NP and Computational Intractability

T. M. Murali

April 7, 9, 2008
Algorithm Design

- Patterns
 - Greed. \(O(n \log n) \) interval scheduling.
 - Divide-and-conquer. \(O(n \log n) \) closest pair of points.
 - Dynamic programming. \(O(n^2) \) edit distance.
 - Duality. \(O(n^3) \) maximum flow and minimum cuts.
Algorithm Design

Patterns

- Greed. \(O(n \log n) \) interval scheduling.
- Divide-and-conquer. \(O(n \log n) \) closest pair of points.
- Dynamic programming. \(O(n^2) \) edit distance.
- Duality.
- Reductions.
- Local search.
- Randomization. \(O(n^3) \) maximum flow and minimum cuts.
Algorithm Design

- **Patterns**
 - Greed. \(O(n \log n)\) interval scheduling.
 - Divide-and-conquer. \(O(n \log n)\) closest pair of points.
 - Dynamic programming. \(O(n^2)\) edit distance.
 - Duality.
 - Reductions.
 - Local search.
 - Randomization.

- **“Anti-patterns”**
 - NP-completeness. \(O(n^k)\) algorithm unlikely.
 - PSPACE-completeness. \(O(n^k)\) certification algorithm unlikely.
 - Undecidability. No algorithm possible.
Computational Tractability

- When is an algorithm an efficient solution to a problem?
When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.
Computational Tractability

- When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.

- A problem is computationally tractable if it has a polynomial-time algorithm.
Computational Tractability

▶ When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.

▶ A problem is computationally tractable if it has a polynomial-time algorithm.

Polynomial time
- Shortest path
- Matching
- Minimum cut
- 2-SAT
- Planar four-colour
- Bipartite vertex cover
- Primality testing

Probably not
- Longest path
- 3-D matching
- Maximum cut
- 3-SAT
- Planar three-colour
- Vertex cover
- Factoring
Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an n-by-n board).
Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an n-by-n board).
- However, classification is unclear for a very large number of discrete computational problems.
Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an n-by-n board).
- However, classification is unclear for a very large number of discrete computational problems.
- We can prove that these problems are fundamentally equivalent and are manifestations of the same problem!
Polynomial-Time Reduction

- Goal is to express statements of the type “Problem X is at least as hard as problem Y.”
- Use the notion of *reductions*.
- Y is *polynomial-time reducible to* X ($Y \leq_P X$)
Polynomial-Time Reduction

- Goal is to express statements of the type “Problem X is at least as hard as problem Y.”
- Use the notion of reductions.
- \(Y \) is polynomial-time reducible to \(X \) (\(Y \leq_P X \)) if an arbitrary instance of \(Y \) can be solved using a polynomial number of standard operations, plus a polynomial number of calls to a black box that solves problem \(X \).
- \(Y \leq_P X \) implies that “\(X \) is at least as hard as \(Y \).”
- Such reductions are Cook reductions. Karp reductions allow only one call to the black box that solves \(X \).
Usefulness of Reductions

▶ Claim: If $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
Usefulness of Reductions

- Claim: If \(Y \leq_P X \) and \(X \) can be solved in polynomial time, then \(Y \) can be solved in polynomial time.

- Contrapositive: If \(Y \leq_P X \) and \(Y \) cannot be solved in polynomial time, then \(X \) cannot be solved in polynomial time.

- Informally: If \(Y \) is hard, and we can show that \(Y \) reduces to \(X \), then the hardness “spreads” to \(X \).
Reduction Strategies

- Simple equivalence.
- Special case to general case.
- Encoding with gadgets.
Optimisation versus Decision Problems

- So far, we have developed algorithms that solve optimisation problems.
 - Compute the largest flow.
 - Find the closest pair of points.
 - Find the schedule with the least completion time.
Optimisation versus Decision Problems

- So far, we have developed algorithms that solve optimisation problems.
 - Compute the largest flow.
 - Find the closest pair of points.
 - Find the schedule with the least completion time.
- Now, we will focus on decision versions of problems, e.g., is there a flow with value at least k, for a given value of k.
Independent Set and Vertex Cover

- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an *independent set* if no two vertices in S are connected by an edge.
- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a *vertex cover* if every edge in E is incident on at least one vertex in S.
Independent Set and Vertex Cover

- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an independent set if no two vertices in S are connected by an edge.
- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a vertex cover if every edge in E is incident on at least one vertex in S.

Independent Set

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain an independent set of size k?

Vertex cover

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size k?
Independent Set and Vertex Cover

- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an
 independent set if no two vertices in S are connected by an edge.
- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a *vertex cover* if every edge in E is incident on at least one vertex in S.

Independent Set

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain an independent set of size at least k?

