Divide and Conquer Algorithms

T. M. Murali

February 19, 2009
Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.
Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.
- Common use:
 - Partition problem into two equal sub-problems of size \(n/2 \).
 - Solve each part recursively.
 - Combine the two solutions in \(O(n) \) time.
 - Resulting running time is \(O(n \log n) \).
Sort

INSTANCE: Nonempty list \(L = x_1, x_2, \ldots, x_n \) of integers.

SOLUTION: A permutation \(y_1, y_2, \ldots, y_n \) of \(x_1, x_2, \ldots, x_n \) such that
\(y_i \leq y_{i+1} \), for all \(1 \leq i < n \).

Mergesort is a divide-and-conquer algorithm for sorting.

1. Partition \(L \) into two lists \(A \) and \(B \) of size \(\lfloor n/2 \rfloor \) and \(\lceil n/2 \rceil \) respectively.
2. Recursively sort \(A \).
3. Recursively sort \(B \).
4. Merge the sorted lists \(A \) and \(B \) into a single sorted list.
Merging Two Sorted Lists

- Merge two sorted lists $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$.

 Maintain a *current* pointer for each list.
 Initialise each pointer to the front of the list.
 While both lists are nonempty:
 - Let a_i and b_j be the elements pointed to by the *current* pointers.
 - Append the smaller of the two to the output list.
 - Advance the current pointer in the list that the smaller element belonged to.
 EndWhile
 Append the rest of the non-empty list to the output.

Running time of this algorithm is $O(k + l)$.
Merging Two Sorted Lists

- Merge two sorted lists \(A = a_1, a_2, \ldots, a_k \) and \(B = b_1, b_2, \ldots, b_l \).
 - Maintain a *current* pointer for each list.
 - Initialise each pointer to the front of the list.
 - While both lists are nonempty:
 - Let \(a_i \) and \(b_j \) be the elements pointed to by the *current* pointers.
 - Append the smaller of the two to the output list.
 - Advance the current pointer in the list that the smaller element belonged to.
 - EndWhile
 - Append the rest of the non-empty list to the output.

- Running time of this algorithm is \(O(k + l) \).
Analysing Mergesort

- Worst-case running time for \(n\) elements (\(T(n)\)) is at most the sum of the worst-case running time for \(\lfloor n/2 \rfloor\) elements, for \(\lceil n/2 \rceil\) elements, for splitting the input into two lists, and for merging two sorted lists.

- Assume \(n\) is a power of 2.
Analysing Mergesort

- Worst-case running time for n elements ($T(n)$) is at most the sum of the worst-case running time for $\lfloor n/2 \rfloor$ elements, for $\lceil n/2 \rceil$ elements, for splitting the input into two lists, and for merging two sorted lists.

- Assume n is a power of 2.

\[
T(n) \leq 2T(n/2) + cn, \quad n > 2
\]

\[
T(2) \leq c
\]
Analysing Mergesort

- Worst-case running time for n elements ($T(n)$) is at most the sum of the worst-case running time for $\lfloor n/2 \rfloor$ elements, for $\lceil n/2 \rceil$ elements, for splitting the input into two lists, and for merging two sorted lists.

- Assume n is a power of 2.

\[
T(n) \leq 2T(n/2) + cn, \quad n > 2
\]

\[
T(2) \leq c
\]

- Three basic ways of solving this recurrence relation:
 1. “Unroll” the recurrence (somewhat informal method).
 2. Guess a solution and substitute into recurrence to check.
 3. Guess solution in $O(\cdot)$ form and substitute into recurrence to determine the constants.
Unrolling the recurrence

Unrolling the recurrence $T(n) \leq 2T(n/2) + O(n)$.

Figure 5.1 Unrolling the recurrence $T(n) \leq 2T(n/2) + O(n)$.

- Level 0: cn
- Level 1: $cn/2 + cn/2 = cn$ total
- Level 2: $4(cn/4) = cn$ total
Unrolling the recurrence

- Recursion tree has log \(n \) levels.
- Total work done at each level is \(cn \).
- Running time of the algorithm is \(cn \log n \).

