \sum_{i=0}^{n-1} (f(i) + f(n - i - 1)) \]

Optimizations for Quicksort:
- Better pivot.
- Use better algorithm for small sublists.
- Eliminate recursion.
- Best: Don’t sort small lists and just use insertion sort at the end.

Average Cost (cont.)

Get rid of the full history by subtracting nf(n) from \((n + 1)f(n + 1)\)

\[
\begin{align*}
nf(n) &= n(n - 1) + 2 \sum_{i=0}^{n-1} f(i) \\
(n + 1)f(n + 1) &= (n + 1)n + 2 \sum_{i=1}^{n} f(i) \\
(n + 1)f(n + 1) - nf(n) &= 2n + 2f(n) \\
(n + 1)f(n + 1) &= 2n + (n + 2)f(n) \\
f(n + 1) &= \frac{2n}{n + 1} + \frac{n + 2}{n + 1} f(n).
\end{align*}
\]

Average Cost (cont.)

Note that \(\frac{2n}{n + 1} \leq 2\) for \(n \geq 1\).

Expand the recurrence to get:

\[
\begin{align*}
f(n + 1) &\leq 2 + \frac{n + 2}{n + 1} f(n) \\
&= 2 + \frac{n + 2}{n + 1} \left(2 + \frac{n + 1}{n} f(n - 1) \right) \\
&= 2 + \frac{n + 2}{n + 1} \left(2 + \frac{n + 1}{n} \left(2 + \frac{n - 1}{n - 2} f(n - 2) \right) \right) \\
&= 2 + \frac{n + 2}{n + 1} \left(2 + \cdots + \frac{4}{3} \left(2 + \frac{3}{2} f(1) \right) \right)
\end{align*}
\]
Average Cost (cont.)

\[
f(n+1) \leq 2 \left(1 + \frac{n+2}{n+1} + \frac{n+2}{n+1} \frac{1}{n} + \cdots + \frac{3}{2} \right) \\
= 2 \left(1 + (n+2) \left(\frac{1}{n+1} + \frac{1}{n} + \cdots + \frac{1}{2} \right) \right) \\
= 2 + 2(n+2)(H_{n+1} - 1) \\
= \Theta(n \log n).
\]

Mergesort

List mergesort(List inlist) {
 if (inlist.length() <= 1) return inlist;
 List l1 = half of the items from inlist;
 List l2 = other half of the items from inlist;
 return merge(mergesort(l1), mergesort(l2));
}

Mergesort Implementation (1)

Mergesort is tricky to implement.

void mergesort(Elem* A, Elem* temp, int left, int right) {
 int mid = (left+right)/2;
 if (left == right) return; // List of one
 mergesort(A, temp, left, mid); // Sort half
 mergesort(A, temp, mid+1, right); // Sort half
 for (int i=left; i<=right; i++) // Copy to temp
 temp[i] = A[i];
}

Mergesort Implementation (2)

// Do the merge operation back to array
int i1 = left; int i2 = mid + 1;
for (int curr=left; curr<=right; curr++) {
 if (i1 == mid+1) // Left list exhausted
 A[curr] = temp[i2++];
 else if (i2 > right) // Right list exhausted
 A[curr] = temp[i1++];
 else if (temp[i1].key < temp[i2].key)
 A[curr] = temp[i1++];
 else A[curr] = temp[i2++];
}

Mergesort cost: \(\Theta(n \log n)\)

Linked lists: Send records to alternating linked lists, mergesort each, then merge.
Heaps

Heap: Complete binary tree with the Heap Property:

- Min-heap: all values less than child values.
- Max-heap: all values greater than child values.

The values in a heap are partially ordered.

Heap representation: normally the array based complete binary tree representation.

Building the Heap

(a) requires exchanges (4-2), (4-1), (2-1), (5-2), (5-4), (6-3), (6-5), (7-5), (7-6).
(b) requires exchanges (5-2), (7-3), (7-1), (6-1).

Siftdown

void heap::siftdown(int pos) { // Sift ELEM down
 assert((pos >= 0) && (pos < n));
 while (!isLeaf(pos)) {
 int j = leftchild(pos);
 if ((j<(n-1)) && (Heap[j].key < Heap[j+1].key))
 j++; // j now index of child with > value
 if (Heap[pos].key >= Heap[j].key) return;
 swap(Heap, pos, j);
 pos = j; // Move down
 }
}

BuildHeap

For fast heap construction:

- Work from high end of array to low end.
- Call siftdown for each item.
- Don’t need to call siftdown on leaf nodes.

void heap::buildheap() // Heapify contents
{ for (int i=n/2-1; i>=0; i--) siftdown(i); }

Cost for heap construction:

\[\sum_{i=1}^{\log_2 n} \frac{n}{2^i} \approx n. \]
Heapsort

Heapsort uses a max-heap.

```c
void heapsort(Elem* A, Elem* B, int n, int k, int r, int* count) { // Count[i] stores number of records in bin[i]
    for (int i=0; i<n; i++) count[i] = 0; // Init
    for (int j=0; j<r; j++) count[j] = count[j-1]+count[j]; //Index B: count[j] is index of j's last slot

    for (j=1; j<r; j++) count[j] = count[j-1]+count[j]; // Index B: count[j] is index of j's last slot
    for (j=0; j<r; j++) count[j] = count[j-1]+count[j]; // Index B: count[j] is index of j's last slot

    #for (i=0; i<n; i++) A[i] = B[key(A[i])];
    #for (i=0; i<n; i++) B[key(A[i])].append(A[i]);
    #for (i=0; i<MaxKeyValue; i++)
        #for (each element in order in B[i])
            output(B[i].currValue());
}
```

Cost of Heapsort:

Cost of finding k largest elements:

Binsort

A simple, efficient sort:

```c
void binsort(ELEM*A, int n) { list B[MaxKeyValue];
    for (i=0; i<n; i++) B[key(A[i])].append(A[i]);
    for (i=0; i<MaxKeyValue; i++)
        for (each element in order in B[i])
            output(B[i].currValue());
}
```

Ways to generalize:
- Make each bin the head of a list.
- Allow more keys than records.

```c
void radix(Elem* A, Elem* B, int n, int k, int r, int* count) { // Count[i] stores number of records in bin[i]
    for (int i=0; i<n; i++) count[i] = 0; // Init
    for (int j=0; j<r; j++) count[j] = count[j-1]+count[j]; // Index B: count[j] is index of j's last slot
    for (j=1; j<r; j++) count[j] = count[j-1]+count[j]; // Index B: count[j] is index of j's last slot
    for (j=0; j<r; j++) count[j] = count[j-1]+count[j]; // Index B: count[j] is index of j's last slot

    #for (i=0; i<n; i++) A[i] = B[key(A[i])];
    #for (i=0; i<n; i++) B[key(A[i])].append(A[i]);
    #for (i=0; i<MaxKeyValue; i++)
        #for (each element in order in B[i])
            output(B[i].currValue());
}
```

Cost of Heapsort: $\Theta(n \log n)$

Cost of finding k largest elements: $\Theta(k \log n + n)$.

- Time to build heap: $\Theta(n)$.
- Time to remove least element: $\Theta(\log n)$.

Compare Heapsort to sorting with BST:

- BST is expensive in space (overhead), potential bad balance, BST does not take advantage of having all records available in advance.
- Heap is space efficient, balanced, and building initial heap is efficient.

Radix Sort

Initial List: 27 91 1 97 17 23 84 28 72 5 67 25

First pass (on right digit)

```
\begin{align*}
0 & 1 2 3 4 5 6 7 8 9 \\
0 & 1 2 3 4 5 6 7 8 9 \\
0 & 1 2 3 4 5 6 7 8 9 \\
0 & 1 2 3 4 5 6 7 8 9 \\
0 & 1 2 3 4 5 6 7 8 9 \\
0 & 1 2 3 4 5 6 7 8 9 \\
0 & 1 2 3 4 5 6 7 8 9 \\
0 & 1 2 3 4 5 6 7 8 9 \\
0 & 1 2 3 4 5 6 7 8 9 \\
0 & 1 2 3 4 5 6 7 8 9 \\
\end{align*}
```

Result of first pass: 91 1 72 23 84 5 25 27 97 17 67 28

Second pass (on left digit)

```
\begin{align*}
0 & 1 2 3 4 5 6 7 8 9 \\
0 & 1 2 3 4 5 6 7 8 9 \\
0 & 1 2 3 4 5 6 7 8 9 \\
0 & 1 2 3 4 5 6 7 8 9 \\
0 & 1 2 3 4 5 6 7 8 9 \\
0 & 1 2 3 4 5 6 7 8 9 \\
0 & 1 2 3 4 5 6 7 8 9 \\
0 & 1 2 3 4 5 6 7 8 9 \\
0 & 1 2 3 4 5 6 7 8 9 \\
0 & 1 2 3 4 5 6 7 8 9 \\
\end{align*}
```

Result of second pass: 1 17 5 23 25 27 28 67 72 84 91 97

Radix Sort Algorithm (1)

```c
void radix(Elem* A, Elem* B, int n, int k, int r, int* count) { // Count[i] stores number of records in bin[i]
    for (int i=0; i<n; i++) count[i] = 0; // Init
    for (int j=0; j<k; j++) count[j] = 0; // Init
    for (int i=0; i<k; i++) count[i] = count[i-1]+count[i]; // Index B: count[i] is index of i's last slot

    #for (i=0; i<n; i++) A[i] = B[key(A[i])];
    #for (i=0; i<n; i++) B[key(A[i])].append(A[i]);
    #for (i=0; i<MaxKeyValue; i++)
        #for (each element in order in B[i])
            output(B[i].currValue());
}
```

Cost of Heapsort: $\Theta(n \log n)$

Cost of finding k largest elements: $\Theta(k \log n + n)$.

- Time to build heap: $\Theta(n)$.
- Time to remove least element: $\Theta(\log n)$.

Compare Heapsort to sorting with BST:

- BST is expensive in space (overhead), potential bad balance, BST does not take advantage of having all records available in advance.
- Heap is space efficient, balanced, and building initial heap is efficient.
Radix Sort Algorithm (2)

// Put recs into bins working from bottom
//Bins fill from bottom so j counts downwards
for (j=n-1; j>=0; j--)
 B[--count[(key(A[j])/rtok)%r]] = A[j];
for (j=0; j<n; j++) A[j] = B[j]; // Copy B->A

Cost: Θ(nk + rk).

How do n, k and r relate?

Radix Sort Example

<table>
<thead>
<tr>
<th>Initial input, Array A</th>
<th>Final pass values for Count, Pass 1</th>
<th>First pass values for Count, Pass 1</th>
<th>Count array</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1 1 1 2 0 4 1 0 0 0 2</td>
<td>3 1 0 0 0 0 0 0 0 0 0 0</td>
<td>3 1 0 0 0 0 0 0 0 0 0 0</td>
<td>2 1 1 1 2 0 4 1 0 0 0 2</td>
</tr>
<tr>
<td>0 5 6 9 8 7 1 2 3 4 10 11</td>
<td>0 1 2 3 4 5 6 7 8 9 0 1 2</td>
<td>0 1 2 3 4 5 6 7 8 9 0 1 2</td>
<td></td>
</tr>
</tbody>
</table>

End of Pass 1: Array A.

2
1
2
3
4
5
6
7
8
9
10

Sorting Lower Bound

Want to prove a lower bound for all possible sorting algorithms.

Sorting is O(n log n).

Sorting I/O takes Ω(n) time.

Will now prove Ω(n log n) lower bound.

Form of proof:
- Comparison based sorting can be modeled by a binary tree.
- The tree must have Ω(n!) leaves.
- The tree must be Ω(n log n) levels deep.

Decision Trees

- There are n! permutations, and at least 1 node for each.
- A tree with n nodes has at least log n levels.
- Where is the worst case in the decision tree?

r can be viewed as a constant.

k ≥ log n if there are n distinct keys.
Lower Bound Analysis

\[\log n! \leq \log n^n = n \log n. \]

\[\log n! \geq \log \left(\frac{n}{2} \right)^{\frac{n}{2}} \geq \frac{1}{2} (n \log n - n). \]

- So, \(\log n! = \Theta(n \log n) \).
- Using the decision tree model, what is the average depth of a node?
- This is also \(\Theta(n \log n) \).

Using the decision tree model, what is the average depth of a node?
This is also \(\Theta(n \log n) \).

A Search Model (1)

Problem:
Given:
- A list \(L \), of \(n \) elements
- A search key \(X \)
Solve: Identify one element in \(L \) which has key value \(X \), if any exist.

Model:
- The key values for elements in \(L \) are unique.
- One comparison determines \(<, =, > \).
- Comparison is our only way to find ordering information.
- Every comparison costs the same.

A Search Model (2)

Goal: Solve the problem using the minimum number of comparisons.
- Cost model: Number of comparisons.
- (Implication) Access to every item in \(L \) costs the same (array).

Is this a reasonable model and goal?

Linear Search

General algorithm strategy: Reduce the problem.
- Compare \(X \) to the first element.
- If not done, then solve the problem for \(n - 1 \) elements.

```
Position linear_search(L, lower, upper, X) {
  if L[lower] = X then
    return lower;
  else if lower = upper then
    return -1;
  else
    return linear_search(L, lower+1, upper, X);
}
```

What equation represents the worst case cost?

\[f(n) = \begin{cases}
 1 & n = 1 \\
 f(n-1) + 1 & n > 1
\end{cases} \]
Lower Bound on Problem

Theorem: Lower bound (in the worst case) for the problem is \(n \) comparisons.

Proof: By contradiction.
- Assume an algorithm \(A \) exists that requires only \(n - 1 \) (or less) comparisons of \(X \) with elements of \(L \).
- Since there are \(n \) elements of \(L \), \(A \) must have avoided comparing \(X \) with \(L[i] \) for some value \(i \).
- We can feed the algorithm an input with \(X \) in position \(i \).
- Such an input is legal in our model, so the algorithm is incorrect.

Is this proof correct?

Fixing the Proof (1)

Error #1: An algorithm need not consistently skip position \(i \).

Fix:
- On any given run of the algorithm, *some* element \(i \) gets skipped.
- It is possible that \(X \) is in position \(i \) at that time.

Fixing the Proof (2)

Error #2: Must allow comparisons between elements of \(L \).

Fix:
- Include the ability to “preprocess” \(L \).
- View \(L \) as initially consisting of \(n \) “pieces.”
- A comparison can join two pieces (without involving \(X \)).
- The total of these comparisons is \(k \).
- We must have at least \(n - k \) pieces.
- A comparison of \(X \) against a piece can reject the whole piece.
- This requires \(n - k \) comparisons.
- The total is still at least \(n \) comparisons.

Average Cost

How many comparisons does linear search do on average?

We must know the probability of occurrence for each possible input.

(Must \(X \) be in \(L \)?)

Ignore everything except the position of \(X \) in \(L \). Why?

What are the \(n + 1 \) events?

\[
P(X \notin L) = 1 - \sum_{i=1}^{n} P(X = L[i]).
\]
Average Cost Equation

Let $k_i = i$ be the number of comparisons when $X = L[i]$.
Let $k_0 = n$ be the number of comparisons when $X \notin L$.

Let p_i be the probability that $X = L[i]$.
Let p_0 be the probability that $X \notin L[i]$ for any i.

$$f(n) = k_0p_0 + \sum_{i=1}^{n} k_ip_i$$

$$= np_0 + \sum_{i=1}^{n} ip_i$$

What happens to the equation if we assume all p_i’s are equal (except p_0)?

Computation

$$f(n) = p_0n + \sum_{i=1}^{n} ip_i$$

$$= p_0n + p\sum_{i=1}^{n} i$$

$$= p_0n + p\frac{n(n+1)}{2}$$

$$= p_0n + \frac{1 - p_0}{n}\frac{n(n+1)}{2}$$

$$= \frac{n+1 + p_0(n-1)}{2}$$

Depending on the value of p_0, $\frac{n+1}{2} \leq f(n) \leq n$.

Problems with Average Cost

- Average cost is usually harder to determine than worst cost.
- We really need also to know the variance around the average.
- Our computation is only as good as our knowledge (guess) on distribution.

Sorted List

Change the model: Assume that the elements are in ascending order.

Is linear search still optimal? Why not?

Optimization: Use linear search, but test if the element is greater than X. Why?

Observation: If we look at $L[5]$ and find that X is bigger, then we rule out $L[1]$ to $L[4]$ as well.

More is Better: If we look at $L[n]$ and find that X is bigger, then we know in one test that X is not in L. Great!

- What is wrong here?
Jump Search

Algorithm:
- From the beginning of the array, start making jumps of size \(k \), checking \(L[k] \) then \(L[2k] \), and so on.
- So long as \(X \) is greater, keep jumping by \(k \).
- If \(X \) is less, then use linear search on the last sublist of \(k \) elements.

This is called Jump Search.

What is the right amount to jump?

Analysis of Jump Search

- If \(mk \leq n < (m+1)k \), then the total cost is at most \(m + k - 1 \) 3-way comparisons.

\[
f(n, k) = m + k - 1 = \left\lfloor \frac{n}{k} \right\rfloor + k - 1.
\]

- What should \(k \) be?

\[
\min_{1 \leq k \leq n} \left\{ \left\lfloor \frac{n}{k} \right\rfloor + k - 1 \right\}
\]

- Take the derivative and solve for \(f'(x) = 0 \) to find the minimum.
- This is a minimum when \(k = \sqrt{n} \).
- What is the worst case cost?
 - Roughly \(2\sqrt{n} \).

Lessons

We want to balance the work done while selecting a sublist with the work done while searching a sublist.

In general, make subproblems of equal effort.