Vertex Cover

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?
Independent Set and Vertex Cover

- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an *independent set* if no two vertices in S are connected by an edge.
- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a *vertex cover* if every edge in E is incident on at least one vertex in S.

Independent Set

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain an independent set of size at least k?

- Demonstrate simple equivalence between these two problems.

Vertex Cover

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?
Independent Set and Vertex Cover

- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an *independent set* if no two vertices in S are connected by an edge.
- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a *vertex cover* if every edge in E is incident on at least one vertex in S.

Independent Set

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain an independent set of size at least k?

- Demonstrate simple equivalence between these two problems.
- Claim: S is an independent set in G iff $V - S$ is a vertex cover in G.

Vertex Cover

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?
Independent Set and Vertex Cover

- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an \textit{independent set} if no two vertices in S are connected by an edge.
- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a \textit{vertex cover} if every edge in E is incident on at least one vertex in S.

<table>
<thead>
<tr>
<th>Independent Set</th>
<th>Vertex Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTANCE: Undirected graph G and an integer k</td>
<td>INSTANCE: Undirected graph G and an integer k</td>
</tr>
<tr>
<td>QUESTION: Does G contain an independent set of size at least k?</td>
<td>QUESTION: Does G contain a vertex cover of size at most k?</td>
</tr>
</tbody>
</table>

- Demonstrate simple equivalence between these two problems.
- Claim: S is an independent set in G iff $V - S$ is a vertex cover in G.
- Claim: $\text{Independent Set} \leq_P \text{Vertex Cover}$ and $\text{Vertex Cover} \leq_P \text{Independent Set}$.
Vertex Cover and Set Cover

- **Independent Set** is a “packing” problem: pack as many vertices as possible, subject to constraints (the edges).
- **Vertex Cover** is a “covering” problem: cover all edges in the graph with as few vertices as possible.
- There are more general covering problems.

Set Cover

INSTANCE: A set \(U \) of \(n \) elements, a collection \(S_1, S_2, \ldots, S_m \) of subsets of \(U \), and an integer \(k \).

QUESTION: Is there a collection of \(\leq k \) sets in the collection whose union is \(U \)?

Figure 8.2 An instance of the Set Cover Problem.
Reducing Vertex Cover to Set Cover

Claim: \textsc{Vertex Cover} \leq_p \textsc{Set Cover}
Claim: \textsc{Vertex Cover} \leq_P \textsc{Set Cover}

Input to \textsc{Vertex Cover} is an undirected graph $G(V, E)$ with n vertices.

Create an instance of \textsc{Set Cover} where

- $U = E$,
- for each vertex $i \in V$, create a set $S_i \subseteq U$ pf the edges incident on i.
Reducing Vertex Cover to Set Cover

- **Claim:** $\text{Vertex Cover} \leq_p \text{Set Cover}$
- **Input to Vertex Cover** is an undirected graph $G(V, E)$ with n vertices.
- **Create an instance of Set Cover where**
 - $U = E$,
 - for each vertex $i \in V$, create a set $S_i \subseteq U$ of the edges incident on i.
- **Claim:** U can be covered with fewer than k subsets iff G has a vertex cover with at most k nodes.
Introduction

Reductions

NP

*NP-Complete

Boolean Satisfiability

- Abstract problems formulated in Boolean notation.
- Often used to specify problems, e.g., in AI.
Boolean Satisfiability

- Abstract problems formulated in Boolean notation.
- Often used to specify problems, e.g., in AI.
- We are given a set $X = \{x_1, x_2, \ldots, x_n\}$ of n Boolean variables.
- Each variable can take the value 0 or 1.
- A term is a variable x_i or its negation $\overline{x_i}$.
- A clause of length l is a disjunction of l distinct terms $t_1 \lor t_2 \lor \cdots \lor t_l$.
- A truth assignment for X is a function $\nu : X \rightarrow \{0, 1\}$.
- An assignment satisfies a clause C if it causes C to evaluate to 1 under the rules of Boolean logic.
- An assignment satisfies a collection of clauses C_1, C_2, \ldots, C_k if it causes $C_1 \land C_2 \land \cdots \land C_k$ to evaluate to 1.
 - ν is a satisfying assignment with respect to C_1, C_2, \ldots, C_k.
 - set of clauses C_1, C_2, \ldots, C_k is satisfiable.
SAT and 3-SAT

SATISFIABILITY PROBLEM (SAT)

INSTANCE: A set of clauses $C_1, C_2, \ldots C_k$ over a set $X = \{x_1, x_2, \ldots x_n\}$ of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?
SAT and 3-SAT

Satisfiability Problem (SAT)

INSTANCE: A set of clauses \(C_1, C_2, \ldots, C_k \) over a set \(X = \{x_1, x_2, \ldots, x_n\} \) of \(n \) variables.

