Divide and Conquer Algorithms

T. M. Murali

February 13, 2008
Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.
Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.

Common use:
- Partition problem into two equal sub-problems of size \(n/2 \).
- Solve each part recursively.
- Combine the two solutions in \(O(n) \) time.
- Resulting running time is \(O(n \log n) \).
Mergesort

Sort

INSTANCE: Nonempty list \(L = x_1, x_2, \ldots, x_n \) of integers.

SOLUTION: A permutation \(y_1, y_2, \ldots, y_n \) of \(x_1, x_2, \ldots, x_n \) such that \(y_i \leq y_{i+1} \), for all \(1 \leq i < n \).

Mergesort is a divide-and-conquer algorithm for sorting.

1. Partition \(L \) into two lists \(A \) and \(B \) of size \(\lfloor n/2 \rfloor \) and \(\lceil n/2 \rceil \) respectively.
2. Recursively sort \(A \).
3. Recursively sort \(B \).
4. Merge the sorted lists \(A \) and \(B \) into a single sorted list.
Merging Two Sorted Lists

Merge two sorted lists $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots b_l$. Maintain a *current* pointer for each list. Initialise each pointer to the front of the list. While both lists are nonempty:

Let a_i and b_j be the elements pointed to by the *current* pointers. Append the smaller of the two to the output list. Advance the current pointer in the list that the smaller element belonged to.

EndWhile
Append the rest of the non-empty list to the output.

Running time of this algorithm is $O(k + l)$.

T. M. Murali February 13, 2008 Divide and Conquer Algorithms
Merging Two Sorted Lists

- Merge two sorted lists \(A = a_1, a_2, \ldots, a_k \) and \(B = b_1, b_2, \ldots b_l \).

 Maintain a *current* pointer for each list.

 Initialise each pointer to the front of the list.

 While both lists are nonempty:

 Let \(a_i \) and \(b_j \) be the elements pointed to by the *current* pointers.

 Append the smaller of the two to the output list.

 Advance the current pointer in the list that the smaller element belonged to.

 EndWhile

 Append the rest of the non-empty list to the output.

- Running time of this algorithm is \(O(k + l) \).
Analysing Mergesort

- Worst-case running time for n elements ($T(n)$) is at most the sum of the worst-case running time for $\lfloor n/2 \rfloor$ elements, for $\lceil n/2 \rceil$ elements, for splitting the input into two lists, and for merging two sorted lists.

- Assume n is a power of 2.
Analysing Mergesort

- Worst-case running time for n elements ($T(n)$) is at most the sum of the worst-case running time for $\lfloor n/2 \rfloor$ elements, for $\lceil n/2 \rceil$ elements, for splitting the input into two lists, and for merging two sorted lists.

- Assume n is a power of 2.

\[
T(n) \leq 2T(n/2) + cn, \quad n > 2
\]
\[
T(2) \leq c
\]
Analysing Mergesort

- Worst-case running time for n elements ($T(n)$) is at most the sum of the worst-case running time for $\lfloor n/2 \rfloor$ elements, for $\lceil n/2 \rceil$ elements, for splitting the input into two lists, and for merging two sorted lists.

- Assume n is a power of 2.

\[
T(n) \leq 2T(n/2) + cn, \quad n > 2
\]
\[
T(2) \leq c
\]

- Three basic ways of solving this recurrence relation:
 1. “Unroll” the recurrence (somewhat informal method).
 2. Guess a solution and substitute into recurrence to check.
 3. Guess solution in $O()$ form and substitute into recurrence to determine the constants.
Unrolling the recurrence

Recursion tree has $\log n$ levels.

Total work done at each level is cn.

Running time of the algorithm is $cn \log n$.

Figure 5.1 Unrolling the recurrence $T(n) \leq 2T(n/2) + O(n)$.
Unrolling the recurrence

Recursion tree has log n levels.

- Total work done at each level is cn.
- Running time of the algorithm is $cn \log n$.