This is an example of **divide and conquer**

What if we extend this to three levels?
- We’d jump to get a sublist, then jump to get a sub-sublist, then do sequential search
- While it might make sense to do a two-level algorithm (like jump search), it almost never makes sense to do a three-level algorithm
- Instead, we resort to recursion

Binary Search

```c
int binary(int K, int* array, int left, int right) {
    // Return position of element (if any) with value K
    int l = left-1;
    int r = right+1;  // l and r beyond array bounds
    while (l+1 != r) { // Stop when l and r meet
        int i = (l+r)/2; // Middle of remaining subarray
        if (K < array[i]) r = i; // In left half
        if (K == array[i]) return i; // Found it
        if (K > array[i]) l = i; // In right half
    }
    return UNSUCCESSFUL; // Search value not in array
}
```

\[
f(n) = \begin{cases}
1 & n = 1 \\
\frac{1}{2} f(\lfloor n/2 \rfloor) + 1 & n > 1
\end{cases}
\]
Lower Bound (for Problem Worst Case)

How does n compare to \sqrt{n} compare to $\log n$?

Can we do better?

Model an algorithm for the problem using a decision tree.
- Consider only comparisons with X.
- Branch depending on the result of comparing X with $L[i]$.
- There must be at least n leaf nodes in the tree. (Why?)
- Some path must be at least $\log n$ deep. (Why?)

Thus, binary search has optimal worst cost under this model.

Average Cost of Binary Search (1)

An estimate given these assumptions:
- X is in L.
- X is equally likely to be in any position.
- $n = 2^k$ for some non-negative integer k.

Cost?
- One chance to hit in one probe.
- Two chances to hit in two probes.
- 2^{i-1} to hit in i probes.
- $i \leq k$.

Average cost is $\log n – 1$.

Average Cost Lower Bound

- Use decision trees again.
- **Total Path Length**: Sum of the level for each node.
- The cost of an outcome is the level of the corresponding node plus 1.
- The average cost of the algorithm is the average cost of the outcomes (total path length/n).
- What is the tree with the least average depth?
- This is equivalent to the tree that corresponds to binary search.
- Thus, binary search is optimal.

Interpolation Search

(Also known as Dictionary Search) Search L at a position that is appropriate to the value of X.

$$p = \frac{X - L[1]}{L[n] - L[1]}$$

Repeat as necessary to recalculate p for future searches.
Quadratic Binary Search

This is easier to analyze:

- Compute \(p \) and examine \(L[\lceil \sqrt{n} \rceil] \).
- If \(X < L[\lceil \sqrt{n} \rceil] \) then sequentially probe
 \[L[\sqrt{n} - i \sqrt{n}], \quad i = 1, 2, 3, \ldots \]
 until we reach a value less than or equal to \(X \).
- Similar for \(X > L[\lceil \sqrt{n} \rceil] \).
- We are now within \(\sqrt{n} \) positions of \(X \).
- ASSUME (for now) that this takes a constant number of comparisons.
- Now we have a sublist of size \(\sqrt{n} \).
- Repeat the process recursively.
- What is the cost?

ASSUME (for now) that this takes a constant number of comparisons.

Similar for \(X \neq \lceil \sqrt{n} \rceil \).

If \(X = \lceil \sqrt{n} \rceil \) then sequentially probe \(\sqrt{n} \) positions of \(X \),
and examine \(X \) until we reach a value less than or equal to \(X \).

We will come back and examine this assumption.

This is following the induction in a different way than Binary Search.
Binary Search says break down list by (repeatedly) finding a square root-sized sublist.

How many times can we take the square root of \(n \)?
Keep dividing the exponent by 2 until we reach 1 – that is, take the log of the exponent.
What is the exponent? It is \(\log n \).

\(\log \log n \) is the number of times that we can take the square root.

QBS Probe Count (1)

Cost is \(\Theta(\log \log n) \) if the number of probes on jump search is constant.

Number of comparisons needed is:

\[
\sum_{i=1}^{\sqrt{n}} P(\text{need exactly } i \text{ probes})
\]

\[
= 1P_1 + 2P_2 + 3P_3 + \cdots + \sqrt{n}P_{\sqrt{n}}
\]

This is equal to:

\[
\sum_{i=1}^{\sqrt{n}} P(\text{need at least } i \text{ probes})
\]

QBS Probe Count (2)

\[
\sum_{i=1}^{\sqrt{n}} P(\text{need at least } i \text{ probes})
\]

\[
= 1 + (1 - P_1) + (1 - P_1 - P_2) + \cdots + P_{\sqrt{n}}
\]

\[
= (P_1 + \cdots + P_{\sqrt{n}}) + (P_2 + \cdots + P_{\sqrt{n}}) + (P_3 + \cdots + P_{\sqrt{n}}) + \cdots
\]

\[
= 1P_1 + 2P_2 + 3P_3 + \cdots + \sqrt{n}P_{\sqrt{n}}
\]

QBS Probe Count (3)

We require at least two probes to set the bounds, so cost is:

\[
2 + \sum_{i=3}^{\sqrt{n}} P(\text{need at least } i \text{ probes})
\]

Useful fact (Čebyšëv’s Inequality):

The probability that we need probe \(i \) times \((P_i) \) is:

\[
P_i \leq \frac{p(1-p)n}{(i-2)^2n} \leq \frac{1}{4(i-2)^2}
\]

since \(p(1-p) \leq 1/4 \).

This assumes uniformly distributed data.
QBS Probe Count (4)

Final result:

\[2 + \sum_{n=3}^{\sqrt{n}} \frac{1}{4(\sqrt{n} - 2)^2} \approx 2.4112 \]

Is this better than binary search?

What happened to our proof that binary search is optimal?

Comparison (1)

Let's compare log log \(n \) to log \(n \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\log n)</th>
<th>(\log \log n)</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
<td>3</td>
<td>2.7</td>
</tr>
<tr>
<td>64K</td>
<td>16</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(2^{32})</td>
<td>32</td>
<td>5</td>
<td>6.4</td>
</tr>
</tbody>
</table>

Now look at the actual comparisons used.

- Binary search \(\approx \log n - 1 \)
- Interpolation search \(\approx 2.4 \log \log n \)

Comparison (2)

Not done yet! This is only a count of comparisons!

- Which is more expensive: calculating the midpoint or calculating the interpolation point?

Which algorithm is dependent on good behavior by the input?

Order Statistics

Definition: Given a sequence \(S = x_1, x_2, \ldots, x_n \) of elements, \(x_i \) has rank \(k \) in \(S \) if \(x_i \) is the \(k \)th smallest element in \(S \).

- Easy to find for a sorted list.
- What if list is not sorted?
- Problem: Find the maximum element.
- Change the model: Count exact number of comparisons
- Solution:

Finding max: Compare element \(n \) to the maximum of the previous \(n - 1 \) elements. Cost: \(n - 1 \) comparisons. This is optimal since you must look at every element to be sure that it is not the maximum.
Two problems

- Find the max and the min
- Find (max and) the second biggest value

Is one of these harder than the other?

Of course both can be done in $\Theta(n)$ time, but we want to count exact number of comparisons.

Both can also be done by finding max, then finding min or second max. So both can be done in 2n-1 comparisons.

Finding the Second Best

In a single-elimination tournament, is the second best the one who loses in the finals?

Simple algorithm:
- Find the best.
- Discard it.
- Now, find the second best of the $n-1$ remaining elements.

Cost? Is this optimal?

Lower Bound for Second (1)

Lower bound:
- Anyone who lost to anyone who is not the max cannot be second.
- So, the only candidates are those who lost to max.
- Find_max might compare max to $n-1$ others.
- Thus, we might need $n-2$ additional comparisons to find second.
- Wrong!

What is wrong with this argument?
It relies on the behavior of a particular algorithm.

Lower Bound for Second (2)

The previous argument exhibits the necessity fallacy:
- Our algorithm does something, therefore all algorithms solving the problem must do the same.

Alternative: Divide and conquer
- Break the list into two halves.
- Run Find_max on each half.
- Compare the winners.
- Run Find_max on the winner's half for second.
- Compare that second to second winner.

Cost: $\lceil 3n/2 \rceil - 2$.
Is this optimal?
What if we break the list into four pieces? Eight?
Pushing this idea to its extreme, we want each comparison to be between winners of equal numbers of comparisons.

The only candidates for second are losers to the eventual winner.

A binomial tree of height m has 2^m nodes organized as:

- a single node, if $m = 0$, or
- two height $m-1$ binomial trees with one tree's root becoming a child of the other.

Algorithm:

- Build the tree.
- Compare the $\lceil \log n \rceil$ children of the root for second.

Cost?

Many lower bounds proofs use the concept of an adversary. The adversary’s job is to make an algorithm's cost as high as possible.

The algorithm asks the adversary for information about the input.

The adversary may never lie.

Imagine that the adversary keeps a list of all possible inputs.

- When the algorithm asks a question, the adversary answers, and crosses out all remaining inputs inconsistent with that answer.
- The adversary is permitted to give any answer that is consistent with at least one remaining input.

Examples:

- Hangman.
- Search an unordered list.

no notes

Adversary maintains dictionary, and can give any answer that conforms with at least one entry in the dictionary.

Adversary always says “not found” until last element.
Lower Bound for Second Best

At least \(n - 1 \) values must lose at least once.
- At least \(n - 1 \) compares.

In addition, at least \(k - 1 \) values must lose to the second best.
- I.e., \(k \) direct losers to the winner must be compared.

There must be at least \(n + k - 2 \) comparisons.

How low can we make \(k \)?

Adversarial Lower Bound

Call the strength of element \(L[i] \) the number of elements \(L[i] \) is (known to be) bigger than.

If \(L[i] \) has strength \(a \), and \(L[j] \) has strength \(b \), then the winner has strength \(a + b + 1 \).

What should the adversary do?
- Minimize the rate at which any element improves.
- Do this by making the stronger element always win.
- Is this legal?

Lower Bound (Cont.)

What should the algorithm do?

If \(a > b \), then \(2a > a + b \).
- From the algorithm’s point of view, the best outcome is that an element doubles in strength.
- This happens when \(a = b \).
- All strengths begin at zero, so the winner must make at least \(k \) comparisons for \(2^k - 1 < n \leq 2^k \).

Thus, there must be at least \(n + \lceil \log n \rceil - 2 \) comparisons.

Min and Max

Problem: Find the minimum AND the maximum values.
Naive Solution: Do independently, requires \(2n - 3 \) comparisons.

Solution: By induction.

Base cases:
- 1 element: It is both min and max.
- 2 elements: One comparison decides.

Induction Hypothesis:
- Assume that we can solve for \(n - 2 \) elements.

Try to add 2 elements to the list.
Min and Max (2)

Induction Hypothesis:
- Assume that we can solve for \(n - 2 \) elements.

Try to add 2 elements to the list.
- Find min and max of elements \(n - 1 \) and \(n \) (1 compare).
- Combine these two with \(n - 2 \) elements (2 compares).
- Total incremental work was 3 compares for 2 elements.

Total Work:

What happens if we extend this to its logical conclusion?

The Lower Bound (1)

Is \(\lceil 3n/2 \rceil - 2 \) optimal?

Consider all states that a successful algorithm must go through: The state space lower bound.

At any given instant, track the following four categories:
- Novices: not tested.
- Winners: Won at least once, never lost.
- Losers: Lost at least once, never won.
- Moderates: Both won and lost at least once.

The Lower Bound (2)

Who can get ignored?

What is the initial state?

What is the final state?

How is this relevant?

Lower Bound (3)

Every algorithm must go from \((n, 0, 0, 0)\) to \((0, 1, 1, n - 2)\).

There are 10 types of comparison.

Comparing with a moderate cannot be more efficient than other comparisons, so ignore them.

Total work is about \(3n/2 \) comparisons.

It doesn't get any better if we split the sequence into two halves. The recurrence is:

\[
T(n) = \begin{cases}
1 & n = 2 \\
2T(n/2) + 2 & n > 2
\end{cases}
\]

This is \(3/2n - 2 \) for \(n \) a power of 2.
Lower Bound (3)

If we are in state \((i, j, k, l)\) and we have a comparison, then:

- **\(N : N\)** \((i - 2, j + 1, k + 1, l)\)
- **\(W : W\)** \((i, j - 1, k, l + 1)\)
- **\(L : L\)** \((i, j, k - 1, l + 1)\)
- **\(L : N\)** \((i - 1, j + 1, k, l)\)
 - or \((i - 1, j, k, l + 1)\)
- **\(W : N\)** \((i - 1, j, k + 1, l)\)
 - or \((i - 1, j, k, l + 1)\)
- **\(W : L\)** \((i, j, k, l)\)
 - or \((i, j - 1, k - 1, l + 2)\)

Only the following five transitions are of interest:

- **\(N : N\)** \((i - 2, j + 1, k + 1, l)\)
- **\(W : W\)** \((i - 1, j + 1, k, l)\)
- **\(L : L\)** \((i - 1, j, k - 1, l + 1)\)
- **\(W : N\)** \((i - 1, j, k + 1, l)\)
- **\(W : L\)** \((i, j, k, l)\)

The number of novices must go to 0, and the first is the most efficient way to do this: \(|n/2|\) are required.

Adversarial Argument

What should an adversary do?
- Comparing a winner to a loser is of no value.
- Only the last two types increase the number of moderates, so there must be \(n - 2\) of these.

The number of novices must go to 0, and the first is the most efficient way to do this: \(|n/2|\) are required.

\(K\)th Smallest Element

Problem: Find the \(k\) smallest element from sequence \(S\).

(Also called **selection**.)

Solution: Find min value and discard \(k\) times.
- If \(k\) is large, find \(n - k\) max values.

Cost: \(O(\min(k, n - k)n)\) – only better than sorting if \(k\) is \(O(\log n)\) or \(O(n - \log n)\).

Better \(K\)th Smallest Algorithm

Use quicksort, but take only one branch each time.

Average case analysis:

\[
f(n) = n - 1 + \frac{1}{n} \sum_{i=1}^{n} f(i - 1)
\]

Average case cost: \(O(n)\) time.
String Matching

Let $A = a_1a_2 \cdots a_n$ and $B = b_1b_2 \cdots b_m$, $m \leq n$, be two strings of characters.

Problem: Given two strings A and B, find the first occurrence (if any) of B in A.
- Find the smallest k such that, for all i, $1 \leq i \leq m$, $a_{k+i} = b_i$.

String Matching Example

$A = xyxxyxyxx$ $B = xyxxyxx$

\[
\begin{align*}
1: & \quad x y x y y x y x y x y x x \\
2: & \quad x y y x y x y x y x x \\
3: & \quad x y y x y x y x y x x \\
4: & \quad x y y x y x y x y x x \\
5: & \quad x y y x y x y x y x x \\
6: & \quad x y y x y x y x y x x \\
7: & \quad x y y x y x y x y x x \\
8: & \quad x y y x y x y x y x x \\
9: & \quad x y y x y x y x y x x \\
10: & \quad x y y x y x y x y x x \\
11: & \quad x y y x y x y x y x x \\
12: & \quad x y y x y x y x y x x \\
13: & \quad x y y x y x y x y x x \\
\end{align*}
\]

$O(mn)$ comparisons.

Finding a Better Algorithm

Find $B = xyxxyxyxx$ in $A = xyxxyxyxx$ $xyxxyxyxx$
When things go wrong, focus on what the prefix might be.

$xyxxyxyxyxyxyxyxx$
- no chance for prefix until third x
$xyxxyxyxyxyxyxyxx$ -- last xyx could be prefix
$xyxxyxyxyxyxyxyxx$ -- success!
Knuth-Morris-Pratt Algorithm

Key to success:
- Preprocess B to create a table of information on how far to slide B when a mismatch is encountered.
- Notation: $B(i)$ is the first i characters of B.
- For each character:
 - We need the maximum suffix of $B(i)$ that is equal to a prefix of B.
- $next(i) = \text{the maximum } j \ (0 < j < i - 1) \text{ such that } b_{i-j}b_{i-j+1}^n = B(j)$, and 0 if no such j exists.
- We define $next(1) = -1$ to distinguish it.
- $next(2) = 0$. Why?

Computing the table

$B =$

1 2 3 4 5 6 7 8 9 10 11
x y x y y x y x y x x
-1 0 0 1 2 0 1 2 3 4 3

- The third line is the “next” table.
- At each position ask “If I fail here, how many letters before me are good?”

How to Compute Table?

- By induction.
- Base cases: $next(1)$ and $next(2)$ already determined.
- Induction Hypothesis: Values have been computed up to $next(i - 1)$.
- Induction Step: For $next(i)$: at most $next(i - 1) + 1$.
 - When? $b_{i-1} = b_{next(i-1)+1}$.
 - That is, largest suffix can be extended by b_{i-1}.
- If $b_{i-1} \neq b_{next(i-1)+1}$, then need new suffix.
- But, this is just a mismatch, so use next table to compute where to check.

Complexity of KMP Algorithm

- A character of A may be compared against many characters of B.
 - For every mismatch, we have to look at another position in the table.
- How many backtracks are possible?
- If mismatch at b_k, then only k mismatches are possible.
- But, for each mismatch, we had to go forward a character to get to b_k.
- Since there are always n forward moves, the total cost is $O(n)$.
Example Using Table

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>x</td>
<td>y</td>
<td>x</td>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>A</td>
<td>x</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>x</td>
<td>x</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
</tbody>
</table>

Note: \(-x\) means don’t actually compute on that character.

Boyer-Moore String Match Algorithm

- Similar to KMP algorithm
- Start scanning \(B\) from end of \(B\).
- When we get a mismatch, we can shift the pattern to the right until that character is seen again.
- Ex: If “Z” is not in \(B\), can move \(m\) steps to right when encountering “Z”.
- If “Z” in \(B\) at position \(i\), move \(m - i\) steps to the right.
- This algorithm might make less than \(n\) comparisons.

Example: Find \(abc\) in \(xbycabcabcabcabc\)

Probabilistic Algorithms

All algorithms discussed so far are deterministic.

Probabilistic algorithms include steps that are affected by random events.

Example: Pick one number in the upper half of the values in a set.
- Pick maximum: \(n - 1\) comparisons.
- Pick maximum from just over 1/2 of the elements: \(n/2\) comparisons.

Can we do better? Not if we want a guarantee.

Probabilistic Algorithm

- Pick 2 numbers and choose the greater.
- This will be in the upper half with probability \(3/4\).
- Not good enough? Pick more numbers!
- For \(k\) numbers, greatest is in upper half with probability \(1 - 2^{-k}\).
- Monte Carlo Algorithm: Good running time, result not guaranteed.
- Las Vegas Algorithm: Result guaranteed, but not the running time.
Searching Linked Lists

Assume the list is sorted, but is stored in a linked list.