QUESTION: Is there a satisfying truth assignment for \(X \) with respect to \(C \)?

3-Satisfiability Problem (3-SAT)

INSTANCE: A set of clauses \(C_1, C_2, \ldots, C_k \) each of length 3 over a set \(X = \{x_1, x_2, \ldots, x_n\} \) of \(n \) variables.

QUESTION: Is there a satisfying truth assignment for \(X \) with respect to \(C \)?
SAT and 3-SAT

Satisfiability Problem (SAT)

INSTANCE: A set of clauses $C_1, C_2, \ldots C_k$ over a set $X = \{x_1, x_2, \ldots x_n\}$ of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?

3-Satisfiability Problem (3-SAT)

INSTANCE: A set of clauses $C_1, C_2, \ldots C_k$ each of length 3 over a set $X = \{x_1, x_2, \ldots x_n\}$ of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?

- SAT and 3-SAT are fundamental combinatorial search problems.
- We have to make n independent decisions (the assignments for each variable) while satisfying a set of constraints.
- Satisfying each constraint in isolation is easy, but we have to make our decisions so that all constraints are satisfied simultaneously.
3-SAT and Independent Set

We want to prove \(3\text{-SAT} \leq_P \text{INDEPENDENT SET}\).
3-SAT and Independent Set

- We want to prove 3-SAT \leq_P Independent Set.
- Two ways to think about 3-SAT:
 1. Make an independent 0/1 decision on each variable and succeed if we achieve one of three ways in which to satisfy each clause.
 2. Choose (at least) one term from each clause. Find a truth assignment that causes each chosen term to evaluate to 1. Ensure that no two terms selected conflict, i.e., select x_i and $\overline{x_i}$.

T. M. Murali April 7, 9, 2008 NP and Computational Intractability
We are given an instance of 3-SAT with \(k \) clauses of length three over \(n \) variables.

Construct a graph \(G(V, E) \) with \(3k \) nodes.

For each clause \(C_i, 1 \leq i \leq k \), add a triangle of three nodes \(v_{i1}, v_{i2}, v_{i3} \) and three edges to \(G \).

Label each node \(v_{ij}, 1 \leq j \leq 3 \) with the \(j \)th term in \(C_i \).
We are given an instance of 3-SAT with \(k \) clauses of length three over \(n \) variables.

Construct a graph \(G(V, E) \) with \(3k \) nodes.

- For each clause \(C_i, 1 \leq i \leq k \), add a triangle of three nodes \(v_{i1}, v_{i2}, v_{i3} \) and three edges to \(G \).
- Label each node \(v_{ij}, 1 \leq j \leq 3 \) with the \(j \)th term in \(C_i \).
- Add an edge between each pair of nodes whose labels correspond to terms that conflict.
Proving 3-SAT \leq_P Independent Set

Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.

Figure 8.3 The reduction from 3-SAT to Independent Set.
Proving 3-SAT \leq_P Independent Set

Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.

Satisfiable assignment \rightarrow independent set of size $\geq k$:
Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.

Satisfiable assignment → independent set of size $\geq k$: Each triangle in G has at least one node whose label evaluates to 1. These nodes form an independent set of size k. Why?

Figure 8.3 The reduction from 3-SAT to Independent Set.
Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.

Satisfiable assignment \rightarrow independent set of size $\geq k$: Each triangle in G has at least one node whose label evaluates to 1. These nodes form an independent set of size k. Why?

Independent set of size $\geq k$ \rightarrow satisfiable assignment:
Proving 3-SAT \(\leq P \) Independent Set

- **Claim:** 3-SAT instance is satisfiable iff \(G \) has an independent set of size at least \(k \).

- **Satisfiable assignment \(\rightarrow \) independent set of size \(\geq k \):** Each triangle in \(G \) has at least one node whose label evaluates to 1. These nodes form an independent set of size \(k \). Why?