Figure 5.1 Unrolling the recurrence $T(n) \leq 2T(n/2) + O(n)$.
Substituting a Solution into the Recurrence

- Guess that the solution is $cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
Substituting a Solution into the Recurrence

- Guess that the solution is \(cn \log n \) (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: \(n = 2 \). Is \(T(2) = c \leq 2c \log 2 \)? Yes.
Substituting a Solution into the Recurrence

- Guess that the solution is $cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.
- Inductive step: assume $T(m) \leq cm \log_2 m$ for all $m < n$.

T. M. Murali February 13, 2008 Divide and Conquer Algorithms
Substituting a Solution into the Recurrence

- Guess that the solution is $cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.
- Inductive step: assume $T(m) \leq cm \log_2 m$ for all $m < n$. Therefore, $T(n/2) \leq (cn/2) \log n - cn/2$.
Substituting a Solution into the Recurrence

- Guess that the solution is $cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.
- Inductive step: assume $T(m) \leq cm \log_2 m$ for all $m < n$. Therefore, $T(n/2) \leq (cn/2) \log n - cn/2$.

$$
T(n) \leq 2T(n/2) + cn \\
\leq 2((cn/2) \log n - cn/2) + cn \\
= cn \log n
$$
Guess that the solution is $kn \log n$ (logarithm to the base 2).

Substitute guess into the recurrence relation to check what value of k will satisfy the recurrence relation.
Partial Substitution

- Guess that the solution is \(kn \log n \) (logarithm to the base 2).
- Substitute guess into the recurrence relation to check what value of \(k \) will satisfy the recurrence relation.
- \(k \geq c \) will work.
Divide into q sub-problems of size $n/2$ and merge in $O(n)$ time. Two distinct cases: $q = 1$ and $q > 2$.

- Divide into two sub-problems of size $n/2$ and merge in $O(n^2)$ time.
\[T(n) = qT(n/2) + cn, \quad q = 1 \]

Figure 5.3 Unrolling the recurrence \(T(n) \leq T(n/2) + O(n) \).
\[T(n) = qT(n/2) + cn, \quad q = 1 \]

Total work done is \(cn + cn/2 + cn/2^2 + \ldots \leq \)

Figure 5.3 Unrolling the recurrence \(T(n) \leq T(n/2) + O(n) \).
$T(n) = qT(n/2) + cn, q = 1$

cn time, plus recursive calls

Level 0: cn total

Level 1: $cn/2$ total

Level 2: $cn/4$ total

Figure 5.3 Unrolling the recurrence $T(n) \leq T(n/2) + O(n)$.

- Total work done is $cn + cn/2 + cn/2^2 + \ldots \leq 2cn$.
\[T(n) = qT(n/2) + cn, \quad q > 2 \]

\textbf{Figure 5.2} Unrolling the recurrence \(T(n) \leq 3T(n/2) + O(n) \).
\[T(n) = q T(n/2) + cn, \quad q > 2 \]

\[\text{Total work done is} \quad cn + qcn/2 + q^2 cn/2^2 + \ldots \leq \]

\textbf{Figure 5.2} Unrolling the recurrence \(T(n) \leq 3T(n/2) + O(n) \).
\[T(n) = qT(n/2) + cn, \quad q > 2 \]

Figure 5.2 Unrolling the recurrence \(T(n) \leq 3T(n/2) + O(n) \).

- Total work done is \(cn + qcn/2 + q^2cn/2^2 + \ldots \leq O(n\log_2 q) \).
Total work done is

\[T(n) = 2T(n/2) + cn^2 \]

\[cn^2 + 2c(n/2)^2 + 2^2c(n/4)^2 + \ldots \leq \]
\[T(n) = 2T(n/2) + cn^2 \]

- Total work done is \(cn^2 + 2c(n/2)^2 + 2^2 c(n/4)^2 + \ldots \leq O(n^2) \).