Can we use binary search?
 • Comparisons?
 • “Work?”

What if we add additional pointers?

“Perfect” Skip List

Building a Skip List

Pick the node size at random (from a suitable probability distribution).

Skip List Analysis (1)

What distribution do we want for the node depths?

Exponential decay. 1 link half of the time, 2 links one quarter, 3 links one eighth, and so on.

Exponential decay. 1 link half of the time, 2 links one quarter, 3 links one eighth, and so on.

```
int randomLevel(void) {
  // Exponential distribution
  for (int level=0; Random(2) == 0; level++);
  return level;
}
```

What is the worst cost to search in the “perfect” Skip List?

What is the average cost to search in the “perfect” Skip List?

What is the cost to insert?

What is the average cost in the “typical” Skip List?

```
Exponential decay. 1 link half of the time, 2 links one quarter, 3 links one eighth, and so on.
```

```
int randomLevel(void) {
  // Exponential distribution
  for (int level=0; Random(2) == 0; level++);
  return level;
}
```

```
Exponential decay. 1 link half of the time, 2 links one quarter, 3 links one eighth, and so on.
log n.
Close to log n.
log n.
```

```
Exponential decay. 1 link half of the time, 2 links one quarter, 3 links one eighth, and so on.
log n.
Close to log n.
log n.
```
Skip List Analysis (2)

How does this differ from a BST?
- Simpler or more complex?
- More or less efficient?
- Which relies on data distribution, which on basic laws of probability?

Probabilistic Quicksort

Quicksort runs into trouble on highly structured input.

Solution: Randomize input order.
- Chance of worst case is then $2/n!$.

Random Number Generators

- Most computers systems use a deterministic algorithm to select pseudorandom numbers.
- Linear congruential method:
 - Pick a seed $r(1)$. Then,
 $$r(i) = (r(i-1) \times b) \mod t.$$
 - Must pick good values for b and t.
 - Resulting numbers must be in the range:
 - What happens if $r(i) = r(j)$?

Random Number Generators (cont)

Some examples:
- $r(i) = 6(i - 1) \mod 13 = \ldots 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1 \ldots$
- $r(i) = 7(i - 1) \mod 13 = \ldots 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2 \ldots$
- $r(i) = 5(i - 1) \mod 13 = \ldots 1, 5, 12, 8, 1 \ldots$
- $r(i) = 2(i - 1) \mod 13 = \ldots 2, 10, 11, 3, 2 \ldots$
- $r(i) = 4(i - 1) \mod 13 = \ldots 4, 7, 9, 6, 4 \ldots$
- $r(i) = 0 \ldots$

The last one depends on the start value of the seed.
Suggested generator: $r(i) = 16807(i - 1) \mod 2^{31} - 1$.
Graph Algorithms

Graphs are useful for representing a variety of concepts:
- Data Structures
- Relationships
- Families
- Communication Networks
- Road Maps

A Tree Proof

- **Definition:** A free tree is a connected, undirected graph that has no cycles.
- **Theorem:** If \(T \) is a free tree having \(n \) vertices, then \(T \) has exactly \(n - 1 \) edges.
- **Proof:** By induction on \(n \).
 - **Base Case:** \(n = 1 \). \(T \) consists of 1 vertex and 0 edges.
 - **Inductive Hypothesis:** The theorem is true for a tree having \(n - 1 \) vertices.
 - **Inductive Step:**
 - If \(T \) has \(n \) vertices, then \(T \) contains a vertex of degree 1.
 - Remove that vertex and its incident edge to obtain \(T' \), a free tree with \(n - 1 \) vertices.
 - By IH, \(T' \) has \(n - 2 \) edges.
 - Thus, \(T \) has \(n - 1 \) edges.

Graph Traversals

Various problems require a way to traverse a graph – that is, visit each vertex and edge in a systematic way.

Three common traversals:
- Eulerian tours
 - Traverse each edge exactly once
- Depth-first search
 - Keeps vertices on a stack
- Breadth-first search
 - Keeps vertices on a queue

Eulerian Tours

A circuit that contains every edge exactly once.

Example:

```
  a  f  c  d  e
  b  
  g  
```

Tour: b a f c d e.

Example:

```
  a  f  c  d  g
  b  
```

No Eulerian tour. How can you tell for sure?
Eulerian Tour Proof

- **Theorem**: A connected, undirected graph with \(m \) edges that has no vertices of odd degree has an Eulerian tour.
- **Proof**: By induction on \(m \).
- **Base Case**:
- **Inductive Hypothesis**:
- **Inductive Step**:
 - Start with an arbitrary vertex and follow a path until you return to the vertex.
 - Remove this circuit. What remains are connected components \(G_1, G_2, ..., G_\ell \) each with nodes of even degree and \(< m \) edges.
 - By IH, each connected component has an Eulerian tour.
 - Combine the tours to get a tour of the entire graph.

Depth First Search

```java
void DFS(Graph G, int v) { // Depth first search
    PreVisit(G, v); // Take appropriate action
    G.setMark(v, VISITED);
    for (Edge w = each neighbor of v)
        if (G.getMark(G.v2(w)) == UNVISITED)
            DFS(G, G.v2(w));
    PostVisit(G, v); // Take appropriate action
}
```

Initial call: \(\text{DFS}(G, r) \) where \(r \) is the root of the DFS.

Cost: \(\Theta(|V| + |E|) \).

Depth First Search Example

(a) (b)

DFS Tree

If we number the vertices in the order that they are marked, we get **DFS numbers**.

Lemma 7.2: Every edge \(e \in E \) is either in the DFS tree \(T \), or connects two vertices of \(G \), one of which is an ancestor of the other in \(T \).

Proof: Consider the first time an edge \((v, w) \) is examined, with \(v \) the current vertex.
- If \(w \) is unmarked, then \((v, w) \) is in \(T \).
- If \(w \) is marked, then \(w \) has a smaller DFS number than \(v \) AND \((v, w) \) is an unexamined edge of \(w \).
- Thus, \(w \) is still on the stack. That is, \(w \) is on a path from \(v \).

Results: No “cross edges.” That is, no edges connecting vertices sideways in the tree.
DFS for Directed Graphs

- Main problem: A connected graph may not give a single DFS tree.
- Forward edges: (1, 3)
- Back edges: (5, 1)
- Cross edges: (6, 1), (8, 7), (9, 5), (9, 8), (4, 2)
- Solution: Maintain a list of unmarked vertices.

Directed Cycles

Lemma 7.4: Let \(G \) be a directed graph. \(G \) has a directed cycle if every DFS of \(G \) produces a back edge.

Proof:
- Suppose a DFS produces a back edge \((v, w)\).
 - \(v \) and \(w \) are in the same DFS tree, \(w \) an ancestor of \(v \).
 - \((v, w)\) and the path in the tree from \(w \) to \(v \) form a directed cycle.
- Suppose \(G \) has a directed cycle \(C \).
 - Do a DFS on \(G \).
 - Let \(w \) be the vertex of \(C \) with smallest DFS number.
 - Let \((v, w)\) be the edge of \(C \) coming into \(w \).
 - \(v \) is a descendant of \(w \) in a DFS tree.
 - Therefore, \((v, w)\) is a back edge.

Breadth First Search

- Like DFS, but replace stack with a queue.
- Visit vertex's neighbors before going deeper in tree.

Breadth First Search Algorithm

```c
void BFS(Graph G, int start) {
    Queue Q(G.n());
    Q.enqueue(start);
    G.setMark(start, VISITED);
    while (!Q.isEmpty()) {
        int v = Q.dequeue(); // Take appropriate action
        PreVisit(G, v); // Take appropriate action
        for (Edge w = each neighbor of v) {
            if (G.getMark(G.v2(w)) == UNVISITED) {
                G.setMark(G.v2(w), VISITED);
                Q.enqueue(G.v2(w));
            }
        }
        PostVisit(G, v); // Take appropriate action
    }
}
```
Breadth First Search Example

Non-tree edges connect vertices at levels differing by 0 or 1.

Topological Sort

Problem: Given a set of jobs, courses, etc. with prerequisite constraints, output the jobs in an order that does not violate any of the prerequisites.

Topological Sort Algorithm

```c
void topsort(Graph G) { // Top sort: recursive
    for (int i=0; i<G.n(); i++) // Initialize Mark
        G.setMark(i, UNVISITED);
    for (i=0; i<G.n(); i++) // Process vertices
        if (G.getMark(i) == UNVISITED)
            tophelp(G, i); // Call helper
}

void tophelp(Graph G, int v) { // Helper function
    G.setMark(v, VISITED);
    for (Edge w = each neighbor of v)
        if (G.getMark(G.v2(w)) == UNVISITED)
            tophelp(G, G.v2(w));
    printout(v); // PostVisit for Vertex v
}
```

Queue-based Topological Sort

```c
void topsort(Graph G) { // Top sort: Queue
    Queue Q(G.n()); int Count[G.n()];
    for (int v=0; v<G.n(); v++) Count[v] = 0;
    for (v=0; v<G.n(); v++) // Process every edge
        for (Edge w = each neighbor of v)
            Count[G.v2(w)]++; // Add to v2’s count
    for (v=0; v<G.n(); v++) // Initialize Queue
        if (Count[v] == 0) Q.enqueue(v);
    while (!Q.isEmpty()) { // Process the vertices
        v = Q.dequeue(); // PreVisit for v
        for (Edge w = each neighbor of v)
            if (Count[G.v2(w)]==0) Q.enqueue(G.v2(w));
    }
```
Shortest Paths Problems

Input: A graph with **weights** or **costs** associated with each edge.

Output: The list of edges forming the shortest path.

Sample problems:
- Find the shortest path between two specified vertices.
- Find the shortest path from vertex \(S \) to all other vertices.
- Find the shortest path between all pairs of vertices.

Our algorithms will actually calculate only **distances**.

Shortest Paths Definitions

\(d(A, B) \) is the **shortest distance** from vertex \(A \) to \(B \).

\(w(A, B) \) is the **weight** of the edge connecting \(A \) to \(B \).
- If there is no such edge, then \(w(A, B) = \infty \).

Single Source Shortest Paths

Given start vertex \(s \), find the shortest path from \(s \) to all other vertices.

Try 1: Visit all vertices in some order, compute shortest paths for all vertices seen so far, then add the shortest path to next vertex \(x \).

Problem: Shortest path to a vertex already processed might go through \(x \).
Solution: Process vertices in order of distance from \(s \).

Dijkstra's Algorithm Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>Process A</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>20</td>
<td>(\infty)</td>
</tr>
<tr>
<td>Process C</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>Process B</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>Process D</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>Process E</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>18</td>
</tr>
</tbody>
</table>

\[\text{Dijkstra's Algorithm Example} \]
Dijkstra's Algorithm: Array (1)

```cpp
void Dijkstra(Graph G, int s) { // Use array
    int D[G.n()];
    for (int i=0; i<G.n(); i++) // Initialize
        D[i] = INFINITY;
    D[s] = 0;
    for (i=0; i<G.n(); i++) { // Process vertices
        int v = minVertex(G, D);
        if (D[v] == INFINITY) return; // Unreachable
        G.setMark(v, VISITED);
        for (Edge w = each neighbor of v)
            if (D[G.v2(w)] > (D[v] + G.weight(w)) )
                D[G.v2(w)] = D[v] + G.weight(w);
    }
}
```

Dijkstra's Algorithm: Array (2)

```cpp
// Get mincost vertex
int minVertex(Graph G, int* D) {
    int v; // Initialize v to an unvisited vertex;
    for (int i=0; i<G.n(); i++)
        if (G.getMark(i) == UNVISITED)
            v = i; break;
    for (i++; i<G.n(); i++) // Find smallest D val
        if ((G.getMark(i)==UNVISITED) && (D[i]<D[v]))
            v = i;
    return v;
}
```

Approach 1: Scan the table on each pass for closest vertex.
Total cost: $\Theta(V^2 + |E|) = \Theta(V^2)$.

Dijkstra's Algorithm: Priority Queue (1)

```cpp
class Elem { public: int vertex, dist; };
int key(Elem x) { return x.dist; }
void Dijkstra(Graph G, int s) { // priority queue
    int v; Elem temp;
    int D[G.n()]; Elem E[G.e()];
    temp.dist = 0; temp.vertex = s; E[0] = temp;
    heap H(E, 1, G.e()); // Create the heap
    for (int i=0; i<G.n(); i++) D[i] = INFINITY;
    D[s] = 0;
    for (i=0; i<G.n(); i++) { // Get distances
        do { temp = H.removemin(); v = temp.vertex; } while (G.getMark(v) == VISITED);
        G.setMark(v, VISITED);
        if (D[v] == INFINITY) return; // Unreachable
        for (Edge w = each neighbor of v)
            if (D[G.v2(w)] > (D[v] + G.weight(w))) {
                D[G.v2(w)] = D[v] + G.weight(w);
                temp.dist = D[G.v2(w)];
                temp.vertex = G.v2(w);
                H.insert(temp); // Insert new distance
            }
    }
}
```

Approach 2: Store unprocessed vertices using a min-heap to implement a priority queue ordered by D value. Must update priority queue for each edge.
Total cost: $\Theta((|V| + |E|)\log |V|)$.
All Pairs Shortest Paths

- For every vertex \(u, v \in V \), calculate \(d(u, v) \).
- Could run Dijkstra’s Algorithm \(|V|\) times.
- Better is Floyd’s Algorithm.
- Define a \(k \)-path from \(u \) to \(v \) to be any path whose intermediate vertices all have indices less than \(k \).

Floyd’s Algorithm

```c
void Floyd(Graph G) { // All-pairs shortest paths
int D[G.n()][G.n()]; // Store distances
for (int i=0; i<G.n(); i++) // Initialize D
    for (int j=0; j<G.n(); j++)
        D[i][j] = G.weight(i, j);
for (int k=0; k<G.n(); k++) // Compute k paths
    for (int i=0; i<G.n(); i++)
        for (int j=0; j<G.n(); j++)
            if (D[i][j] > (D[i][k] + D[k][j]))
                D[i][j] = D[i][k] + D[k][j];
}
```

Minimum Cost Spanning Trees

Minimum Cost Spanning Tree (MST) Problem:
- Input: An undirected, connected graph \(G \).
- Output: The subgraph of \(G \) that
 - has minimum total cost as measured by summing the values for all of the edges in the subset, and
 - keeps the vertices connected.

Key Theorem for MST

Let \(V_1, V_2 \) be an arbitrary, non-trivial partition of \(V \). Let \((v_1, v_2) \), \(v_1 \in V_1, v_2 \in V_2 \), be the cheapest edge between \(V_1 \) and \(V_2 \). Then \((v_1, v_2) \) is in some MST of \(G \).

Proof:
- Let \(T \) be an arbitrary MST of \(G \).
- If \((v_1, v_2) \) is in \(T \), then we are done.
- Otherwise, adding \((v_1, v_2) \) to \(T \) creates a cycle \(C \).
- At least one edge \((u_1, u_2) \) of \(C \) other than \((v_1, v_2) \) must be between \(V_1 \) and \(V_2 \).
- \(c(u_1, u_2) \geq c(v_1, v_2) \).
- Let \(T' = T \cup ((v_1, v_2)) - ((u_1, u_2)) \).
- Then, \(T' \) is a spanning tree of \(G \) and \(c(T') \leq c(T) \).
- But \(c(T) \) is minimum cost. Therefore, \(c(T') = c(T) \) and \(T' \) is a MST containing \((v_1, v_2) \).

There can only be multiple MSTs when there are edges with equal cost.
Prim’s MST Algorithm (1)

```c
void Prim(Graph G, int s) { // Prim’s MST alg
    int D[G.n()]; int V[G.n()]; // Distances
    for (int i=0; i<G.n(); i++) // Initialize
        D[i] = INFINITY;
    D[s] = 0;
    for (i=0; i<G.n(); i++) { // Process vertices
        int v = minVertex(G, D);
        G.setMark(v, VISITED);
        if (v != s) AddEdgetoMST(V[v], v);
        if (D[v] == INFINITY) return; //v unreachable
        for (Edge w = each neighbor of v)
            if (D[G.v2(w)] > G.weight(w)) {
                D[G.v2(w)] = G.weight(w); // Update dist
                V[G.v2(w)] = v; // who came from
            }
    }
}
```

This is an example of a greedy algorithm.

Prim’s MST Algorithm (2)

```c
int minVertex(Graph G, int* D) {
    int v; // Initialize v to any unvisited vertex
    for (int i=0; i<G.n(); i++)
        if (G.getMark(i) == UNVISITED)
            { v = i; break; }
    for (i=0; i<G.n(); i++) // Find smallest value
        if ((G.getMark(i) == UNVISITED) && (D[i] < D[v]))
            { v = i;
                return v;
            }
}
```

Alternative Prim's Implementation (1)

```c
void Prim(Graph G, int s) {
    int v; // The current vertex
    int D[G.n()]; // Distance array
    int V[G.n()]; // Who's closest
    Elem temp;
    Elem E[G.e()]; // Heap array
    temp.distance = 0; temp.vertex = s;
    E[0] = temp; // Initialize heap array
    heap H(E, 1, G.e()); // Create the heap
    for (int i=0; i<G.n(); i++) D[i] = INFINITY;
    D[s] = 0;
```
Alternative Prim’s Implementation (2)

```c
for (i=0; i<G.n(); i++) { // Now build MST
do { temp = H.removemin(); v = temp.vertex; } while (G.getMark(v) == VISITED);
g.setMark(v, VISITED);
if (v != s) AddEdgetoMST(V[v], v);
if (D[v] == INFINITY) return; // Unreachable
for (Edge w = each neighbor of v)
if (D[G.v2(w)] > G.weight(w)) { // Update D
  D[G.v2(w)] = G.weight(w);
  V[G.v2(w)] = v; // Who came from
temp.distance = D[G.v2(w)];
temp.vertex = G.v2(w);
  H.insert(temp); // Insert dist in heap
}
}
```

Kruskal’s MST Algorithm (1)

Kruskel(Graph G) { // Kruskal’s MST algorithm
 Gentree A(G.n()); // Equivalence class array
 Elem E[G.e()]; // Array of edges for min-heap
 int edgecnt = 0;
 for (int i=0; i<G.n(); i++) // Put edges into E
 for (Edge w = G.first(i); G.isEdge(w); w = G.next(w)) {
 E[edgecnt].weight = G.weight(w);
 E[edgecnt++].edge = w;
 }
 heap H(E, edgecnt, edgecnt); // Heapify edges
 int numMST = G.n(); // Init w/ n equiv classes
}

Kruskal’s MST Algorithm (2)

```c
for (i=0; numMST>1; i++) { // Combine
  Elem temp = H.removemin(); // Next cheap edge
  int v = G.v1(temp); int u = G.v2(temp);
  if (A.differ(v, u)) { // If different
    A.UNION(v, u); // Combine
    AddEdgetoMST(G.v1(temp), G.v2(temp)); // Add
    numMST--;
    // Now one less MST
  }
}
```

Cost is dominated by the edge sort.
Alternative: Use a min heap, quit when only one set left.
“Kth-smallest” implementation.
Matching

- Suppose there are n workers that we want to work in teams of two. Only certain pairs of workers are willing to work together.
- **Problem**: Form as many compatible non-overlapping teams as possible.
- Model using G, an undirected graph.
 - Join vertices if the workers will work together.
- A **matching** is a set of edges in G with no vertex in more than one edge (the edges are independent).
- A **maximal matching** has no free pairs of vertices that can extend the matching.
- A **maximum matching** has the greatest possible number of edges.
- A **perfect matching** includes every vertex.