- **Independent set of size \(\geq k \rightarrow \) satisfiable assignment:** the size of this set is \(k \). How do we construct a satisfying truth assignment from the nodes in the independent set?
Transitivity of Reductions

Claim: If $Z \leq_P Y$ and $Y \leq_P X$, then $Z \leq_P X$.
Transitivity of Reductions

- Claim: If $Z \leq_P Y$ and $Y \leq_P X$, then $Z \leq_P X$.
- We have shown

3-SAT \leq_P Independent Set \leq_P Vertex Cover \leq_P Set Cover
Finding vs. Certifying

- Is it easy to check if a given set of vertices in an undirected graph forms an independent set of size at least \(k \)?
- Is it easy to check if a particular truth assignment satisfies a set of clauses?
Finding vs. Certifying

- Is it easy to check if a given set of vertices in an undirected graph forms an independent set of size at least k?
- Is it easy to check if a particular truth assignment satisfies a set of clauses?
- We draw a contrast between finding a solution and checking a solution (in polynomial time).
- Since we have not been able to develop efficient algorithms to solve many decision problems, let us turn our attention to whether we can check if a proposed solution is correct.
Problems, Algorithms, and Strings

- Encode input to a computational problem as a finite binary string \(s \) of length \(|s| \).
- Identify a decision problem \(X \) with the set of strings for which the answer is “yes”,...
Problems, Algorithms, and Strings

- Encode input to a computational problem as a finite binary string s of length $|s|$.
- Identify a decision problem X with the set of strings for which the answer is “yes”, e.g., PRIMES = \{2, 3, 5, 7, 11, \ldots\}.
Problems, Algorithms, and Strings

- Encode input to a computational problem as a finite binary string s of length $|s|$.
- Identify a decision problem X with the set of strings for which the answer is “yes”, e.g., $\text{PRIMES} = \{2, 3, 5, 7, 11, \ldots\}$.
- An algorithm A for a decision problem receives an input string s and returns $A(s) \in \{\text{yes}, \text{no}\}$.
- A solves the problem X if for every string s, $A(s) = \text{yes}$ iff $s \in X$.

- NP: set of problems X for which there is a polynomial time algorithm.
Problems, Algorithms, and Strings

- Encode input to a computational problem as a finite binary string s of length $|s|$.
- Identify a decision problem X with the set of strings for which the answer is “yes”, e.g., $\text{PRIMES} = \{2, 3, 5, 7, 11, \ldots\}$.
- An algorithm A for a decision problem receives an input string s and returns $A(s) \in \{\text{yes, no}\}$.
- A solves the problem X if for every string s, $A(s) = \text{yes}$ iff $s \in X$.
- A has a polynomial running time if there is a polynomial function $p(\cdot)$ such that for every input string s, A terminates on s in at most $O(p(|s|))$ steps.
Problems, Algorithms, and Strings

- Encode input to a computational problem as a finite binary string s of length $|s|$.
- Identify a decision problem X with the set of strings for which the answer is “yes”, e.g., $\text{PRIMES} = \{2, 3, 5, 7, 11, \ldots\}$.
- An algorithm A for a decision problem receives an input string s and returns $A(s) \in \{\text{yes, no}\}$.
- A solves the problem X if for every string s, $A(s) = \text{yes}$ iff $s \in X$.
- A has a \textit{polynomial running time} if there is a polynomial function $p(\cdot)$ such that for every input string s, A terminates on s in at most $O(p(|s|))$ steps, e.g., there is an algorithm such that $p(|s|) = |s|^8$ for PRIMES (Agarwal, Kayal, Saxena, 2002).
Problems, Algorithms, and Strings

- Encode input to a computational problem as a finite binary string s of length $|s|$.
- Identify a decision problem X with the set of strings for which the answer is “yes”, e.g., $\text{PRIMES} = \{2, 3, 5, 7, 11, \ldots\}$.
- An algorithm A for a decision problem receives an input string s and returns $A(s) \in \{\text{yes}, \text{no}\}$.
- A solves the problem X if for every string s, $A(s) = \text{yes}$ iff $s \in X$.
- A has a polynomial running time if there is a polynomial function $p(\cdot)$ such that for every input string s, A terminates on s in at most $O(p(|s|))$ steps, e.g., there is an algorithm such that $p(|s|) = |s|^8$ for PRIMES (Agarwal, Kayal, Saxena, 2002).
- \mathcal{P}: set of problems X for which there is a polynomial time algorithm.
Efficient Certification

▶ A “checking” algorithm for a decision problem X has a different structure from an algorithm that solves X.

▶ Checking algorithm needs input string s as well as a separate “certificate” string t that contains evidence that $s \in X$.
Efficient Certification

- A “checking” algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input string s as well as a separate “certificate” string t that contains evidence that $s \in X$.
- An algorithm B is an efficient certifier for a problem X if
 1. B is a polynomial time algorithm that takes two inputs s and t and
 2. there is a polynomial function p so that for every string s, we have $s \in X$ iff there exists a string t such that $|t| \leq p(|s|)$ and $B(s, t) = yes$.
Efficient Certification

- A “checking” algorithm for a decision problem X has a different structure from an algorithm that solves X.

- Checking algorithm needs input string s as well as a separate “certificate” string t that contains evidence that $s \in X$.