Figure 5.1 Unrolling the recurrence \(T(n) \leq 2T(n/2) + O(n) \).
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn\log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.
- Inductive step: assume $T(m) \leq cm \log_2 m$ for all $m < n$.
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.
- Inductive step: assume $T(m) \leq cm \log_2 m$ for all $m < n$. Therefore, $T(n/2) \leq (cn/2) \log(n/2)$.
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn\log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c\log 2$? Yes.
- Inductive step: assume $T(m) \leq cm\log_2 m$ for all $m < n$. Therefore, $T(n/2) \leq (cn/2)\log(n/2)$.

\[
T(n) \leq 2T\left(\frac{n}{2}\right) + cn \\
\leq 2\left(\frac{cn}{2}\log\left(\frac{n}{2}\right)\right) + cn \\
= cn\log\left(\frac{n}{2}\right) + cn \\
= cn\log n - cn + cn \\
= cn\log n.
\]
Partial Substitution

- Guess that the solution is $kn \log n$ (logarithm to the base 2).
- Substitute guess into the recurrence relation to check what value of k will satisfy the recurrence relation.
Partial Substitution

- Guess that the solution is $kn \log n$ (logarithm to the base 2).
- Substitute guess into the recurrence relation to check what value of k will satisfy the recurrence relation.
- $k \geq c$ will work.
Other Recurrence Relations

- Divide into q sub-problems of size $n/2$ and merge in $O(n)$ time. Two distinct cases: $q = 1$ and $q > 2$.
- Divide into two sub-problems of size $n/2$ and merge in $O(n^2)$ time.
Each invocation reduces the problem size by a factor of 2 \Rightarrow there are $\log n$ levels in the recursion tree.

At level i of the tree, the problem size is $n/2^i$ and the work done is $cn/2^i$.

Therefore, the total work done is $\sum_{i=0}^{\log n} cn/2^i = O(n)$.

Figure 5.3 Unrolling the recurrence $T(n) \leq T(n/2) + O(n)$.

$$T(n) = qT(n/2) + cn, q = 1$$
\[T(n) = qT(n/2) + cn, \quad q = 1 \]

- Each invocation reduces the problem size by a factor of 2 \(\Rightarrow \) there are \(\log n \) levels in the recursion tree.
- At level \(i \) of the tree, the problem size is \(n/2^i \) and the work done is \(cn/2^i \).
- Therefore, the total work done is

\[
\sum_{i=0}^{i=\log n} \frac{cn}{2^i} = O(n).
\]
\[T(n) = qT(n/2) + cn, \quad q > 2 \]

There are \(\log n \) levels in the recursion tree.

At level \(i \) of the tree, there are \(q^i \) sub-problems, each of size \(n/2^i \).

The total work done at level \(i \) is \(q^i cn/2^i \).

Therefore, the total work done is

\[
T(n) \leq \sum_{i=0}^{\log n} q^i cn/2^i \leq O(n \log q) .
\]

Figure 5.2 Unrolling the recurrence \(T(n) \leq 3T(n/2) + O(n) \).
\[T(n) = qT(n/2) + cn, \quad q > 2 \]

There are \(\log n \) levels in the recursion tree.

- At level \(i \) of the tree, there are \(q^i \) sub-problems, each of size \(n/2^i \).
- The total work done at level \(i \) is \(q^i cn/2^i \).
- Therefore, the total work done is

\[
T(n) \leq \sum_{i=0}^{i=\log n} q^i \frac{cn}{2^i} \leq \]

\[O(n \log 2 q) \]
There are $\log n$ levels in the recursion tree.
- At level i of the tree, there are q^i sub-problems, each of size $n/2^i$.
- The total work done at level i is $q^i cn/2^i$.
- Therefore, the total work done is

\[
T(n) \leq \sum_{i=0}^{i=\log n} q^i \frac{cn}{2^i} \leq O(n^{\log_2 q}).
\]
\[T(n) = 2T(n/2) + cn^2 \]

- Total work done is

\[
\sum_{i=0}^{i=\log n} 2^i \left(\frac{cn}{2^i} \right)^2 \leq \]

\[O(n^2) \]
\[T(n) = 2T(n/2) + cn^2 \]

- Total work done is

\[
\sum_{i=0}^{i=\log n} 2^i \left(\frac{cn}{2^i} \right)^2 \leq O(n^2).
\]