Very Dense Graphs (1)

Theorem: Let $G = (V, E)$ be an undirected graph with $|V| = 2n$ and every vertex having degree $\geq n$. Then G contains a perfect matching.

Proof: Suppose that G does not contain a perfect matching.
- Let $M \subseteq E$ be a max matching. $|M| < n$.
- There must be two unmatched vertices v_1, v_2 that are not adjacent.
- Every vertex adjacent to v_1 or to v_2 is matched.
- Let $M' \subseteq M$ be the set of edges involved in matching the neighbors of v_1 and v_2.
- There are $\geq 2n$ edges from v_1 and v_2 to vertices covered by M', but $|M'| < n$.

Very Dense Graphs (2)

Proof: (continued)
- Thus, some edge of M' is adjacent to 3 edges from v_1 and v_2.
- Let (u_1, u_2) be such an edge.
- Replacing (u_1, u_2) with (v_1, u_2) and (v_2, u_1) results in a larger matching.
- Theorem proven by contradiction.

Generalizing the Insight

- v_1, u_2, u_1, v_2 is a path from an unmatched vertex to an unmatched vertex such that alternate edges are unmatched and matched.
- In one step, switch unmatched and matched edges.
- Let $G = (V, E)$ be an undirected graph and $M \subseteq E$ a matching.
- An **alternating path** P goes from v to u, consists of alternately matched and unmatched edges, and both v and u are not in the match.
- An **alternating path** P goes from v to u, consists of alternately matched and unmatched edges, and both v and u are not in the match.
Matching Example

The Alternating Path Theorem (1)

Theorem: A matching is maximum if and only if it has no alternating paths.

Proof:
- Clearly, if a matching has alternating paths, then it is not maximum.
- Suppose M is a non-maximum matching.
- Let M' be any maximum matching. Then, $|M'| > |M|$.
- Let $M \oplus M'$ be the symmetric difference of M and M'.
 \[M \oplus M' = M \cup M' - (M \cap M') \]
- $G' = (V, M \oplus M')$ is a subgraph of G having maximum degree ≤ 2.

The Alternating Path Theorem (2)

Proof: (continued)
- Therefore, the connected components of G' are either even-length cycles or a path with alternating edges.
- Since $|M'| > |M|$, there must be a component of G' that is an alternating path having more M' edges than M edges.

Bipartite Matching

- A **bipartite graph** $G = (U, V, E)$ consists of two disjoint sets of vertices U and V together with edges E such that every edge has an endpoint in U and an endpoint in V.
- Bipartite matching naturally models a number of assignment problems, such as assignment of workers to jobs.
- Alternating paths will work to find a maximum bipartite matching. An alternating path always has one end in U and the other in V.
- If we direct unmatched edges from U to V and matched edges from V to U, then a directed path from an unmatched vertex in U to an unmatched vertex in V is an alternating path.
Bipartite Matching Example

2, 8, 5, 10 is an alternating path.

1, 6, 3, 7, 4, 9 and 2, 8, 5, 10 are disjoint alternating paths that we can augment independently.

Algorithm for Maximum Bipartite Matching

Construct BFS subgraph from the set of unmatched vertices in \(U \) until a level with unmatched vertices in \(V \) is found.

Greedily select a maximal set of disjoint alternating paths.

Augment along each path independently.

Repeat until no alternating paths remain.

Time complexity \(O((|V| + |E|)\sqrt{|V|}) \).

Network Flows

Models distribution of utilities in networks such as oil pipelines, water systems, etc. Also, highway traffic flow.

Simplest version:

A network is a directed graph \(G = (V, E) \) having a distinguished source vertex \(s \) and a distinguished sink vertex \(t \). Every edge \((u, v)\) of \(G \) has a capacity \(c(u, v) \geq 0 \). If \((u, v) \not\in E\), then \(c(u, v) = 0 \).
Network Flow Definitions

A flow in a network is a function \(f : V \times V \to R \) with the following properties.

(i) **Skew Symmetry:**
\[
\forall v, w \in V, \quad f(v, w) = -f(w, v).
\]

(ii) **Capacity Constraint:**
\[
\forall v, w \in V, \quad f(v, w) \leq c(v, w).
\]
If \(f(v, w) = c(v, w) \) then \((v, w)\) is saturated.

(iii) **Flow Conservation:**
\[
\forall v \in V - \{s, t\}, \quad \sum_{w \in V} f(v, w) = 0.
\]
Equivalently,
\[
\forall v \in V - \{s, t\}, \quad \sum_{u \in V} f(u, v) = \sum_{w \in V} f(v, w).
\]
In other words, flow into \(v \) equals flow out of \(v \).

Flow Example

Edges are labeled “capacity, flow”.
Can omit edges w/o capacity and non-negative flow.
The value of a flow is
\[
|f| = \sum_{w \in V} f(s, w) = \sum_{w \in V} f(w, t).
\]

Max Flow Problem

Problem: Find a flow of maximum value.

Cut \((X, X')\) is a partition of \(V \) such that \(s \in X, t \in X'\).

The capacity of a cut is
\[
c(X, X') = \sum_{v \in X, w \in X'} c(v, w).
\]

A **min cut** is a cut of minimum capacity.

Cut Flows

For any flow \(f \), the flow across a cut is:
\[
f(X, X') = \sum_{v \in X, w \in X'} f(v, w).
\]

Lemma: For all flows \(f \) and all cuts \((X, X')\), \(f(X, X') = |f| \).
- Clearly, the flow out of \(s \) = \(|f| \) = the flow into \(t \).
- It can be proved that the flow across every other cut is also \(|f| \).

Corollary: The value of any flow is less than or equal to the capacity of a min cut.
Residual Graph

Given any flow \(f \), the **residual capacity** of the edge is

\[
\text{res}(v, w) = c(v, w) - f(v, w) \geq 0.
\]

Residual graph is a network \(R = (V, E_R) \) where \(E_R \) contains edges of non-zero residual capacity.

Any flow in \(G \) can be added to \(F \) to obtain a larger flow in \(G \).

In fact, a max flow \(f \) in \(R \) plus the flow \(f \) (written \(f + f' \)) is a max flow in \(G \).

Any path from \(s \) to \(t \) in \(R \) can carry a flow equal to the smallest capacity of any edge on it.

- Such a path is called an **augmenting path**.
- For example, the path \(s, 1, 2, t \) can carry a flow of 2 units = \(c(1, 2) \).

Max-flow Min-cut Theorem

The following are equivalent:

(i) \(f \) is a max flow.
(ii) \(f \) has no augmenting path in \(R \).
(iii) \(|f| = c(X, X') \) for some min cut \((X, X')\).

Proof:

(i) \(\Rightarrow\) (ii):

- If \(f \) has an augmenting path, then \(f \) is not a max flow.

Max-flow Min-cut Theorem (2)

(ii) \(\Rightarrow\) (iii):

- Suppose \(f \) has no augmenting path in \(R \).
- Let \(X \) be the subset of \(V \) reachable from \(s \) and \(X' = V - X \).
- Then \(s \in X \), \(t \in X' \), so \((X, X')\) is a cut.
- \(\forall v \in X, w \in X' \), \(\text{res}(v, w) = c(v, w) - f(v, w) = 0 \).
- \(f(X, X') = \sum_{v \in X, w \in X'} f(v, w) = \sum_{v \in X, w \in X'} c(v, w) = c(X, X') \).
- By Lemma, \(|f| = c(X, X') \) and \((X, X')\) is a min cut.

\(R \) is the network after \(f \) has been subtracted. Saturated edges do not appear. Some edges have larger capacity than in \(G \).
Max-flow Min-cut Theorem (3)

(iii) ⇒ (i)
- Let f be a flow such that $|f| = c(X, X')$ for some (min) cut (X, X').
- By Lemma, all flows f' satisfy $|f'| \leq c(X, X') = |f|$.

Thus, f is a max flow.

Max-flow Min-cut Corollary

Corollary: The value of a max flow equals the capacity of a min cut.
This suggests a strategy for finding a max flow.

$R = G; f = 0$;
repeat
 find a path from s to t in R;
 augment along path to get a larger flow f;
 update R for new flow;
until R has no path s to t.

This is the Ford-Fulkerson algorithm.

If capacities are all rational, then it always terminates with f equal to max flow.

Edmonds-Karp Algorithm

For integral capacities.

Select an augmenting path in R with minimum number of edges.

Performance: $O(|V|^3)$.

There are numerous other approaches to finding augmenting paths, giving a variety of different algorithms.

Network flow remains an active research area.

Geometric Algorithms

Potentially large set of objects to manipulate.
- Possibly millions of points, lines, squares, circles.
- Efficiency is crucial.

Computational Geometry
- Will concentrate on discrete algorithms – 2D

Practical considerations
- Special cases
- Numeric stability

Same principles often apply to 3D, but it may be more complicated.
We will avoid continuous problems such as polygon intersection.

Special cases: Geometric programming is much like other programming in this sense. But there are a LOT of special cases! Co-point, co-linear, co-planar, horizontal, vertical, etc.

Numeric stability: Each intersection point in a cascade of intersections might require increasing precision to represent the computed intersection, even when the point coordinates start as integers. Floating point causes problems!
Definitions

- A **point** is represented by a pair of coordinates \((x, y)\).
- A **line** is represented by distinct points \(p\) and \(q\).
 - Manber’s notation: \(-p \rightarrow q-\).
- A **line segment** is also represented by a pair of distinct points: the endpoints.
 - Notation: \(p \rightarrow q\).
- A **path** \(P\) is a sequence of points \(p_1, p_2, \ldots, p_n\) and the line segments \(p_1 \rightarrow p_2, p_2 \rightarrow p_3, \ldots, p_{n-1} \rightarrow p_n\) connecting them.
- A **closed path** has \(p_1 = p_n\). This is also called a **polygon**.
 - Points \(\equiv\) vertices.
 - A polygon is a **sequence** of points, not a **set**.

Definitions (cont)

- **Simple Polygon**: The corresponding path does not intersect itself.
 - A simple polygon encloses a region of the plane INSIDE the polygon.
- Basic operations, assumed to be computed in constant time:
 - Determine intersection point of two line segments.
 - Determine which side of a line that a point lies on.
 - Determine the distance between two points.

Point in Polygon

Problem: Given a simple polygon \(P\) and a point \(q\), determine whether \(q\) is inside or outside \(P\).

Basic approach:
- Cast a ray from \(q\) to outside \(P\). Call this \(L\).
- Count the number of intersections between \(L\) and the edges of \(P\).
- If count is even, then \(q\) is outside. Else, \(q\) is inside.

Problems:
- How to find intersections?
- Accuracy of calculations.
- Special cases.

Point in Polygon Analysis (1)

Time complexity:
- Compare the ray to each edge.
- Each intersection takes constant time.
- Running time is \(O(n)\).

Improving efficiency:
- \(O(n)\) is best possible for problem as stated.
- Many lines are “obviously” not intersected.
Point in Polygon Analysis (2)

Two general principles for geometrical and graphical algorithms:

- Operational (constant time) improvements:
 - Only do full calculation for ‘good’ candidates
 - Perform ‘fast checks’ to eliminate edges.
 - Ex: If \(p_i, y > q, y \) and \(p_j, y > q, y \) then don’t bother to do full intersection calculation.
- When doing many point-in-polygon operations, preprocessing may be worthwhile.
 - Ex: Sort edges by min and max \(y \) values.
 - Only check for edges covering \(y \) value of point \(q \).

Constructing Simple Polygons

Problem: Given a set of points, connect them with a simple closed path.

Approaches:

- Randomly select points.
- Use a scan line:
 - Sort points by \(y \) value.
 - Connect in sorted order.
- Sort points, but instead of by \(y \) value, sort by angle with respect to the vertical line passing through some point.
 - Simplifying assumption: The scan line hits one point at a time.
 - Do a rotating scan through points, connecting as you go.

Validation

Theorem: Connecting points in the order in which they are encountered by the rotating scan line creates a simple polygon.

Proof:

- Denote the points \(p_1, \ldots, p_n \) by the order in which they are encountered by the scan line.
- For all \(i, 1 \leq i < n \), edge \(p_i - p_{i+1} \) is in a distinct slice of the circle formed by a rotation of the scan line.
- Thus, edge \(p_i - p_{i+1} \) does not intersect any other edge.
- Exception: If the angle between points \(p_i \) and \(p_{i+1} \) is greater than 180°.

Implementation

How do we find the point for the scanline center?

Actually, we don’t care about angle – slope will do.

Select \(z \):

- for \(i = 2 \) to \(n \) compute the slope of line \(z - p_i \).
- Sort points \(p_i \) by slope;
- label points in sorted order;

Time complexity: Dominated by sort.

Spatial data structures can help.

“Fast checks” take time. When they “win” (they rule something out), they save time. When they “lose” (they fail to rule something out) they add extra time. So they have to “win” often enough so that the time savings outweighs the cost of the check.
Convex Hull

- A **convex hull** is a polygon such that any line segment connecting two points inside the polygon is itself entirely inside the polygon.
- A **convex path** is a path of points p_1, p_2, \ldots, p_n such that connecting p_1 and p_n results in a convex polygon.
- The convex hull for a set of points is the smallest convex polygon enclosing all the points.
 - imagine placing a tight rubberband around the points.
- The point belongs to the hull if it is a vertex of the hull.
- **Problem**: Compute the convex hull of n points.

Simple Convex Hull Algorithm

IH: Assume that we can compute the convex hull for fewer points, and try to add the nth point.

1. nth point is inside the hull.
 - No change.
2. nth point is outside the convex hull
 - "Stretch" hull to include the point (dropping other points).

Subproblems (1)

Potential problems as we process points:
- Determine if point is inside convex hull.
- Stretch a hull.

The straightforward induction approach is inefficient. (Why?)

Our standard induction alternative: Select a special point for the nth point – some sort of min or max point.

If we always pick the point with max x, what problem is eliminated?

Stretch:
- Find vertices to eliminate
- Add new vertex between existing vertices.

Subproblems (2)

Supporting line of a convex polygon is a line intersecting the polygon at exactly one vertex.

Only two supporting lines between convex hull and max point q.

These supporting lines intersect at "min" and "max" points on the (current) convex hull.

Why? Lots of points don’t affect the hull, and stretching is expensive.

Subproblem 1 can be eliminated: the max is always outside the polygon.

"Min" and "max" with respect to the angle formed by the supporting lines.
Sorted-Order Algorithm

set convex hull to be \(p_1, p_2, p_3 \);
for \(q = 4 \) to \(n \) {
order points on hull with respect to \(p_n \);
Select the min and max values from ordering;
delete all points between min and max;
insert \(p_n \) between min and max;
}

Time complexity

Sort by \(x \) value: \(O(n \log n) \).

For \(q \)th point:
- Compute angles: \(O(q) \)
- Find max and min: \(O(q) \)
- Delete and insert points: \(O(q) \).

\[T(n) = T(n - 1) + O(n) = O(n^2) \]

Gift Wrapping Concept

- Straightforward algorithm has inefficiencies.
- Alternative: Consider the whole set and build hull directly.
- Approach:
 - Find an extreme point as start point.
 - Find a supporting line.
 - Use the vertex on the supporting line as the next start point and continue around the polygon.
- Corresponding Induction Hypothesis:
 - Given a set of \(n \) points, we can find a convex path of length \(k < n \) that is part of the convex hull.
- The induction step extends the PATH, not the hull.

Gift Wrapping Algorithm

ALGORITHM GiftWrapping(Pointset \(S \)) {
 ConvexHull \(P \);
 \(P = \emptyset \);
 Point \(p = \) the point in \(S \) with largest \(x \) coordinate;
 \(P = P \cup p \);
 Line \(L = \) the vertical line containing \(p \);
 while \((P \) is not complete) do {
 Point \(q = \) the point in \(S \) such that angle between line \(-p - q-\) and \(L \) is minimal along all points;
 \(P = P \cup q \);
 \(L = -p - q-\);
 \(p = q \);
 }
}
Gift Wrapping Analysis

Complexity:
- To add kth point, find the min angle among n – k lines.
- Do this h times (for h the number of points on hull).
- Often good in average case.
- Could be bad in worst case.

Graham’s Scan

Approach:
- Start with the points ordered with respect to some maximal point.
- Process these points in order, adding them to the set of processed points and its convex hull.
- Like straightforward algorithm, but pick better order.
- Use the Simple Polygon algorithm to order the points by angle with respect to the point with max x value.
- Process points in this order, maintaining the convex hull of points seen so far.