- An algorithm B is an efficient certifier for a problem X if
 1. B is a polynomial time algorithm that takes two inputs s and t and
 2. there is a polynomial function p so that for every string s, we have $s \in X$ iff there exists a string t such that $|t| \leq p(|s|)$ and $B(s, t) = yes$.

- Certifier’s job is to take a candidate short proof (t) that $s \in X$ and check in polynomial time whether t is a correct proof.

- Certifier does not care about how to find these proofs.
\(\mathcal{NP} \)

- \(\mathcal{NP} \) is the set of all problems for which there exists an efficient certifier.
- \(3\text{-SAT} \in \mathcal{NP} \):
\section*{\textit{NP}}

- \textit{NP} is the set of all problems for which there exists an efficient certifier.
- \text{3-SAT} \in \text{NP}: \text{t} is a truth assignment; \text{B} evaluates the clauses with respect to the assignment.
\(\mathcal{NP} \)

- \(\mathcal{NP} \) is the set of all problems for which there exists an efficient certifier.
- \(3\text{-SAT} \in \mathcal{NP} \): \(t \) is a truth assignment; \(B \) evaluates the clauses with respect to the assignment.
- \text{Independent Set} \in \mathcal{NP}:
\(\mathcal{NP} \)

- \(\mathcal{NP} \) is the set of all problems for which there exists an efficient certifier.
- \(\text{3-SAT} \in \mathcal{NP} \): \(t \) is a truth assignment; \(B \) evaluates the clauses with respect to the assignment.
- \(\text{Independent Set} \in \mathcal{NP} \): \(t \) is a set of at least \(k \) vertices; \(B \) checks that no pair of these vertices are connected by an edge.
\[\mathcal{NP} \]

- \(\mathcal{NP} \) is the set of all problems for which there exists an efficient certifier.
- 3-SAT \(\in \mathcal{NP} \): \(t \) is a truth assignment; \(B \) evaluates the clauses with respect to the assignment.
- Independent Set \(\in \mathcal{NP} \): \(t \) is a set of at least \(k \) vertices; \(B \) checks that no pair of these vertices are connected by an edge.
- Set Cover \(\in \mathcal{NP} \):
\(\mathcal{NP} \)

- \(\mathcal{NP} \) is the set of all problems for which there exists an efficient certifier.
- 3-SAT \(\in \mathcal{NP} \): \(t \) is a truth assignment; \(B \) evaluates the clauses with respect to the assignment.
- Independent Set \(\in \mathcal{NP} \): \(t \) is a set of at least \(k \) vertices; \(B \) checks that no pair of these vertices are connected by an edge.
- Set Cover \(\in \mathcal{NP} \): \(t \) is a list of \(k \) sets from the collection; \(B \) checks if their union is \(U \).
▶ \mathcal{NP} is the set of all problems for which there exists an efficient certifier.

▶ 3-SAT $\in \mathcal{NP}$: t is a truth assignment; B evaluates the clauses with respect to the assignment.

▶ Independent Set $\in \mathcal{NP}$: t is a set of at least k vertices; B checks that no pair of these vertices are connected by an edge.

▶ Set Cover $\in \mathcal{NP}$: t is a list of k sets from the collection; B checks if their union is U.
Claim: $P \subseteq NP$.

Is $P = NP$ or is $NP - P \neq \emptyset$. One of the major unsolved problems in computer science.
\(\mathcal{P} \text{ vs. } \mathcal{NP} \)

- Claim: \(\mathcal{P} \subseteq \mathcal{NP} \). If \(X \in \mathcal{P} \), then there is a polynomial time algorithm \(A \) that solves \(X \). \(B \) ignores \(t \) and returns \(A(s) \). Why is \(B \) an efficient certifier?
\[\mathcal{P} \text{ vs. } \mathcal{NP} \]

- Claim: \(\mathcal{P} \subseteq \mathcal{NP} \). If \(X \in \mathcal{P} \), then there is a polynomial time algorithm \(A \) that solves \(X \). \(B \) ignores \(t \) and returns \(A(s) \). Why is \(B \) an efficient certifier?
- Is \(\mathcal{P} = \mathcal{NP} \) or is \(\mathcal{NP} - \mathcal{P} \neq \emptyset \).
\[\mathcal{P} \text{ vs. } \mathcal{NP} \]

- **Claim:** \(\mathcal{P} \subseteq \mathcal{NP} \). If \(X \in \mathcal{P} \), then there is a polynomial time algorithm \(A \) that solves \(X \). \(B \) ignores \(t \) and returns \(A(s) \). Why is \(B \) an efficient certifier?

