Analysis of Algorithms

T. M. Murali

January 24, 2013
What is Algorithm Analysis?

- Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow faster or slower than another?
What is Algorithm Analysis?

- Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow faster or slower than another?
- Goal: Develop algorithms that provably run quickly and use low amounts of space.
Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- Why worst-case? Why not average-case or on random inputs?
Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size \(n \), as a function of \(n \).
- Why worst-case? Why not average-case or on random inputs?
- \textit{Input size} = number of elements in the input.
Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- Why worst-case? Why not average-case or on random inputs?
- **Input size** = number of elements in the input. Values in the input do not matter.
- Assume all elementary operations take unit time: assignment, arithmetic on a fixed-size number, comparisons, array lookup, following a pointer, etc.
Polynomial Time

- Brute force algorithm: Check every possible solution.
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given \(n \) numbers, permute them so that they appear in increasing order?
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given n numbers, permute them so that they appear in increasing order?
 - Try all possible $n!$ permutations of the numbers.
 - For each permutation, check if it is sorted.
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given \(n \) numbers, permute them so that they appear in increasing order?
 - Try all possible \(n! \) permutations of the numbers.
 - For each permutation, check if it is sorted.
 - Running time is \(nn! \). Unacceptable in practice!
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given \(n \) numbers, permute them so that they appear in increasing order?
 - Try all possible \(n! \) permutations of the numbers.
 - For each permutation, check if it is sorted.
 - Running time is \(nn! \). Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor \(c \).
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given n numbers, permute them so that they appear in increasing order?
 - Try all possible $n!$ permutations of the numbers.
 - For each permutation, check if it is sorted.
 - Running time is $nn!$. Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.
- An algorithm has a *polynomial* running time if there exist constants $c > 0$ and $d > 0$ such that on every input of size n, the running time of the algorithm is bounded by cn^d steps.
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given \(n \) numbers, permute them so that they appear in increasing order?
 - Try all possible \(n! \) permutations of the numbers.
 - For each permutation, check if it is sorted.
 - Running time is \(nn! \). Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor \(c \).
- An algorithm has a polynomial running time if there exist constants \(c > 0 \) and \(d > 0 \) such that on every input of size \(n \), the running time of the algorithm is bounded by \(cn^d \) steps.

Definition

An algorithm is **efficient** if it has a polynomial running time.
Upper and Lower Bounds

Definition
Asymptotic upper bound: A function $f(n)$ is $O(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$, we have $f(n) \leq cg(n)$.

Definition
Asymptotic lower bound: A function $f(n)$ is $\Omega(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$, we have $f(n) \geq cg(n)$.

Definition
Asymptotic tight bound: A function $f(n)$ is $\Theta(g(n))$ if $f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$.
Upper and Lower Bounds

Definition
Asymptotic upper bound: A function \(f(n) \) is \(O(g(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that for all \(n \geq n_0 \), we have \(f(n) \leq cg(n) \).

Definition
Asymptotic lower bound: A function \(f(n) \) is \(\Omega(g(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that for all \(n \geq n_0 \), we have \(f(n) \geq cg(n) \).

Definition
Asymptotic tight bound: A function \(f(n) \) is \(\Theta(g(n)) \) if \(f(n) \) is \(O(g(n)) \) and \(f(n) \) is \(\Omega(g(n)) \).

- In these definitions, \(c \) is a constant independent of \(n \).
- Abuse of notation: say \(g(n) = O(f(n)) \), \(g(n) = \Omega(f(n)) \), \(g(n) = \Theta(f(n)) \).
Properties of Asymptotic Growth Rates

Transitivity

- If $f = O(g)$ and $g = O(h)$, then $f = O(h)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.
Properties of Asymptotic Growth Rates

Transitivity

- If \(f = O(g) \) and \(g = O(h) \), then \(f = O(h) \).
- If \(f = \Omega(g) \) and \(g = \Omega(h) \), then \(f = \Omega(h) \).
- If \(f = \Theta(g) \) and \(g = \Theta(h) \), then \(f = \Theta(h) \).

Additivity

- If \(f = O(h) \) and \(g = O(h) \), then \(f + g = O(h) \).
- Similar statements hold for lower and tight bounds.
Properties of Asymptotic Growth Rates

Transitivity

- If \(f = O(g) \) and \(g = O(h) \), then \(f = O(h) \).
- If \(f = \Omega(g) \) and \(g = \Omega(h) \), then \(f = \Omega(h) \).
- If \(f = \Theta(g) \) and \(g = \Theta(h) \), then \(f = \Theta(h) \).

Additivity

- If \(f = O(h) \) and \(g = O(h) \), then \(f + g = O(h) \).
- Similar statements hold for lower and tight bounds.
- If \(k \) is a constant and there are \(k \) functions \(f_i = O(h), 1 \leq i \leq k \),
Properties of Asymptotic Growth Rates

Transitivity

- If \(f = O(g) \) and \(g = O(h) \), then \(f = O(h) \).
- If \(f = \Omega(g) \) and \(g = \Omega(h) \), then \(f = \Omega(h) \).
- If \(f = \Theta(g) \) and \(g = \Theta(h) \), then \(f = \Theta(h) \).

Additivity

- If \(f = O(h) \) and \(g = O(h) \), then \(f + g = O(h) \).
- Similar statements hold for lower and tight bounds.
- If \(k \) is a constant and there are \(k \) functions \(f_i = O(h) \), \(1 \leq i \leq k \), then \(f_1 + f_2 + \ldots + f_k = O(h) \).
Properties of Asymptotic Growth Rates

Transitivity

- If \(f = O(g) \) and \(g = O(h) \), then \(f = O(h) \).
- If \(f = \Omega(g) \) and \(g = \Omega(h) \), then \(f = \Omega(h) \).
- If \(f = \Theta(g) \) and \(g = \Theta(h) \), then \(f = \Theta(h) \).