Graham’s Scan (cont)

Induction Hypothesis:
- Given a set of n points ordered according to algorithm Simple Polygon, we can find a convex path among the first n – 1 points corresponding to the convex hull of the n – 1 points.

Induction Step:
- Add the kth point to the set.
- Check the angle formed by p_k, p_{k-1}, p_{k-2}.
- If angle < 180° with respect to inside of the polygon, then delete p_{k-1} and repeat.

Graham’s Scan Algorithm

ALGORITHM GrahamsScan(Pointset P) {
 Point p_1 = the point in P with largest x coordinate;
 P = SimplePolygon(P, p_1); // Order points in P
 Point q_1 = p_1;
 Point q_2 = p_2;
 Point q_3 = p_2;
 int m = 3;
 for (k = 4 to n) {
 while (angle(-q_{m-1} - q_m, -q_m - p_k) ≤ 180°) do
 m = m - 1;
 m = m + 1;
 q_m = p_k;
 }
}
Graham’s Scan Analysis

Time complexity:
- Other than Simple Polygon, all steps take $O(n)$ time.
- Thus, total cost is $O(n \log n)$.

Lower Bound for Computing Convex Hull

Theorem: Sorting is transformable to the convex hull problem in linear time.

Proof:
- Given a number x_i, convert it to point (x_i, x_i^2) in 2D.
- All such points lie on the parabola $y = x^2$.
- The convex hull of this set of points will consist of a list of the points sorted by x.

Corollary: A convex hull algorithm faster than $O(n \log n)$ would provide a sorting algorithm faster than $O(n \log n)$.

“Black Box” Model

A Sorting Algorithm:

<table>
<thead>
<tr>
<th>keys \rightarrow points: $O(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex Hull</td>
</tr>
<tr>
<td>CH Polygon \rightarrow Sorted Keys: $O(n)$</td>
</tr>
</tbody>
</table>

Closest Pair

Problem: Given a set of n points, find the pair whose separation is the least.

- Example of a proximity problem
 - Make sure no two components in a computer chip are too close.
- Related problem:
 - Find the nearest neighbor (or k nearest neighbors) for every point.
- Straightforward solution: Check distances for all pairs.
- Induction Hypothesis: Can solve for $n - 1$ points.
- Adding the nth point still requires comparing to all other points, requiring $O(n^2)$ time.
Divide and Conquer Algorithm

- Approach: Split into two equal size sets, solve for each, and rejoin.
- How to split?
 - Want as much valid information as possible to result.
 - Try splitting into two disjoint parts separated by a dividing plane.
- Then, need only worry about points close to the dividing plane when rejoining.
- To divide: Sort by \(x\) value and split in the middle.

Closest Pair Algorithm

Induction Hypothesis:
- We can solve closest pair for two sets of size \(n/2\) named \(P_1\) and \(P_2\).

Let minimal distance in \(P_1\) be \(d_1\), and for \(P_2\) be \(d_2\).
- Assume \(d_1 \leq d_2\).

Only points in the strip of width \(d_1\) to either side of the dividing line need to be considered.

Worst case: All points are in the strip.

Closest Pair Algorithm (cont)

Observation:
- A single point can be close to only a limited number of points from the other set.

Reason: Points in the other set are at least \(d_1\) distance apart.

Sorting by \(y\) value limits the search required.

Closest Pair Algorithm Cost

- \(O(n \log n)\) to sort by \(x\) coordinates.
- Eliminate points outside strip: \(O(n)\).
- Sort according to \(y\) coordinate: \(O(n \log n)\).
- Scan points in strip, comparing against the other strip: \(O(n)\).

\[T(n) = 2T(n/2) + O(n \log n).\]

\[T(n) = O(n \log^2 n).\]
A Faster Algorithm

The bottleneck was sorting by y coordinate.

If solving the subproblem gave us a sorted set, this would be avoided.

Strengthen the induction hypothesis:
- Given a set of < n points, we know how to find the closest distance and how to output the set ordered by the points’ y coordinates.

All we need do is merge the two sorted sets – an $O(n)$ step.

$$T(n) = 2T(n/2) + O(n).$$

$$T(n) = O(n \log n).$$

Horizontal and Vertical Segments

- Intersection Problems:
 - Detect if any intersections ...
 - Report any intersections ...
 - ... of a set of <line segments>.
- We can simplify the problem by restricting to vertical and horizontal line segments.
- Example applications:
 - Determine if wires or components of a VLSI design cross.
 - Determine if they are too close.
 - Solution: Expand by 1/2 the tolerance distance and check for intersection.

Sweep Line Algorithms (1)

Problem: Given a set of n horizontal and m vertical line segments, find all intersections between them.

- Assume no intersections between 2 vertical or 2 horizontal lines.

Straightforward algorithm: Make all $n \times m$ comparisons.

If there are $n \times m$ intersections, this cannot be avoided.

However, we would like to do better when there are fewer intersections.

Solution: Special order of induction will be imposed by a **sweep line**.

Sweep Line Algorithms (2)

Plane sweep or **sweep line** algorithms pass an imaginary line through the set of objects.

As objects are encountered, they are stored in a data structure.

When the sweep passes, they are removed.

Preprocessing Step:
- Sort all line segments by x coordinate.
Sweep Line Algorithms (3)

Inductive approach:
- We have already processed the first \(k - 1 \) end points when we encounter endpoint \(k \).
- Furthermore, we store necessary information about the previous line segments to efficiently calculate intersections with the line for point \(k \).

Possible approaches:
- Store vertical lines, calculate intersection for horizontal lines.
- Store horizontal lines, calculate intersection for vertical lines.

Organizing Sweep Info

What do we need when encountering line \(L \)?
- NOT horizontal lines whose right endpoint is to the left of \(L \).
- Maintain active line segments.

What do we check for intersection?

Induction Hypothesis:
- Given a list of \(k \) sorted coordinates, we know how to report all intersections among the corresponding lines that occur to the left of \(k \cdot x \), and to eliminate horizontal lines to the left of \(k \).

Sweep Line Tasks

Things to do:
- \((k + 1)\)th endpoint is right endpoint of horizontal line.
 - Delete horizontal line.
- \((k + 1)\)th endpoint is left endpoint of horizontal line.
 - Insert horizontal line.
- \((k + 1)\)th endpoint is vertical line.
 - Find intersections with stored horizontal lines.

Data Structure Requirements (1)

To have an efficient algorithm, we need efficient
- Intersection
- Deletion
- 1 dimensional range query

Example solution: Balanced search tree
- Insert, delete, locate in \(\log n \) time.
- Each additional intersection calculation is of constant cost beyond first (traversal of tree).
Data Structure Requirements (2)

Time complexity:
- Sort by x: $O((m + n) \log(m + n))$.
- Each insert/delete: $O(\log n)$.
- Total cost is $O(n \log n)$ for horizontal lines.

Processing vertical lines includes one-dimensional range query:
- $O(\log n + r)$ where r is the number of intersections for this line.

Thus, total time is $O((m + n) \log(m + n) + R)$, where R is the total number of intersections.

Reductions

A reduction is a transformation of one problem to another

Purpose: To compare the relative difficulty of two problems

Example:
Sorting reals reduces to (in linear time) the problem of finding a convex hull in two dimensions
- Use CH as a way to solve sorting

We argued that there is a lower bound of $\Omega(n \log n)$ on finding the convex hull since there is a lower bound of $\Omega(n \log n)$ on sorting.

Reduction Notation

- We denote names of problems with all capital letters.
 - Ex: SORTING, CONVEX HULL
- What is a problem?
 - A relation consisting of ordered pairs (I, SLN).
 - I comes from the set of instances (allowed inputs).
 - SLN is the solution to the problem for instance I.
- Example: SORTING \rightarrow (I, SLN).
 - I is a finite subset of \mathcal{R}.
 - Prototypical instance: $\{x_1, x_2, \ldots, x_n\}$.
 - SLN is the sequence of reals from I in sorted order.

Black Box Reduction (1)

The job of an algorithm is to take an instance I and return a solution SLN, or to report that there is no solution.

A reduction from problem $A(I, SLN)$ to problem $B(I', SLN')$ requires two transformations (functions) T, T'.

T: $I \Rightarrow I'$
- Maps instances of the first problem to instances of the second.

T': $SLN' \Rightarrow SLN$
- Maps solutions of the second problem to solutions of the first.

NOT reduce CH to sorting – that just means that we can make CH as hard as sorting! Using sorting isn’t necessarily the only way to solve the CH problem, perhaps there is a better way. So just knowing that sorting is ONE WAY to solve CH doesn’t tell us anything about the cost of CH. On the other hand, by showing that we can use CH as a tool to solve sorting, we know that CH cannot be faster than sorting.
Black Box Reduction (2)

Black box idea:
1. Start with an instance \(I \) of problem A.
2. Transform to an instance \(I' = T(I) \), an instance of problem B.
3. Use a “black box” algorithm for B as a subroutine to find a solution \(SLN' \) for B.
4. Transform to a solution \(SLN = T'(SLN') \), a solution to the original instance \(I \) for problem A.

More Notation

If \((I, SLN)\) reduces to \((I', SLN')\), write:
\((I, SLN) \leq (I', SLN')\).

This notation suggests that \((I, SLN)\) is no harder than \((I', SLN')\).

Examples:
- SORTING \(\leq\) CONVEX HULL

The time complexity of \(T \) and \(T' \) is important to the time complexity of the black box algorithm for \((I, SLN)\).

If combined time complexity is \(O(g(n)) \), write:
\((I, SLN) \leq_{O(g(n))} (I', SLN')\).

Reduction Example

SORTING = \((I, SLN)\)
CONVEX HULL = \((I', SLN')\).

1. \(I = \{x_1, x_2, \ldots, x_n\} \).
2. \(T(I) = I' = \{(x_1, x_1^2), (x_2, x_2^2), \ldots, (x_n, x_n^2)\} \).
3. Solve CONVEX HULL for \(I' \) to give solution \(SLN' = \{(x_1, x_1^2), (x_2, x_2^2), \ldots, (x_n, x_n^2)\} \).
4. \(T' \) finds a solution to \(I \) from \(SLN' \) as follows:
 - Find \((x_{[k]}, x_{[k]}^2) \) such that \(x_{[k]} \) is minimum.
 - \(Y = x_{[k]}, x_{[k]+1}, \ldots, x_{[l]}, x_{[l]+1}, \ldots, x_{[m]} \).
5. For a reduction to be useful, \(T \) and \(T' \) must be functions that can be computed by algorithms.
Notation Warning

Example: SORTING $\leq \alpha(n)$ CONVEX HULL.

WARNING: \leq is NOT a partial order because it is NOT antisymmetric.

SORTING $\leq \alpha(n)$ CONVEX HULL.

CONVEX HULL $\leq \alpha(n)$ SORTING.

But, SORTING \neq CONVEX HULL.

Bounds Theorems

Lower Bound Theorem: If $P_1 \leq \alpha(n)$ P_2, there is a lower bound of $\Omega(h(n))$ on the time complexity of P_1, and $g(n) = o(h(n))$, then there is a lower bound of $\Omega(h(n))$ on P_2.

Example:
- SORTING $\leq \alpha(n)$ CONVEX HULL.
- $g(n) = n$. $h(n) = n \log n$. $g(n) = \alpha(h(n))$.
- Theorem gives $\Omega(n \log n)$ lower bound on CONVEX HULL.

Upper Bound Theorem: If P_1 has time complexity $O(h(n))$ and $P_1 \leq \alpha(g(n)) P_2$, then P_1 has time complexity $O(g(n) + h(n))$.

System of Distinct Representatives (SDR)

Instance: Sets S_1, S_2, \cdots, S_k.

Solution: Set $R = \{ r_1, r_2, \cdots, r_k \}$ such that $r_i \in S_i$.

Example:
Instance: $\{1\}, \{1, 2, 4\}, \{2, 3\}, \{1, 3, 4\}$.
Solution: $R = \{1, 2, 3, 4\}$.

Reduction:
- Let n be the size of an instance of SDR.
- SDR $\leq \alpha(n)$ BIPARTITE MATCHING.
- Given an instance of S_1, S_2, \cdots, S_k of SDR, transform it to an instance $G = (U, V, E)$ of BIPARTITE MATCHING.
- Let $S = U \cup V_i$. $U = \{ S_1, S_2, \cdots, S_k \}$.
- $V = S \cup E = (\{S_i, x_j\} | x_j \in S_i)$.

SDR Example

<table>
<thead>
<tr>
<th>S_i</th>
<th>x_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>1</td>
</tr>
<tr>
<td>{1, 2, 4}</td>
<td>2</td>
</tr>
<tr>
<td>{2, 3}</td>
<td>3</td>
</tr>
<tr>
<td>{1, 3, 4}</td>
<td>4</td>
</tr>
</tbody>
</table>

A solution to SDR is easily obtained from a maximum matching in G of size k.

Need better figure here.
Simple Polygon Lower Bound (1)

- **SIMPLE POLYGON**: Given a set of \(n \) points in the plane, find a simple polygon with those points as vertices.
- **SORTING \(\leq_{\Omega(n)} \) SIMPLE POLYGON.**
 - Instance of SORTING: \(\{x_1, x_2, \ldots, x_n\} \).
 - In linear time, find \(M = \max |x_i| \).
 - Let \(C \) be a circle centered at the origin, of radius \(M \).
- **Instance of SIMPLE POLYGON:**
 \[\{(x_1, \sqrt{M^2-x_1^2}), \ldots, (x_n, \sqrt{M^2-x_n^2})\} \]

 All these points fall on \(C \) in their sorted order.
 - The only simple polygon having the points on \(C \) as vertices is the convex one.

Simple Polygon Lower Bound (2)

- As with CONVEX HULL, the sorted order is easily obtained from the solution to SIMPLE POLYGON.
- By the Lower Bound Theorem, SIMPLE POLYGON is \(\Omega(n \log n) \).

Matrix Multiplication

Matrix multiplication can be reduced to a number of other problems.

In fact, certain special cases of MATRIX MULTIPLY are equivalent to MATRIX MULTIPLY in asymptotic complexity.

SYMMETRIC MATRIX MULTIPLY (SYM):

- Instance: a symmetric \(n \times n \) matrix.

MATRIX MULTIPLY \(\leq_{\Omega(n)} \) SYM.

\[
\begin{bmatrix}
0 & A \\
A^T & 0
\end{bmatrix}
\begin{bmatrix}
0 & B^T \\
B & 0
\end{bmatrix} =
\begin{bmatrix}
AB & 0 \\
0 & A^TB^T
\end{bmatrix}
\]

Matrix Squaring

Problem: Compute \(A^2 \) where \(A \) is an \(n \times n \) matrix.

MATRIX MULTIPLY \(\leq_{\Omega(n)} \) SQUARING.

\[
\begin{bmatrix}
0 & A \\
B & 0
\end{bmatrix}^2 =
\begin{bmatrix}
AB & 0 \\
0 & BA
\end{bmatrix}
\]

Need a figure here showing the curve.
Linear Programming (LP)

Maximize or minimize a linear function subject to linear constraints.
Variables: vector $X = (x_1, x_2, \ldots, x_n)$.

Objective Function: $c \cdot X = \sum c_i x_i$.
Inequality Constraints: $A_i \cdot X \leq b_i$, $1 \leq i \leq k$.
Equality Constraints: $E_i \cdot X = d_i$, $1 \leq i \leq m$.

Non-negative Constraints: $x_i \geq 0$ for some i.

Use of LP

Reasons for considering LP:
- Practical algorithms exist to solve LP.
- Many real-world optimization problems are naturally stated as LP.
- Many optimization problems are reducible to LP.

Network Flow Reduction (1)

- Reduce NETWORK FLOW to LP.
- Let x_1, x_2, \ldots, x_n be the flows through edges.
- Objective function: For $S = \text{edges out of the source}$, maximize
 \[\sum_{i \in S} x_i. \]
 Capacity constraints: $x_i \leq c_i$, $1 \leq i \leq n$.
 Flow conservation:

 For a vertex $v \in V - \{s, t\}$, let $Y(v) = \text{set of } x_i \text{ for edges leaving } v$.
 $Z(v) = \text{set of } x_i \text{ for edges entering } v$.

\[\sum_{z \in Z(v)} x_z - \sum_{y \in Y(v)} x_y = 0. \]

Network Flow Reduction (2)

Non-negative constraints: $x_i \geq 0$ $1 \leq i \leq n$.
Maximize: $x_1 + x_4$ subject to:

- $x_1 \leq 4$
- $x_2 \leq 3$
- $x_3 \leq 2$
- $x_4 \leq 5$
- $x_5 \leq 7$
- $x_1 + x_3 - x_2 = 0$
- $x_4 - x_5 - x_3 = 0$
- $x_1, \ldots, x_5 \geq 0$

Example of a “super problem” that many problems can reduce to.
Objective function defines what we want to minimize.
A_i is a vector – k vectors give the k b’s.
Not all of the constraint types are used for every problem.
Matching

- Start with graph $G = (V, E)$.
- Let x_1, x_2, \cdots, x_n represent the edges in E.
 - $x_i = 1$ means edge i is matched.
- Objective function: Maximize $\sum_{i=1}^{n} x_i$.
- subject to: (Let $N(v)$ denote edges incident on v)
 $\sum_{v \in V} N(v) x_i \leq 1$
 $x_i \geq 0 \quad 1 \leq i \leq n$
- Integer constraints: Each x_i must be an integer.
- Integer constraints makes this INTEGER LINEAR PROGRAMMING (ILP).

Summary

NETWORK FLOW $\leq \mathcal{O}(n)$ LP.
MATCHING $\leq \mathcal{O}(n)$ ILP.

Summary of Reduction

Importance:
- Compare difficulty of problems.
- Prove new lower bounds.
- Black box algorithms for "new" problems in terms of (already solved) "old" problems.
- Provide insights.

Warning:
- A reduction does not provide an algorithm to solve a problem – only a transformation.
- Therefore, when you look for a reduction, you are not trying to solve either problem.

Another Warning

The notation $P_1 \leq P_2$ is meant to be suggestive.
Think of P_1 as the easier, P_2 as the harder problem.
Always transform from instance of P_1 to instance of P_2.