- Is \(\mathcal{P} = \mathcal{NP} \) or is \(\mathcal{NP} \setminus \mathcal{P} \neq \emptyset \). One of the major unsolved problems in computer science.
P vs. NP

- Claim: \(P \subseteq NP \). If \(X \in P \), then there is a polynomial time algorithm \(A \) that solves \(X \). \(B \) ignores \(t \) and returns \(A(s) \). Why is \(B \) an efficient certifier?

- Is \(P = NP \) or is \(NP - P \neq \emptyset \). One of the major unsolved problems in computer science.
NP-Complete Problems

- What are the hardest problems in \(\text{NP} \)?
\textbf{\(NP\)-Complete Problems}

- What are the hardest problems in \(NP\)?
- A problem \(X\) is \textbf{\(NP\)-Complete} if
 1. \(X \in NP\) and
 2. for every problem \(Y \in NP\), \(Y \leq_p X\).

\textit{Claim:} Suppose \(X\) is \(NP\)-Complete. Then \(X\) can be solved in polynomial-time iff \(P = NP\).

\textit{Corollary:} If there is any problem in \(NP\) that cannot be solved in polynomial time, then no \(NP\)-Complete problem can be solved in polynomial time.

Are there any \(NP\)-Complete problems?

1. Perhaps there are two problems \(X_1\) and \(X_2\) in \(NP\) such that there is no problem \(X \in NP\) where \(X_1 \leq_p X\) and \(X_2 \leq_p X\).
2. Perhaps there is a sequence of problems \(X_1, X_2, X_3, \ldots\) in \(NP\), each strictly harder than the previous one.
NP-Complete Problems

- What are the hardest problems in NP?
- A problem \(X \) is \(\text{NP-Complete} \) if
 1. \(X \in \text{NP} \) and
 2. for every problem \(Y \in \text{NP} \), \(Y \leq_P X \).
- Claim: Suppose \(X \) is \(\text{NP-Complete} \). Then \(X \) can be solved in polynomial-time iff \(\mathcal{P} = \text{NP} \).
NP-Complete Problems

- What are the hardest problems in \mathcal{NP}?
- A problem X is \mathcal{NP}-Complete if
 1. $X \in \mathcal{NP}$ and
 2. for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.
- Claim: Suppose X is \mathcal{NP}-Complete. Then X can be solved in polynomial-time iff $\mathcal{P} = \mathcal{NP}$.
- Corollary: If there is any problem in \mathcal{NP} that cannot be solved in polynomial time, then no \mathcal{NP}-Complete problem can be solved in polynomial time.
\(\mathcal{NP}\)-Complete Problems

- What are the hardest problems in \(\mathcal{NP}\)?
- A problem \(X\) is \(\mathcal{NP}\)-Complete if
 1. \(X \in \mathcal{NP}\) and
 2. for every problem \(Y \in \mathcal{NP}\), \(Y \leq_P X\).

- Claim: Suppose \(X\) is \(\mathcal{NP}\)-Complete. Then \(X\) can be solved in polynomial-time iff \(P = \mathcal{NP}\).

- Corollary: If there is any problem in \(\mathcal{NP}\) that cannot be solved in polynomial time, then no \(\mathcal{NP}\)-Complete problem can be solved in polynomial time.

- Are there any \(\mathcal{NP}\)-Complete problems?
 1. Perhaps there are two problems \(X_1\) and \(X_2\) in \(\mathcal{NP}\) such that there is no problem \(X \in \mathcal{NP}\) where \(X_1 \leq_P X\) and \(X_2 \leq_P X\).
 2. Perhaps there is a sequence of problems \(X_1, X_2, X_3, \ldots\) in \(\mathcal{NP}\), each strictly harder than the previous one.
Circuit Satisfiability

- **Cook-Levin Theorem**: \textsc{Circuit Satisfiability} is NP-Complete.
Circuit Satisfiability

- **Cook-Levin Theorem**: Circuit Satisfiability is \(\mathcal{NP} \)-Complete.
- A circuit \(K \) is a labelled, directed acyclic graph such that
 1. the sources in \(K \) are labelled with constants (0 or 1) or the name of a distinct variable (the inputs to the circuit).
 2. every other node is labelled with one Boolean operator \(\land \), \(\lor \), or \(\neg \).
 3. a single node with no outgoing edges represents the output of \(K \).

![Diagram of a circuit](image)

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.
Circuit Satisfiability

- **Cook-Levin Theorem**: Circuit Satisfiability is \(\mathcal{NP} \)-Complete.

- A circuit \(K \) is a labelled, directed acyclic graph such that
 1. the sources in \(K \) are labelled with constants (0 or 1) or the name of a distinct variable (the inputs to the circuit).
 2. every other node is labelled with one Boolean operator \(\land \), \(\lor \), or \(\neg \).
 3. a single node with no outgoing edges represents the output of \(K \).