Additivity

- If \(f = O(h) \) and \(g = O(h) \), then \(f + g = O(h) \).
- Similar statements hold for lower and tight bounds.
- If \(k \) is a constant and there are \(k \) functions \(f_i = O(h), 1 \leq i \leq k \), then \(f_1 + f_2 + \ldots + f_k = O(h) \).
- If \(f = O(g) \), then \(f + g = \)
Properties of Asymptotic Growth Rates

Transitivity

- If $f = O(g)$ and $g = O(h)$, then $f = O(h)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity

- If $f = O(h)$ and $g = O(h)$, then $f + g = O(h)$.
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 \leq i \leq k$, then $f_1 + f_2 + \ldots + f_k = O(h)$.
- If $f = O(g)$, then $f + g = \Theta(g)$.
Examples

\[
\begin{align*}
\triangleright \quad f(n) &= pn^2 + qn + r \text{ is} \\
\end{align*}
\]
Examples

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
Examples

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
Examples

- \(f(n) = pn^2 + qn + r \) is \(\Theta(n^2) \). Can ignore lower order terms.
- Is \(f(n) = pn^2 + qn + r = O(n^3) \)?
- \(f(n) = \sum_{0 \leq i \leq d} a_i n^i = \)
Examples

- \(f(n) = pn^2 + qn + r \) is \(\theta(n^2) \). Can ignore lower order terms.
- Is \(f(n) = pn^2 + qn + r = O(n^3) \)?
- \(f(n) = \sum_{0 \leq i \leq d} a_i n^i = O(n^d) \), if \(d > 0 \) is an integer constant and \(a_d > 0 \). Definition of \textit{polynomial time}
Examples

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- $f(n) = \sum_{0 \leq i \leq d} a_i n^i = O(n^d)$, if $d > 0$ is an integer constant and $a_d > 0$. Definition of *polynomial time*
- Is an algorithm with running time $O(n^{1.59})$ a polynomial-time algorithm?
Examples

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- $f(n) = \sum_{0 \leq i \leq d} a_i n^i = O(n^d)$, if $d > 0$ is an integer constant and $a_d > 0$. Definition of polynomial time
- Is an algorithm with running time $O(n^{1.59})$ a polynomial-time algorithm?
- $O(\log_a n) = O(\log_b n)$ for any pair of constants $a, b > 1$.
- For every $x > 0$, $\log n = O(n^x)$.
Examples

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- $f(n) = \sum_{0 \leq i \leq d} a_in^i = O(n^d)$, if $d > 0$ is an integer constant and $a_d > 0$. Definition of polynomial time
- Is an algorithm with running time $O(n^{1.59})$ a polynomial-time algorithm?
- $O(\log_a n) = O(\log_b n)$ for any pair of constants $a, b > 1$.
- For every $x > 0$, $\log n = O(n^x)$.
- For every $r > 1$ and every $d > 0$, $n^d = O(r^n)$.
Linear Time

- Running time is at most a constant factor times the size of the input.
Linear Time

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
Linear Time

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
- Sub-linear time.
Linear Time

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
- Sub-linear time. Binary search in a sorted array of n numbers takes $O(\log n)$ time.
$O(n \log n)$ Time

- Any algorithm where the costliest step is sorting.
Quadratic Time

- Enumerate all pairs of elements.
Quadratic Time

- Enumerate all pairs of elements.
- Given a set of n points in the plane, find the pair that are the closest.
Quadratic Time

- Enumerate all pairs of elements.
- Given a set of n points in the plane, find the pair that are the closest. Surprising fact: can solve this problem in $O(n \log n)$ time later in the semester.
\(O(n^k) \) Time

- Does a graph have an independent set of size \(k \), where \(k \) is a constant, i.e. there are \(k \) nodes such that no two are joined by an edge?
\[O(n^k) \text{ Time} \]

- Does a graph have an independent set of size \(k \), where \(k \) is a constant, i.e. there are \(k \) nodes such that no two are joined by an edge?
- Algorithm: For each subset \(S \) of \(k \) nodes, check if \(S \) is an independent set. If the answer is yes, report it.
\(O(n^k)\) Time

- Does a graph have an independent set of size \(k\), where \(k\) is a constant, i.e. there are \(k\) nodes such that no two are joined by an edge?
- Algorithm: For each subset \(S\) of \(k\) nodes, check if \(S\) is an independent set. If the answer is yes, report it.
- Running time is
$O(n^k)$ Time

- Does a graph have an independent set of size k, where k is a constant, i.e. there are k nodes such that no two are joined by an edge?
- Algorithm: For each subset S of k nodes, check if S is an independent set. If the answer is yes, report it.
- Running time is $O(k^2 \binom{n}{k}) = O(n^k)$.
Beyond Polynomial Time

- What is the largest size of an independent set in a graph with n nodes?
Beyond Polynomial Time

- What is the largest size of an independent set in a graph with \(n \) nodes?
- Algorithm: For each \(1 \leq i \leq n \), check if the graph has an independent size of size \(i \). Output largest independent set found.
Beyond Polynomial Time

- What is the largest size of an independent set in a graph with n nodes?
- Algorithm: For each $1 \leq i \leq n$, check if the graph has an independent size of size i. Output largest independent set found.
- What is the running time?
Beyond Polynomial Time

- What is the largest size of an independent set in a graph with n nodes?
- Algorithm: For each $1 \leq i \leq n$, check if the graph has an independent size of size i. Output largest independent set found.
- What is the running time? $O(n^2 2^n)$.