Common mistake: Doing the reduction backwards (from P_2 to P_1).
DON'T DO THAT!
Common Problems used in Reductions

NETWORK FLOW
MATCHING
SORTING
LP
ILP
MATRIX MULTIPLICATION
SHORTEST PATHS

Tractable Problems

We would like some convention for distinguishing tractable from intractable problems.
A problem is said to be **tractable** if an algorithm exists to solve it with polynomial time complexity: $O(p(n))$.
- It is said to be **intractable** if the best known algorithm requires exponential time.

Examples:
- Sorting: $O(n^2)$
- Convex Hull: $O(n^2)$
- Single source shortest path: $O(n^2)$
- All pairs shortest path: $O(n^3)$
- Matrix multiplication: $O(n^3)$

Tractable Problems (cont)

The technique we will use to classify one group of algorithms is based on two concepts:
- A special kind of reduction.
- Nondeterminism.

Decision Problems

(I, S) such that S(X) is always either “yes” or “no.”
- Usually formulated as a question.

Example:
- Instance: A weighted graph $G = (V, E)$, two vertices s and t, and an integer K.
- Question: Is there a path from s to t of length $\leq K$? In this example, the answer is “yes.”
Decision Problems (cont)

Can also be formulated as a language recognition problem:
- Let L be the subset of I consisting of instances whose answer is "yes." Can we recognize L?

The class of tractable problems P is the class of languages or decision problems recognizable in polynomial time.

Polynomial Reducibility

Reduction of one language to another language.

Let $L_1 \subseteq I_1$ and $L_2 \subseteq I_2$ be languages. L_1 is polynomially reducible to L_2 if there exists a transformation $T : I_1 \rightarrow I_2$, computable in polynomial time, such that $f(x) \in L_2$ if and only if $x \in L_1$.

We write: $L_1 \leq_P L_2$ or $L_1 \leq L_2$.

Examples

- $\text{CLIQUE} \leq_P \text{INDEPENDENT SET}$.
- An instance I of CLIQUE is a graph $G = (V, E)$ and an integer K.
 - The instance $f = f(I)$ of INDEPENDENT SET is the graph $G' = (V, E')$ and the integer K, were an edge $(u, v) \in E'$ iff $(u, v) \notin E$.
 - f is computable in polynomial time.

Transformation Example

- G has a clique of size $\geq K$ iff G' has an independent set of size $\geq K$.
- Therefore, $\text{CLIQUE} \leq_P \text{INDEPENDENT SET}$.
- IMPORTANT WARNING: The reduction does not solve either INDEPENDENT SET or CLIQUE, it merely transforms one into the other.

Following our graph example: It is possible to translate from a graph to a string representation, and to define a subset of such strings as corresponding to graphs with a path from s to t. This subset defines a language to “recognize.”

Or one decision problem to another.

Specialized case of reduction from Chapter 10.

Need a graph here.

If nodes in G' are independent, then no connections. Thus, in G they all connect.
Nondeterminism

Nondeterminism allows an algorithm to make an arbitrary choice among a finite number of possibilities.

Implemented by the "nd-choice" primitive:

\[\text{nd-choice}(ch_1, ch_2, ..., ch_j) \]

returns one of the choices \(ch_1, ch_2, ... \) arbitrarily.

Nondeterministic algorithms can be thought of as "correctly guessing" (choosing nondeterministically) a solution.

Alternatively, nondeterministic algorithms can be thought of as running on super-parallel machines that make all choices simultaneously and then reports the "right" solution.

Nondeterministic CLIQUE Algorithm

```
procedure nd-CLIQUE(Graph G, int K) {
    VertexSet S = EMPTY; int size = 0;
    for (v in G.V)
        if (nd-choice(YES, NO) == YES) then {
            S = union(S, v);
            size = size + 1;
        }
    if (size < K) then
        REJECT;  // S is too small
    for (u in S)
        for (v in S)
            if ((u <> v) && ((u, v) not in E))
                REJECT;  // S is missing an edge
    ACCEPT;
}
```

Nondeterministic Acceptance

- \((G, K)\) is in the “language” CLIQUE iff there exists a sequence of nd-choice guesses that causes nd-CLIQUE to accept.
- Definition of acceptance by a nondeterministic algorithm:
 - An instance is accepted iff there exists a sequence of nondeterministic choices that causes the algorithm to accept.
 - An unrealistic model of computation.
 - There are an exponential number of possible choices, but only one must accept for the instance to be accepted.
- Nondeterminism is a useful concept
 - It provides insight into the nature of certain hard problems.

Class \(\mathcal{NP} \)

- The class of languages accepted by a nondeterministic algorithm in polynomial time is called \(\mathcal{NP} \).
- There are an exponential number of different executions of nd-CLIQUE on a single instance, but any one execution requires only polynomial time in the size of that instance.
- Time complexity of nondeterministic algorithm is greatest amount of time required by any one of its executions.

Note that Towers of Hanoi is not in \(\mathcal{NP} \).
Alternative Interpretation:
- \mathcal{NP} is the class of algorithms that — never mind how we got the answer — can check if the answer is correct in polynomial time.
- If you cannot verify an answer in polynomial time, you cannot hope to find the right answer in polynomial time!

How to Get Famous

Clearly, $\mathcal{P} \subseteq \mathcal{NP}$.

Extra Credit Problem:
- Prove or disprove: $\mathcal{P} = \mathcal{NP}$.

This is important because there are many natural decision problems in \mathcal{NP} for which no \mathcal{P} (tractable) algorithm is known.

\mathcal{NP}-completeness

A theory based on identifying problems that are as hard as any problems in \mathcal{NP}.

The next best thing to knowing whether $\mathcal{P} = \mathcal{NP}$ or not.

A decision problem A is \mathcal{NP}-hard if every problem in \mathcal{NP} is polynomially reducible to A, that is, for all $B \in \mathcal{NP}$, $B \leq_p A$.

A decision problem A is \mathcal{NP}-complete if $A \in \mathcal{NP}$ and A is \mathcal{NP}-hard.

Satisfiability

Let E be a Boolean expression over variables x_1, x_2, \cdots, x_n in conjunctive normal form (CNF), that is, an AND of ORs.

$$ E = (x_5 + x_7 + \overline{x_3} + x_6) \cdot (x_2 + x_3) \cdot (x_1 + x_5 + x_6). $$

A variable or its negation is called a literal. Each sum is called a clause.

SATISFIABILITY (SAT):
- Instance: A Boolean expression E over variables x_1, x_2, \cdots, x_n in CNF.
- Question: Is E satisfiable?

Cook's Theorem: SAT is \mathcal{NP}-complete.

Cook's Theorem

This is worded a bit loosely. Specifically, we assume that we can get the answer fast enough — that is, in polynomial time non-deterministically.

SATISFIABILITY (SAT):

Is there a truth assignment for the variables that makes E true?

Cook won a Turing award for this work.
Proof Sketch

SAT ∈ \mathcal{NP}:
- A non-deterministic algorithm guesses a truth assignment for \(x_1, x_2, \ldots, x_n\) and checks whether \(E\) is true in polynomial time.
- It accepts if there is a satisfying assignment for \(E\).

SAT is \mathcal{NP}-hard:
- Start with an arbitrary problem \(B \in \mathcal{NP}\).
- We know there is a polynomial-time, nondeterministic algorithm to accept \(B\).
- Cook showed how to transform an instance \(X\) of \(B\) into a Boolean expression \(E\) that is satisfiable if the algorithm for \(B\) accepts \(X\).

Implications

1. Since SAT is \mathcal{NP}-complete, we have not defined an empty concept.
2. If SAT \(\in \mathcal{P}\), then \(\mathcal{P} = \mathcal{NP}\).
3. If \(\mathcal{P} = \mathcal{NP}\), then SAT \(\in \mathcal{P}\).
4. If \(A \in \mathcal{NP}\) and \(B \in \mathcal{NP}\)-complete, then \(B \leq_p A\) implies \(A\) is \mathcal{NP}-complete.
 Proof:
 - Let \(C \in \mathcal{NP}\).
 - Then \(C \leq_p B\) since \(B \in \mathcal{NP}\)-complete.
 - Since \(B \leq_p A\) and \(\leq_p\) is transitive, \(C \leq_p A\).
 - Therefore, \(A\) is \mathcal{NP}-hard and, finally, \mathcal{NP}-complete.

Implications (cont)

5. This gives a simple two-part strategy for showing a decision problem \(A\) is \mathcal{NP}-complete.
 (a) Show \(A \in \mathcal{NP}\).
 (b) Pick an \mathcal{NP}-complete problem \(B\) and show \(B \leq_p A\).

\mathcal{NP}\-completeness Proof Template

To show that decision problem \(B\) is \mathcal{NP}\-complete:
- \(B \in \mathcal{NP}\):
 - Give a polynomial time, non-deterministic algorithm that accepts \(B\).
 - Given an instance \(X\) of \(B\), guess evidence \(Y\).
 - Check whether \(Y\) is evidence that \(X \in B\). If so, accept \(X\).
- \(B\) is \mathcal{NP}\-hard:
 - Choose a known \mathcal{NP}\-complete problem, \(A\).
 - Describe a polynomial-time transformation \(T\) of an arbitrary instance of \(A\) to a [not necessarily arbitrary] instance of \(B\).
 - Show that \(X \in A\) if and only if \(T(X) \in B\).

The proof of this last step is usually several pages long. One approach is to develop a nondeterministic Turing Machine program to solve an arbitrary problem \(B\) in \mathcal{NP}.

Proving \(A \in \mathcal{NP}\) is usually easy.

Don’t get the reduction backwards!
3-Satisfiability (3SAT)

Instance: A Boolean expression E in CNF such that each clause contains exactly 3 literals.

Question: Is there a satisfying assignment for E?

A special case of SAT.

One might hope that 3SAT is easier than SAT.

3SAT is \mathcal{NP}-complete

1. **3SAT $\in \mathcal{NP}$**.

 procedure nd-3SAT(E) {
 for ($i = 1$ to n) $x[i] = nd-choice(TRUE, FALSE);$
 Evaluate E for the guessed truth assignment.
 if (E evaluates to TRUE) ACCEPT;
 else REJECT;
 }

 nd-3SAT is a polynomial-time nondeterministic algorithm that accepts 3SAT.

Proving 3SAT \mathcal{NP}-hard

- Choose SAT to be the known \mathcal{NP}-complete problem.
 - We need to show that SAT \leq_p 3SAT.
- Let $E = C_1 \cdot C_2 \cdots C_k$ be any instance of SAT.

Strategy: Replace any clause C_i that does not have exactly 3 literals with two or more clauses having exactly 3 literals.

Let $C_i = y_1 + y_2 + \cdots + y_j$ where y_1, \ldots, y_j are literals.

(a) $j = 1$
 - Replace (y_1) with
 $$(y_1 + v + w) \cdot (y_1 + \overline{v} + \overline{w}) \cdot (y_1 + \overline{v} + \overline{w}) \cdot (y_1 + \overline{v} + \overline{w})$$
 - where v and w are new variables.

(b) $j = 2$
 - Replace $(y_1 + y_2)$ with $(y_1 + y_2 + z) \cdot (y_1 + y_2 + z)$ where z is a new variable.

(c) $j > 3$
 - Replace $(y_1 + y_2 + \cdots + y_j)$ with
 $$(y_1 + y_2 + z_1) \cdot (y_3 + z_1) \cdot (y_4 + z_2) \cdots$$
 $$(y_{j-2} + z_{j-4} + z_{j-3}) \cdot (y_{j-1} + y_{j-2} + z_{j-3})$$
 - where $z_1, z_2, \ldots, z_{j-3}$ are new variables.
 - After replacements made for each C_i, a Boolean expression E' results that is an instance of 3SAT.
 - The replacement clearly can be done by a polynomial-time deterministic algorithm.

Proving 3SAT \mathcal{NP}-hard (cont)

Replacing (y_i) with $(y_1 + y_1 + y_1)$ seems like a reasonable alternative. But some of the theory behind the definitions rejects clauses with duplicated literals.

SAT is the only choice that we have so far!
Proving 3SAT \mathcal{NP}-hard (cont)

(3) Show E is satisfiable iff E' is satisfiable.
 - Assume E has a satisfying truth assignment.
 - Then that extends to a satisfying truth assignment for cases (a) and (b).
 - In case (c), assume y_m is assigned “true”.
 - Then assign $z_t, t \leq m - 2$, true and $z_k, t \geq m - 1$, false.
 - Then all the clauses in case (c) are satisfied.

We conclude SAT \leq 3SAT and 3SAT is \mathcal{NP}-complete.

Tree of Reductions

Reductions go down the tree.

Proofs that each problem $\in \mathcal{NP}$ are straightforward.

Perspective

The reduction tree gives us a collection of 12 diverse \mathcal{NP}-complete problems.

The complexity of all these problems depends on the complexity of any one:

- If any \mathcal{NP}-complete problem is tractable, then they all are.

This collection is a good place to start when attempting to show a decision problem is \mathcal{NP}-complete.

Observation: If we find a problem is \mathcal{NP}-complete, then we should do something other than try to find a P-time algorithm.

Hundreds of problems, from many fields, have been shown to be \mathcal{NP}-complete.

More on this observation later.
SAT \leq_p CLIQUE

(1) Easy to show CLIQUE in \text{NP}.

(2) An instance of SAT is a Boolean expression

\[B = C_1 \cdot C_2 \cdots C_m, \]

where

\[C_i = y[i, 1] + y[i, 2] + \cdots + y[i, k]. \]

Transform this to an instance of CLIQUE \(G = (V, E) \) and \(K \).

\[V = \{ v[i, j] | 1 \leq i \leq m, 1 \leq j \leq k \} \]

Two vertices \(v[i, j] \) and \(v[k, l] \) are adjacent in \(G \) if \(i \neq k \)

AND EITHER \(y[i, j] \) and \(y[k, l] \) are the same literal

OR \(y[i, j] \) and \(y[k, l] \) have different underlying variables.

\(K = m. \)

SAT \leq_p CLIQUE (cont)

Example: \(B = (x + y + (z)) \cdot (\overline{x} + y + z) \cdot (y + z). \)

\(K = 3. \)

(3) \(B \) is satisfiable iff \(G \) has clique of size \(\geq K. \)

\- \(B \) is satisfiable implies there is a truth assignment such

\- But then \(v[i, j] \) must be in a clique of size \(K = m. \)

\- If \(G \) has a clique of size \(K \), then the clique must have

\- There is a truth assignment making each \(v[i, j] \) in the clique

\- That truth assignment satisfies \(B. \)

We conclude that CLIQUE is \text{NP}-hard, therefore

\(\text{NP} \)-complete.

\begin{itemize}
 \item Note the asymmetry in the definition of \text{NP}.
 \begin{itemize}
 \item The non-determinism can identify a clique, and you can
 \item But what if the correct answer is “NO”? How do you
 \item \text{Co-NP}: The complements of problems in \text{NP}.
 \begin{itemize}
 \item Is a boolean expression always false?
 \item Is there no clique of size \(k? \)
 \item It seems unlikely that \(\text{NP} = \text{co-NP}. \)
 \end{itemize}
 \end{itemize}
\end{itemize}

Is \(\text{NP}\)-complete = \(\text{NP} \)?

\begin{itemize}
 \item It has been proved that if \(P \neq \text{NP} \), then \(\text{NP}\)-complete \(\neq \text{NP}. \)
 \item The following problems are not known to be in \(P \) or \(\text{NP}, \)
 \item GRAPH ISOMORPHISM: Are two graphs isomorphic?
 \item COMPOSITE NUMBERS: For positive integer \(K \), are
 \item LINEAR PROGRAMMING
\end{itemize}

No join if one is the negation of the other

\(\text{NP}\)-complete might be a bigger ("harder") class that includes \(\text{NP}. \)

These problems seem easier than typical \(\text{NP}\)-complete problems, but are still probably harder than \(P \). They are

obviously in \(\text{NP}, \) but don’t appear to be “hard” enough to solve

any \(\text{NP}\)-complete problem.
PARTITION \leq_p KNAPSACK

PARTITION is a special case of KNAPSACK in which

$$K = \frac{1}{2} \sum_{i=A} s(a)$$

assuming $\sum s(a)$ is even.

Assuming PARTITION is NP-complete, KNAPSACK is NP-complete.

"Practical" Exponential Problems

- What about our $O(KN)$ dynamic prog algorithm?
 - Input size for KNAPSACK is $O(N\log K)$
 - Thus $O(KN)$ is exponential in $N\log K$.
 - The dynamic programming algorithm counts through numbers $1, \ldots, K$. Takes exponential time when measured by number of bits to represent K.
 - If K is "small" ($K = O(p(N))$), then algorithm has complexity polynomial in N and is truly polynomial in input size.
 - An algorithm that is polynomial-time if the numbers IN the input are "small" (as opposed to number OF inputs) is called a pseudo-polynomial time algorithm.

"Practical" Problems (cont)

- Lesson: While KNAPSACK is NP-complete, it is often not that hard.
 - Many NP-complete problems have no pseudo-polynomial time algorithm unless $P = NP$.

Coping with NP-completeness

1. Find subproblems of the original problem that have polynomial-time algorithms.
2. Approximation algorithms.
3. Randomized Algorithms.
4. Backtracking; Branch and Bound.
5. Heuristics.
 - Greedy.
 - Simulated Annealing.
 - Genetic Algorithms.

The assumption about PARTITION is true, though we do not prove it.

The "transformation" is simply to pass the input of PARTITION to KNAPSACK.

This is an important point, about the input size. It has to do with the "size" of a number (a value). We represent the value n with log n bits, or more precisely, log N bits where N is the maximum value. In the case of KNAPSACK, K (the knapsack size) is effectively the maximum number. We will use this observation frequently when we analyze numeric algorithms.

The issue is what size input is practical. The problems we want to solve for Traveling Salesman are not practical.

The subproblems need to be "significant" special cases.

Approximation works for optimization problems (and there are a LOT of those).

Randomized Algorithms typically work well for problems with a lot of solutions.

(4) gives ways to (relatively efficiently) implement nd-choice.
Subproblems

Restrict attention to special classes of inputs.