Circuit Satisfiability

INSTANCE: A circuit \(K \).

QUESTION: Is there a truth assignment to the inputs that causes the output to have value 1?

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.
Proving Circuit Satisfiability is \(\mathcal{NP} \)-Complete
Proving Circuit Satisfiability is \(\mathcal{NP} \)-Complete

- Take an arbitrary problem \(X \in \mathcal{NP} \) and show that \(X \leq \mathcal{P} \text{Circuit Satisfiability} \).

Claim we will not prove: any algorithm that takes a fixed number \(n \) of bits as input and produces a yes/no answer

1. can be represented by an equivalent circuit
2. if the running time of the algorithm is polynomial in \(n \), the size of the circuit is a polynomial in \(n \).

To show \(X \leq \mathcal{P} \text{Circuit Satisfiability} \), given an input \(s \) of length \(n \), we want to determine whether \(s \in X \) using a black box that solves \(\text{Circuit Satisfiability} \).

What do we know about \(X \)?

It has an efficient certifier \(B(\cdot, \cdot) \).

To determine whether \(s \in X \), we ask "Is there a string \(t \) of length \(p(n) \) such that \(B(s, t) = \text{yes} \)?"
Proving Circuit Satisfiability is \mathcal{NP}-Complete

- Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_{P} \text{Circuit Satisfiability}$.
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 1. can be represented by an equivalent circuit and
 2. if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
Proving Circuit Satisfiability is \(\mathcal{NP} \)-Complete

- Take an arbitrary problem \(X \in \mathcal{NP} \) and show that \(X \leq_P \text{Circuit Satisfiability} \).

- Claim we will not prove: any algorithm that takes a fixed number \(n \) of bits as input and produces a yes/no answer
 1. can be represented by an equivalent circuit and
 2. if the running time of the algorithm is polynomial in \(n \), the size of the circuit is a polynomial in \(n \).

- To show \(X \leq_P \text{Circuit Satisfiability} \), given an input \(s \) of length \(n \), we want to determine whether \(s \in X \) using a black box that solves \text{Circuit Satisfiability}.
Introduction

Reductions

\(\mathcal{NP} \)-Complete

Proving Circuit Satisfiability is \(\mathcal{NP} \)-Complete

- Take an arbitrary problem \(X \in \mathcal{NP} \) and show that \(X \leq_P \text{Circuit Satisfiability} \).
- Claim we will not prove: any algorithm that takes a fixed number \(n \) of bits as input and produces a yes/no answer
 1. can be represented by an equivalent circuit and
 2. if the running time of the algorithm is polynomial in \(n \), the size of the circuit is a polynomial in \(n \).
- To show \(X \leq_P \text{Circuit Satisfiability} \), given an input \(s \) of length \(n \), we want to determine whether \(s \in X \) using a black box that solves \(\text{Circuit Satisfiability} \).
- What do we know about \(X \)?
Proving Circuit Satisfiability is \(\mathcal{NP} \)-Complete

- Take an arbitrary problem \(X \in \mathcal{NP} \) and show that \(X \leq_P \text{Circuit Satisfiability} \).
- Claim we will not prove: any algorithm that takes a fixed number \(n \) of bits as input and produces a yes/no answer
 1. can be represented by an equivalent circuit and
 2. if the running time of the algorithm is polynomial in \(n \), the size of the circuit is a polynomial in \(n \).
- To show \(X \leq_P \text{Circuit Satisfiability} \), given an input \(s \) of length \(n \), we want to determine whether \(s \in X \) using a black box that solves \(\text{Circuit Satisfiability} \).
- What do we know about \(X \)? It has an efficient certifier \(B(\cdot, \cdot) \).
Proving Circuit Satisfiability is \mathcal{NP}-Complete

- Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_p \text{Circuit Satisfiability}$.
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 1. can be represented by an equivalent circuit and
 2. if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
- To show $X \leq_p \text{Circuit Satisfiability}$, given an input s of length n, we want to determine whether $s \in X$ using a black box that solves Circuit Satisfiability.
- What do we know about X? It has an efficient certifier $B(\cdot, \cdot)$.
- To determine whether $s \in X$, we ask “Is there a string t of length $p(n)$ such that $B(s, t) = \text{yes}$?”
To determine whether $s \in X$, we ask “Is there a string t of length $p(|s|)$ such that $B(s, t) = \text{yes}$?”
Proving Circuit Satisfiability is \mathcal{NP}-Complete

- To determine whether $s \in X$, we ask “Is there a string t of length $p(|s|)$ such that $B(s, t) = \text{yes}$?”
- View $B(\cdot, \cdot)$ as an algorithm on $n + p(n)$ bits.
- Convert B to a polynomial-sized circuit K with $n + p(n)$ sources.
 1. First n sources are hard-coded with the bits of s.
 2. The remaining $p(n)$ sources labelled with variables representing the bits of t.
Proving Circuit Satisfiability is \(\mathcal{NP} \)-Complete

- To determine whether \(s \in X \), we ask “Is there a string \(t \) of length \(p(|s|) \) such that \(B(s, t) = \text{yes} \)?”
- View \(B(\cdot, \cdot) \) as an algorithm on \(n + p(n) \) bits.
- Convert \(B \) to a polynomial-sized circuit \(K \) with \(n + p(n) \) sources.
 1. First \(n \) sources are hard-coded with the bits of \(s \).
 2. The remaining \(p(n) \) sources labelled with variables representing the bits of \(t \).
- \(s \in X \) iff there is an assignment of the input bits of \(K \) that makes \(K \) satisfiable.
Example of Transformation to Circuit Satisfiability

Does a graph G on n nodes have a two-node independent set?
Example of Transformation to Circuit Satisfiability

- Does a graph G on n nodes have a two-node independent set?
- s encodes the graph G with $\binom{n}{2}$ bits.
- t encodes the independent set with n bits.
- Certifier needs to check if
 1. at least two bits in t are set to 1 and
 2. no two bits in t are set to 1 if they form the ends of an edge (the corresponding bit in s is set to 1).
Example of Transformation to Circuit Satisfiability

- Suppose G contains three nodes $u, v, \text{ and } w$ with v connected to u and w.
Example of Transformation to Circuit Satisfiability

- Suppose G contains three nodes u, v, and w with v connected to u and w.

![Diagram of circuit satisfiability](image)

Figure 8.5 A circuit to verify whether a 3-node graph contains a 2-node independent set.
Proving Other Problems \mathcal{NP}-Complete

- Claim: If Y is \mathcal{NP}-Complete and $X \in \mathcal{NP}$ such that $Y \leq_P X$, then X is \mathcal{NP}-Complete.
Proving Other Problems \mathcal{NP}-Complete

- Claim: If Y is \mathcal{NP}-Complete and $X \in \mathcal{NP}$ such that $Y \leq_{\mathcal{P}} X$, then X is \mathcal{NP}-Complete.

- Given a new problem X, a general strategy for proving it \mathcal{NP}-Complete is

1. Prove that $X \in \mathcal{NP}$.
2. Select a problem Y known to be \mathcal{NP}-Complete.
3. Prove that $Y \leq_{\mathcal{P}} X$.

If we use Karp reductions, we can refine the strategy:

1. Prove that $X \in \mathcal{NP}$.
2. Select a problem Y known to be \mathcal{NP}-Complete.
3. Consider an arbitrary instance s_Y of problem Y. Show how to construct, in polynomial time, an instance s_X of problem X such that
 (a) If $s_Y \in Y$, then $s_X \in X$ and
 (b) If $s_X \in X$, then $s_Y \in Y$.

T. M. Murali April 7, 9, 2008 NP and Computational Intractability
Claim: If \(Y \) is \(\mathcal{NP} \)-Complete and \(X \in \mathcal{NP} \) such that \(Y \leq_P X \), then \(X \) is \(\mathcal{NP} \)-Complete.

Given a new problem \(X \), a general strategy for proving it \(\mathcal{NP} \)-Complete is

1. Prove that \(X \in \mathcal{NP} \).
2. Select a problem \(Y \) known to be \(\mathcal{NP} \)-Complete.
3. Prove that \(Y \leq_P X \).
Proving Other Problems \(\mathcal{NP} \)-Complete

- Claim: If \(Y \) is \(\mathcal{NP} \)-Complete and \(X \in \mathcal{NP} \) such that \(Y \leq_p X \), then \(X \) is \(\mathcal{NP} \)-Complete.

- Given a new problem \(X \), a general strategy for proving it \(\mathcal{NP} \)-Complete is
 1. Prove that \(X \in \mathcal{NP} \).
 2. Select a problem \(Y \) known to be \(\mathcal{NP} \)-Complete.
 3. Prove that \(Y \leq_p X \).

- If we use Karp reductions, we can refine the strategy:
 1. Prove that \(X \in \mathcal{NP} \).
 2. Select a problem \(Y \) known to be \(\mathcal{NP} \)-Complete.
 3. Consider an arbitrary instance \(s_Y \) of problem \(Y \). Show how to construct, in polynomial time, an instance \(s_X \) of problem \(X \) such that
 (a) If \(s_Y \in Y \), then \(s_X \in X \) and
 (b) If \(s_X \in X \), then \(s_Y \in Y \).