Examples:
- VERTEX COVER, INDEPENDENT SET, and CLIQUE, when restricted to bipartite graphs, all have polynomial-time algorithms (for VERTEX COVER, by reduction to NETWORK FLOW).
- 2-SATISFIABILITY, 2-DIMENSIONAL MATCHING and EXACT COVER BY 2-SETS all have polynomial time algorithms.
- PARTITION and KNAPSACK have polynomial time algorithms if the numbers in an instance are all \(O(p(n))\).
- However, HAMILTONIAN CIRCUIT and 3-COLORABILITY remain \(\mathcal{NP}\)-complete even for a planar graph.

Backtracking

We may view a nondeterministic algorithm executing on a particular instance as a tree:
- Each edge represents a particular nondeterministic choice.
- The checking occurs at the leaves.

Example:

Each leaf represents a different set \(S\). Checking that \(S\) is a clique of size \(\geq K\) can be done in polynomial time.

Backtracking (cont)

Backtracking can be viewed as an in-order traversal of this tree with two criteria for stopping.
- A leaf that accepts is found.
- A partial solution that could not possibly lead to acceptance is reached.

Example:

There cannot possibly be a set \(S\) of cardinality \(\geq 2\) under this node, so backtrack.

Since \((1, 2) \notin E\), no \(S\) under this node can be a clique, so backtrack.

Branch and Bound

- For optimization problems.
 More sophisticated kind of backtracking.
- Use the best solution found so far as a bound that controls backtracking.
- Example Problem: Given a graph \(G\), find a minimum vertex cover of \(G\).
- Computation tree for nondeterministic algorithm is similar to CLIQUE.
 - Every leaf represents a different subset \(S\) of the vertices.
 - Whenever a leaf is reached and it contains a vertex cover of size \(B\), \(B\) is an upper bound on the size of the minimum vertex cover.
 - Use \(B\) to prune any future tree nodes having size \(\geq B\).
 - Whenever a smaller vertex cover is found, update \(B\).

Assuming the subclass covers the inputs you are interested in!

Example for k-CLIQUE

Need a figure here. Manber Figure 11.7 has a similar example.

Need Figure here.

When the corresponding decision problem is \(\mathcal{NP}\)-complete.
Branch and Bound (cont)

- Improvement:
 - Use a fast, greedy algorithm to get a minimal (not minimum) vertex cover.
 - Use this as the initial bound B.
- While Branch and Bound is better than a brute-force exhaustive search, it is usually exponential time, hence impractical for all but the smallest instances.
 - ... if we insist on an optimal solution.
- Branch and Bound often practical as an approximation algorithm where the search terminates when a "good enough" solution is obtained.

Approximation Algorithms

Seek algorithms for optimization problems with a guaranteed bound on the quality of the solution.

VERTEX COVER: Given a graph $G = (V, E)$, find a vertex cover of minimum size.

Let M be a maximal (not necessarily maximum) matching in G and let V' be the set of matched vertices.

If OPT is the size of a minimum vertex cover, then $|V'| \leq 2OPT$ because at least one endpoint of every matched edge must be in any vertex cover.

Bin Packing

We have numbers x_1, x_2, \ldots, x_n between 0 and 1 as well as an unlimited supply of bins of size 1.

Problem: Put the numbers into as few bins as possible so that the sum of the numbers in any one bin does not exceed 1.

Example: Numbers 3/4, 1/3, 1/2, 1/8, 2/3, 1/2, 1/4.

Optimal solution: [3/4, 1/8], [1/2, 1/3], [1/2, 1/4], [2/3].

First Fit Algorithm

Place x_1 into the first bin.

For each $i, 2 \leq i \leq n$, place x_i in the first bin that will contain it.

No more than 1 bin can be left less than half full.

The number of bins used is no more than twice the sum of the numbers.

The sum of the numbers is a lower bound on the number of bins in the optimal solution.

Therefore, first fit is no more than twice the optimal number of bins.

Optimal in that the sum is 3 1/8, and we packed into 4 bins. There is another optimal solution with the first 3 bins packed, but this is more than we need to solve the problem.
First Fit Does Poorly

Let ϵ be very small, e.g., $\epsilon = .00001$. Numbers (in this order):
- 6 of $(1/7 + \epsilon)$.
- 6 of $(1/3 + \epsilon)$.
- 6 of $(1/2 + \epsilon)$.

First fit returns:
- 1 bin of $[6 \text{ of } 1/7 + \epsilon]$.
- 3 bins of $[2 \text{ of } 1/3 + \epsilon]$.
- 6 bins of $[1/2 + \epsilon]$.

Optimal solution is 6 bins of $[1/7 + \epsilon, 1/3 + \epsilon, 1/2 + \epsilon]$.

First fit is 5/3 larger than optimal.

Decreasing First Fit

It can be proved that the worst-case performance of first-fit is $17/10$ times optimal.

Use the following heuristic:
- Sort the numbers in decreasing order.
- Apply first fit.
- This is called **decreasing first fit**.

The worst case performance of decreasing first fit is close to $11/9$ times optimal.

Summary

- The theory of NP-completeness gives us a technique for separating tractable from (probably) intractable problems.
- When faced with a new problem requiring algorithmic solution, our thought process might resemble this scheme:

 ![Decision Tree](image)

- Alternately think about each question. Lack of progress on either question might give insights into the answer to the other question.
- Once an affirmative answer is obtained to one of these questions, one of two strategies is followed.

Strategies

1. The problem is in P.
 - This means there are polynomial-time algorithms for the problem, and presumably we know at least one.
 - So, apply the techniques learned in this course to analyze the algorithms and improve them to find the lowest time complexity we can.

2. The problem is NP-complete.
 - Apply the strategies for coping with NP-completeness.
 - Especially, find subproblems that are in P, or find approximation algorithms.
Algebraic and Numeric Algorithms

- Measuring cost of arithmetic and numerical operations:
 - Measure size of input in terms of **bits**.
- Algebraic operations:
 - Measure size of input in terms of **numbers**.
- In both cases, measure complexity in terms of basic arithmetic operations: **+,−,∗,/.**
 - Sometimes, measure complexity in terms of bit operations to account for large numbers.
- Size of numbers may be related to problem size:
 - Pointers, counters to objects.
 - Resolution in geometry/graphics (to distinguish between object positions).

Exponentiation

Given positive integers \(n \) and \(k \), compute \(n^k \).

Algorithm:
\[
p = 1;
for\ (i=1\ to\ k)
\quad p = p \times n;
\]

Analysis:
- Input size: \(\Theta(n + \log k) \).
- Time complexity: \(\Theta(k) \) multiplications.
- This is **exponential** in input size.

Faster Exponentiation

Write \(k \) as:
\[
k = b_02^t + b_{t-1}2^{t-1} + \cdots + b_12 + b_0, \quad b \in \{0,1\}.
\]
Rewrite as:
\[
k = ((\cdots(b_12 + b_{t-1})2 + \cdots + b_2)2 + b_1)2 + b_0.
\]
New algorithm:
\[
p = n;
for\ (i= t-1\ downto\ 0)
\quad p = p \times \exp(n, b[i])
\]

Analysis:
- Time complexity: \(\Theta(t) = \Theta(\log k) \) multiplications.
- This is **exponentially** better than before.

Greatest Common Divisor

- The Greatest Common Divisor (GCD) of two integers is the greatest integer that divides both evenly.
- Observation: If \(k \) divides \(n \) and \(m \), then \(k \) divides \(n - m \).
- So,
\[
f(n, m) = f(n - m, n) = f(m, n - m) = f(m, n).
\]
- Observation: There exists \(k \) and \(l \) such that
\[
n = km + l \quad \text{where} \quad m > l \geq 0.
\]
- So,
\[
f(n, m) = f(m, l) = f(m, n \mod m).
\]

Assuming \(n > m \), then \(n = ak, m = bk, n - m = (a - b)k \) for integers \(a, b \).

This comes from definition of \(\mod \).
GCD Algorithm

\[f(n, m) = \begin{cases}
 n & \text{if } m = 0 \\
 f(m, n \mod m) & \text{if } m > 0
\end{cases} \]

```cpp
int LCF(int n, int m) {
  return LCF(m, n % m);
}
if (m == 0) return n;
``` 

Divide and Conquer:

- Our normal algorithm for computing \(\gcd(n, m) \) requires \(\Theta(n^2) \) multiplications and additions.
- The first argument must be halved in no more than 2 iterations.
- Total cost:

\[
T(n) = 2 \log n \cdot O(n) + O(n) = \Theta(n^2) \]

Analysis of GCD

- How big is \(n \mod m \) relative to \(n \)?

\[
n \geq m \Rightarrow \frac{n}{m} \geq 1
\Rightarrow 2 \left\lfloor \frac{n}{m} \right\rfloor > \frac{n}{m}
\Rightarrow m \left\lfloor \frac{n}{m} \right\rfloor > n/2
\Rightarrow n - n/2 > n - m \left\lfloor \frac{n}{m} \right\rfloor = n \mod m
\Rightarrow n/2 > n \mod m
\]

Can split in half \(\log n \) times. So \(2 \log n \) is upper bound.

Note that this is linear on problem size, since problem size is \(2 \log n \) (2 numbers).

Multiplying Polynomials (1)

- Our normal algorithm for computing \(PQ \) requires \(\Theta(n^2) \) multiplications and additions.

\[
P = \sum_{i=0}^{n-1} p_i x^i \quad Q = \sum_{i=0}^{n-1} q_i x^i.
\]

Multiplying Polynomials (2)

- Divide and Conquer:

\[
P_1 = \sum_{i=0}^{n/2-1} p_i x^i \quad P_2 = \sum_{i=n/2}^{n-1} p_i x^{i-n/2}
\]
\[
Q_1 = \sum_{i=0}^{n/2-1} q_i x^i \quad Q_2 = \sum_{i=n/2}^{n-1} q_i x^{i-n/2}
\]
\[
PQ = (P_1 + x^{n/2} P_2)(Q_1 + x^{n/2} Q_2)
= P_1 Q_1 + x^{n/2} (Q_1 P_2 + P_1 Q_2) + x^n P_2 Q_2.
\]

- Recurrence:

\[
T(n) = 4T(n/2) + O(n).
\]
\[
T(n) = \Theta(n^2).
\]

Do this to make the subproblems look the same.
Multiplying Polynomials (3)

Observation:

\[(P_1 + P_2)(Q_1 + Q_2) = P_1Q_1 + (Q_1P_2 + P_1Q_2) + P_2Q_2\]
\[(Q_1P_2 + P_1Q_2) = (P_1 + P_2)(Q_1 + Q_2) - P_1Q_1 - P_2Q_2\]

Therefore, \(PQ\) can be calculated with only 3 recursive calls to a polynomial multiplication procedure.

Recurrence:

\[T(n) = 3T(n/2) + O(n)\]
\[\log_b a = \log_2 3 \approx 1.59.\]
\[T(n) = \Theta(n^{\log_2 3}).\]

Matrix Multiplication

Given: \(n \times n\) matrices \(A\) and \(B\).

Compute: \(C = A \times B\).

\[c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}.\]

Straightforward algorithm:

- \(\Theta(n^3)\) multiplications and additions.

Lower bound for any matrix multiplication algorithm: \(\Omega(n^2)\).

Strassen’s Algorithm

1. Trade more additions/subtractions for fewer multiplications in \(2 \times 2\) case.

2. Divide and conquer.

In the straightforard implementation, \(2 \times 2\) case is:

\[c_{11} = a_{11}b_{11} + a_{12}b_{21}\]
\[c_{12} = a_{11}b_{12} + a_{12}b_{22}\]
\[c_{21} = a_{21}b_{11} + a_{22}b_{21}\]
\[c_{22} = a_{21}b_{12} + a_{22}b_{22}\]

Requires 8 multiplications and 4 additions.

Another Approach (1)

Compute:

\[m_1 = (a_{12} - a_{22})(b_{21} + b_{22})\]
\[m_2 = (a_{11} + a_{22})(b_{11} + b_{22})\]
\[m_3 = (a_{11} - a_{21})(b_{11} + b_{12})\]
\[m_4 = (a_{11} + a_{22})b_{22}\]
\[m_5 = a_{11}(b_{12} - b_{22})\]
\[m_6 = a_{22}(b_{21} - b_{11})\]
\[m_7 = (a_{21} + a_{22})b_{11}\]

In the second equation, the sums in the first term are half the original problem size, and the second two terms were needed for the first equation.

\[PQ = P_1Q_1 + X^{n/2}((P_1 + P_2)(Q_1 + Q_2) - P_1Q_1 - P_2Q_2) + x^nP_2Q_2\]

A significant improvement came from algebraic manipulation to express the product in terms of 3, rather than 4, smaller products.
Another Approach (2)

Then:

\begin{align*}
c_{11} &= m_1 + m_2 - m_4 + m_5 \\
c_{12} &= m_4 + m_5 \\
c_{21} &= m_6 + m_7 \\
c_{22} &= m_2 - m_3 + m_6 - m_7
\end{align*}

7 multiplications and 18 additions/subtractions.

Strassen’s Algorithm (cont)

Divide and conquer step:

Assume \(n \) is a power of 2.

Express \(C = A \times B \) in terms of \(\frac{n}{2} \times \frac{n}{2} \) matrices.

\[
\begin{bmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{bmatrix}
= \begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}
\begin{bmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{bmatrix}
\]

Strassen’s Algorithm (cont)

By Strassen’s algorithm, this can be computed with 7 multiplications and 18 additions/subtractions of \(n/2 \times n/2 \) matrices.

Recurrence:

\[
T(n) = 7T(n/2) + 18(n/2)^2
\]

\[
T(n) = \Theta(n^{\log_2 7}) = \Theta(n^{2.81}).
\]

Current “fastest” algorithm is \(\Theta(n^{2.376}) \).

Open question: Can matrix multiplication be done in \(O(n^2) \) time?

Introduction to the Sliderule

Compared to addition, multiplication is hard.

In the physical world, addition is merely concatenating two lengths.

Observation:

\[\log nm = \log n + \log m. \]

Therefore,

\[nm = \text{antilog}(\log n + \log m). \]

What if taking logs and antilogs were easy?
Introduction to the Sliderule (2)

The sliderule does exactly this!

- It is essentially two rulers in log scale.
- Slide the scales to add the lengths of the two numbers (in log form).
- The third scale shows the value for the total length.

Representing Polynomials

A vector a of n values can uniquely represent a polynomial of degree $n - 1$

$$P_a(x) = \sum_{i=0}^{n-1} a_i x^i.$$

Alternatively, a degree $n - 1$ polynomial can be uniquely represented by a list of its values at n distinct points.

- Finding the value for a polynomial at a given point is called **evaluation**.
- Finding the coefficients for the polynomial given the values at n points is called **interpolation**.

Multiplication of Polynomials

To multiply two $n - 1$-degree polynomials A and B normally takes $\Theta(n^2)$ coefficient multiplications.

However, if we evaluate both polynomials, we can simply multiply the corresponding pairs of values to get the values of polynomial AB.

Process:
- Evaluate polynomials A and B at enough points.
- Pairwise multiplications of resulting values.
- Interpolation of resulting values.

Multiplication of Polynomials (2)

This can be faster than $\Theta(n^2)$ IF a fast way can be found to do evaluation/interpolation of $2n - 1$ points (normally this takes $\Theta(n^2)$ time).

Note that evaluating a polynomial at 0 is easy, and that if we evaluate at 1 and -1, we can share a lot of the work between the two evaluations.

Can we find enough such points to make the process cheap?
An Example

Polynomial A: $x^2 + 1$.
Polynomial B: $2x^2 - x + 1$.
Polynomial AB: $2x^4 - x^3 + 3x^2 - x + 1$.

Notice:

$$AB(-1) = (2)(4) = 8$$
$$AB(0) = (1)(1) = 1$$
$$AB(1) = (2)(2) = 4$$

But: We need 5 points to nail down Polynomial AB. And, we also need to interpolate the 5 values to get the coefficients back.

Nth Root of Unity

The key to fast polynomial multiplication is finding the right points to use for evaluation/interpolation to make the process efficient.

Complex number ω is a **primitive nth root of unity** if

1. $\omega^n = 1$ and
2. $\omega^k \neq 1$ for $0 < k < n$.

$\omega^n, \omega^{n-1}, ..., \omega^1$ are the **nth roots of unity**.

Example:

- For $n = 4$, $\omega = i$ or $\omega = -i$.

Nth Root of Unity (cont)

For the first circle, $n = 4, \omega = i$.

For the second circle, $n = 8, \omega = \sqrt[8]{i}$.

Discrete Fourier Transform

Define an $n \times n$ matrix $V(\omega)$ with row i and column j as $V(\omega) = (\omega^j)$.

Example: $n = 4, \omega = i$:

$$V(\omega) = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -i & 1 & -1 \\
1 & -1 & -1 & i
\end{bmatrix}$$

Let $\mathbf{a} = [a_0, a_1, ..., a_{n-1}]^T$ be a vector.

The **Discrete Fourier Transform** (DFT) of \mathbf{a} is:

$$F_\omega = V(\omega)\mathbf{a} = \mathbf{\bar{a}}.$$

This is equivalent to evaluating the polynomial at the nth roots of unity.

In the array, indexing begins with 0.

Example:

$$1 + 2x + 3x^2 + 4x^3$$

Values to evaluate at: $1, i, -1, -i$.

For the first circle, $n = 4, \omega = i$.

For the second circle, $n = 8, \omega = \sqrt[8]{i}$.
Array example

For \(n = 8 \), \(\omega = \sqrt{i} \), \(V(\omega) = \)

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \sqrt{i} & i & i\sqrt{i} & -1 & -\sqrt{i} & -i & -i\sqrt{i} \\
1 & i & -1 & -i & 1 & i & -1 & -i \\
1 & i\sqrt{i} & -i & \sqrt{i} & -1 & -i\sqrt{i} & i & -\sqrt{i} \\
1 & -1 & 1 & -i & 1 & -1 & 1 & -1 \\
1 & -i & -1 & i & 1 & -i & -1 & i \\
1 & -i\sqrt{i} & -i & -\sqrt{i} & -1 & i\sqrt{i} & i & \sqrt{i} \\
\end{array}
\]

Inverse Fourier Transform

The inverse Fourier Transform to recover \(\mathbb{A} \) from \(\mathbb{V} \) is:

\[
F^{-1}_\omega = \mathbb{A} = [V(\omega)]^{-1} \cdot \mathbb{V}.
\]

\[
[V(\omega)]^{-1} = \frac{1}{n} V(\frac{1}{\omega}).
\]

This is equivalent to interpolating the polynomial at the \(n \) th roots of unity.

An efficient divide and conquer algorithm can perform both the DFT and its inverse in \(\Theta(n \log n) \) time.

Fast Polynomial Multiplication

Polynomial multiplication of \(A \) and \(B \):
- Represent an \(n - 1 \)-degree polynomial as \(2n - 1 \) coefficients:
 \[
 [a_0, a_1, \ldots, a_{n-1}, 0, \ldots, 0]
 \]
- Perform DFT on representations for \(A \) and \(B \).
- Pairwise multiply results to get \(2n - 1 \) values.
- Perform inverse DFT on result to get \(2n - 1 \) degree polynomial \(AB \).

FFT Algorithm

\[
\text{FFT}(n, a_0, a_1, \ldots, a_{n-1}, \text{omega}, \text{var V});
\]

Output: \(V[0..n-1] \) of output elements.

begin
 if \(n=1 \) then \(V[0] = a_0 \);
 else
 \(\text{FFT}(n/2, a_0, a_2, \ldots a_{n-2}, \text{omega}^2, U) \);
 \(\text{FFT}(n/2, a_1, a_3, \ldots a_{n-1}, \text{omega}^2, W) \);
 for \(j=0 \) to \(n/2-1 \) do
 \(V[j] = U[j] + \text{omega}^j W[j] \);
 \(V[j+n/2] = U[j] - \text{omega}^j W[j] \);
 end
Parallel Algorithms

- Running time: \(T(n, p) \) where \(n \) is the problem size, \(p \) is number of processors.
- Speedup: \(S(p) = \frac{T(n, 1)}{T(n, p)} \)
 - A comparison of the time for a (good) sequential algorithm vs. the parallel algorithm in question.
- Problem: Best sequential algorithm might not be the same as the best algorithm for \(p \) processors, which might not be the best for \(\infty \) processors.
- Efficiency: \(E(n, p) = \frac{S(p)}{p} = \frac{T(n, 1)}{(pT(n, p))} \)
- Ratio of the time taken for 1 processor vs. the total time required for \(p \) processors.
- Measure of how much the \(p \) processors are used (not wasted).
- Optimal efficiency = 1 = speedup by factor of \(p \).

Parallel Algorithm Design

Approach (1): Pick \(p \) and write best algorithm.
- Would need a new algorithm for every \(p \)!

Approach (2): Pick best algorithm for \(p = \infty \), then convert to run on \(p \) processors.

 Hopefully, if \(T(n, p) = X \), then \(T(n, p/k) \approx kX \) for \(k > 1 \).

Using one processor to emulate \(k \) processors is called the parallelism folding principle.

Parallel Algorithm Design (2)

Some algorithms are only good for a large number of processors.

\[
\begin{align*}
T(n, 1) &= n \\
T(n, n) &= \log n \\
S(n) &= n/\log n \\
E(n, n) &= 1/\log n
\end{align*}
\]

For \(p = 256 \), \(n = 1024 \).
\(T(1024, 256) = 4 \log 1024 = 40 \).
For \(p = 16 \), running time \(= (1024/16) \times \log 1024 = 640 \).
Speedup \(<2\), efficiency \(= 1024/(16 \times 640) = 1/10 \).

Amdahl’s Law

Think of an algorithm as having a parallelizable section and a serial section.

Example: 100 operations.
- 80 can be done in parallel, 20 must be done in sequence.

Then, the best speedup possible leaves the 20 in sequence, or a speedup of 100/20 = 5.

Amdahl’s law:
\[
\text{Speedup} = \frac{(S + P)/(S + P/N)}{1/(S + P/N)} \leq 1/S,
\]
for \(S = \text{serial fraction}, P = \text{parallel fraction}, S + P = 1 \).

As opposed to \(T(n) \) for sequential algorithms.

Question: What algorithms should be compared?
\(pT(n, p) \) is total amount of “processor power” put into the problem.

If \(E(n, p) > 1 \) then the sequential form of the parallel algorithm would be faster than the sequential algorithm being compared against – very suspicious!

So there are differing goals possible: Absolute fastest speedup vs. efficiency.

Parallel Algorithm Design (2)

Good in terms of speedup.

\[
1024/256, \text{assuming one processor emulates 4 in 4 times the time.} \quad E(1024, 256) = 1024/(256 + 40) = 1/10.
\]

But note that efficiency goes down as the problem size grows.

Amdahl’s Law

Speedup is Serial / Parallel.
Draw graph, speed up is Y axis, Sequential is X axis. You will see a nonlinear curve going down.
Amdahl’s Law Revisited

However, this version of Amdahl’s law applies to a fixed problem size.

What happens as the problem size grows?

Hopefully, \(S = f(n) \) with \(S \) shrinking as \(n \) grows.

Instead of fixing problem size, fix execution time for increasing number \(N \) processors (and thus, increasing problem size).

\[
\text{Scaled Speedup} = \frac{(S + P \times N)}{(S + P)} = S + P \times N = S + (1 - S) \times N = N + (1 - N) \times S.
\]

Models of Parallel Computation

Single Instruction Multiple Data (SIMD)
- All processors operate the same instruction in step.
- Example: Vector processor.

Pipelined Processing:
- Stream of data items, each pushed through the same sequence of several steps.

Multiple Instruction Multiple Data (MIMD)
- Processors are independent.

MIMD Communications (1)

Interconnection network:
- Each processor is connected to a limited number of neighbors.
- Can be modeled as (undirected) graph.
- Examples: Array, mesh, N-cube.
- It is possible for the cost of communications to dominate the algorithm (and in fact to limit parallelism).
- Diameter: Maximum over all pairwise distances between processors.
- Tradeoff between diameter and number of connections.

MIMD Communications (2)

Shared memory:
- Random access to global memory such that any processor can access any variable with unit cost.
- In practice, this limits number of processors.
- Exclusive Read/Exclusive Write (EREW).
- Concurrent Read/Exclusive Write (CREW).
- Concurrent Read/Concurrent Write (CRCW).
Addition

Problem: Find the sum of two \(n \)-bit binary numbers.

Sequential Algorithm:
- Start at the low end, add two bits.
- If necessary, carry bit is brought forward.
- Can’t do \(i \)th step until \(i-1 \) is complete due to uncertainty of carry bit (?).

Induction: (Going from \(n-1 \) to \(n \) implies a sequential algorithm)

Parallel Addition

Divide and conquer to the rescue:
- Do the sum for top and bottom halves.
- What about the carry bit?

Strengthen induction hypothesis:
- Find the sum of the two numbers with or without the carry bit.

After solving for \(n/2 \), we have \(L, L_c, R, \) and \(R_c \).

Can combine pieces in constant time.

Parallel Addition (2)

The \(n/2 \)-size problems are independent.
Given enough processors,
\[
T(n, n) = T(n/2, n/2) + O(1) = O(\log n).
\]

We need only the EREW memory model.

Maximum-finding Algorithm: EREW

“Tournament” algorithm:
- Compare pairs of numbers, the “winner” advances to the next level.
- Initially, have \(n/2 \) pairs, so need \(n/2 \) processors.
- Running time is \(O(\log n) \).

That is faster than the sequential algorithm, but what about efficiency?
\[
E(n, n/2) \approx 1/\log n.
\]

Why is the efficiency so low?

Maximum-finding Algorithm: EREW

Since \[
\frac{T(n)}{n} \approx \frac{\log n}{n}\log n
\]

Lots of idle processors after the first round.
More Efficient EREW Algorithm

Divide the input into \(n / \log n \) groups each with \(\log n \) items.

Assign a group to each of \(n / \log n \) processors.

Each processor finds the maximum (sequentially) in \(\log n \) steps.

Now we have \(n / \log n \) “winners”.

Finish tournament algorithm.
\[
T(n, n / \log n) = O(\log n).
E(n, n / \log n) = O(1).
\]

More Efficient EREW Algorithm (2)

But what could we do with more processors? A parallel algorithm is static if the assignment of processors to actions is predefined.

- We know in advance, for each step \(i \) of the algorithm and for each processor \(p_i \), the operation and operands \(p_j \) uses at step \(i \).
- All comparisons are pre-arranged.

This maximum-finding algorithm is static.

Brent’s Lemma

Lemma 12.1: If there exists an EREW static algorithm with \(T(n, p) \in O(t) \), such that the total number of steps (over all processors) is \(s \), then there exists an EREW static algorithm with \(T(n, s/t) \in O(t) \).

Proof:
- Let \(a_i, 1 \leq i \leq t \), be the total number of steps performed by all processors in step \(i \) of the algorithm.
- \(\sum_{i=1}^{t} a_i = s \).
- If \(a_i \leq s/t \), then there are enough processors to perform this step without change.
- Otherwise, replace step \(i \) with \(\lceil a_i / (s/t) \rceil \) steps, where the \(s/t \) processors emulate the steps taken by the original \(p \) processors.

Brent’s Lemma (2)

- The total number of steps is now
\[
\sum_{i=1}^{t} \lceil a_i / (s/t) \rceil \leq \sum_{i=1}^{t} (a_i / t) + 1 \leq t + (t/s) \sum_{i=1}^{t} a_i = 2t.
\]

Thus, the running time is still \(O(t) \).

Intuition: You have to split the \(s \) work steps across the \(t \) time steps somehow; things can’t always be bad!
Maximum-finding: CRCW

- Allow concurrent writes to a variable only when each processor writes the same thing.
- Associate each element \(x_i \) with a variable \(v_i \), initially “1”.
- For each of \(n(n-1)/2 \) processors, processor \(p_i \) compares elements \(i \) and \(j \).
- First step: Each processor writes “0” to the \(v \) variable of the smaller element.
 - Now, only one \(v \) is “1”.
- Second step: Look at all \(v_i \), \(1 \leq i \leq n \).
 - The processor assigned to the max element writes that value to MAX.

Efficiency of this algorithm is very poor!
- “Divide and crush.”

Maximum-finding: CRCW (2)

More efficient (but slower) algorithm:
- Given: \(n \) processors.
- Find maximum for each of \(n/2 \) pairs in constant time.
- Find \(\max \) for \(n/8 \) groups of 4 elements (using 8 proc/group) each in constant time.
- Square the group size each time.
- Total time: \(O(\log \log n) \).

Parallel Prefix

- Let \(\cdot \) be any associative binary operation.
 - Ex: Addition, multiplication, minimum.
- Problem: Compute \(x_1 \cdot x_2 \cdot \ldots \cdot x_k \) for all \(k, 1 \leq k \leq n \).
- Define \(PR(i,j) = x_i \cdot x_{i+1} \cdot \ldots \cdot x_j \).
 - We want to compute \(PR(1, k) \) for \(1 \leq k \leq n \).
- Sequential alg: Compute each prefix in order
 - \(O(n) \) time required (using previous prefix)
- Approach: Divide and Conquer
 - IH: We know how to solve for \(n/2 \) elements.
 - \(PR(1, k) \) and \(PR(n/2 + 1, n/2 + k) \) for \(1 \leq k \leq n/2 \).
 - \(PR(1, m) \) for \(n/2 < m < n \) comes from \(PR(1, n/2) \cdot PR(n/2 + 1, m) \) – from IH.

Parallel Prefix (2)

- Complexity: (2) requires \(n/2 \) processors and CREW for parallelism (all read middle position).
- \(T(n, n) = O(\log n) \); \(E(n, n) = O(1/\log n) \).
- Brent’s lemma no help: \(O(n \log n) \) total steps.

Efficiency of this algorithm is \(O(n^2) \) processors

Need only constant time.

Efficiency is \(1/n \).
Some Randomization approach:

- **Algorithm:**
 - Compute in parallel $x_0 = x_{2i-1} \cdot x_2$ for $1 \leq i \leq n/2$.
 - Solve for E (by induction).
 - Compute in parallel $x_{2i+1} = x_{2i} \cdot x_{2i+1}$.

- **Complexity:**
 - $T(n, n) = O(\log n)$.
 - $S(n) = S(n/2) + n - 1$, so $S(n) = O(n)$ for $S(n)$ the total number of steps required to process n elements.

- So, by Brent's Lemma, we can use $O(n/\log n)$ processors for $O(1)$ efficiency.

Routing on a Hypercube

Goal: Each processor P_i simultaneously sends a message to processor $P_{i}(r)$ such that no processor is the destination for more than one message.

Problem:

- In an n-cube, each processor is connected to n other processors.
- At the same time, each processor can send (or receive) only one message per time step on a given connection.
- So, two messages cannot use the same edge at the same time — one must wait.

Randomizing Switching Algorithm

It can be shown that any deterministic algorithm is $\Omega(2^n)$ for some $a > 0$, where 2^n is the number of messages.

A node i (and its corresponding message) has binary representation $h_2 \cdots h_r$.

Randomization approach:

(a) Route each message from i to j to a random processor r (by a randomly selected route).
(b) Continue the message from r to j by the shortest route.

Randomized Switching (2)

Phase (a):

```
for (each message at i)
  cobegin
    for (k = 1 to n)
      T[i, k] = RANDOM(0, 1);
    for (k = 1 to n)
      if (T[i, k] = 1)
        Transmit i along dimension k;
  coend;
```
Randomized Switching (3)

Phase (b):
for (each message \(i\))
cobegin
 for \((k = 1 \text{ to } n)\)
 \(T[i, k] = \text{Current}[i, k] \text{ EXCLUSIVE}_\text{OR} \text{ Dest}[i, k];\)
 for \((k = 1 \text{ to } n)\)
 if \((T[i, k] = 1)\)
 Transmit \(i\) along dimension \(k;\)
cend;

Randomized Switching (4)

With high probability, each phase completes in \(O(\log n)\) time.
- It is possible to get a really bad random routing, but this is unlikely (by chance).
- In contrast, it is very possible for any correlated group of messages to generate a bottleneck.

Sorting on an array

Given: \(n\) processors labeled \(P_1, P_2, \ldots, P_n\) with processor \(P_i\) initially holding input \(x_i\).

- \(P_i\) is connected to \(P_{i-1}\) and \(P_{i+1}\) (except for \(P_1\) and \(P_n\)).
- Comparisons/exchanges possible only for adjacent elements.

Algorithm ArraySort(X, n) {
 do in parallel \(\text{ceil}(n/2)\) times {
 Exchange-compare(P[2i-1], P[2i]); // Odd
 Exchange-compare(P[2i], P[2i+1]); // Even
 }
}

A simple algorithm, but will it work?

Parallel Array Sort

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 4 & 5 & 6 & 7 & 8 & 1 & 2 \\
6 & 7 & 8 & 1 & 2 & 3 & 4 & 5 \\
\end{array}
\]

Manber Figure 12.8.
Correctness of Odd-Even Transpose

Theorem 12.2: When Algorithm ArraySort terminates, the numbers are sorted.

Proof: By induction on n.

Base Case: 1 or 2 elements are sorted with one comparison/exchange.

Induction Step:

- Consider the maximum element, say x_m.
- Assume m odd (if even, it just won’t exchange on first step).
- This element will move one step to the right each step until it reaches the rightmost position.

Correctness (2)

- The position of x_m follows a diagonal in the array of element positions at each step.
- Remove this diagonal, moving comparisons in the upper triangle one step closer.
- The first row is the nth step; the right column holds the greatest value; the rest is an $n-1$ element sort (by induction).

Sorting Networks

When designing parallel algorithms, need to make the steps independent.

Ex: Mergesort split step can be done in parallel, but the join step is nearly serial.

- To parallelize mergesort, we must parallelize the merge.

Batcher’s Algorithm

For n a power of 2, assume a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n are sorted sequences.

Let x_1, x_2, \ldots, x_{2n} be the final merged order.

Need to merge disjoint parts of these sequences in parallel.

- Split a, b into odd- and even- index elements.
- Merge a_{odd} with $b_{\text{odd}}, a_{\text{even}}$ with b_{even}, yielding o_1, o_2, \ldots, o_n and e_1, e_2, \ldots, e_n respectively.
Batcher’s Algorithm Correctness

Theorem 12.3: For all i such that $1 \leq i \leq n - 1$, we have $x_{2i} = \min(o_{i-1}, e_i)$ and $x_{2i+1} = \max(o_{i+1}, e_i)$.

Proof:
- Since e_i is the ith element in the sorted even sequence, it is \geq at least i even elements.
- For each even element, e_i is also \geq an odd element.
- So, $e_i \geq 2i$ elements, or $e_i \geq x_{2i}$.
- In the same way, $o_{i+1} \geq i+1$ odd elements, \geq at least $2i$ elements all together.
- So, $o_{i+1} \geq x_{2i}$.
- By the pigeonhole principle, e_i and o_{i+1} must be x_{2i} and x_{2i+1} (in either order).

Batcher Sort Complexity

- Total number of comparisons for merge:
 $$T_M(2n) = 2T_M(n) + n - 1; \quad T_M(1) = 1.$$
 Total number of comparisons is $O(n \log n)$, but the depth of recursion (parallel steps) is $O(\log n)$.
- Total number of comparisons for the sort is:
 $$T_S(2n) = 2T_S(n) + O(n \log n). \quad T_S(2) = 1.$$
 So, $T_S(n) = O(n \log^2 n)$.
- The circuit requires n processors in each column, with depth $O(\log^2 n)$, for a total of $O(n \log^2 n)$ processors and $O(\log^2 n)$ time.
- The processors only need to do comparisons with two inputs and two outputs.

Matrix-Vector Multiplication

Problem: Find the product $x = Ab$ of an m by n matrix A with a column vector b of size n.

Systolic solution:
- Use n processor elements arranged in an array, with processor P_i initially containing element b_i.
- Each processor takes a partial computation from its left neighbor and a new element of A from above, generating a partial computation for its right neighbor.

Cost: $O(n + m)$