Divide and Conquer Algorithms

T. M. Murali

February 13, 2008

Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- ▶ Solve base cases by brute force.
- ▶ Efficiently combine solutions for sub-problems into final solution.

Divide and Conquer

- ▶ Break up a problem into several parts.
- Solve each part recursively.
- ▶ Solve base cases by brute force.
- ▶ Efficiently combine solutions for sub-problems into final solution.
- Common use:
 - ▶ Partition problem into two equal sub-problems of size n/2.
 - Solve each part recursively.
 - ▶ Combine the two solutions in O(n) time.
 - ▶ Resulting running time is $O(n \log n)$.

Mergesort

Sort

INSTANCE: Nonempty list $L = x_1, x_2, \dots, x_n$ of integers. **SOLUTION:** A permutation y_1, y_2, \dots, y_n of x_1, x_2, \dots, x_n such that $y_i < y_{i+1}$, for all 1 < i < n.

- ▶ Mergesort is a divide-and-conquer algorithm for sorting.
 - 1. Partition L into two lists A and B of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
 - 2. Recursively sort A.
 - 3. Recursively sort B.
 - 4. Merge the sorted lists A and B into a single sorted list.

Merging Two Sorted Lists

- ▶ Merge two sorted lists $A = a_1, a_2, ..., a_k$ and $B = b_1, b_2, ..., b_l$.
 - Maintain a *current* pointer for each list.
 - Initialise each pointer to the front of the list.
 - While both lists are nonempty:
 - Let a_i and b_j be the elements pointed to by the *current* pointers.
 - Append the smaller of the two to the output list.
 - Advance the current pointer in the list that the smaller element belonged to.

EndWhile

Append the rest of the non-empty list to the output.

Merging Two Sorted Lists

- ▶ Merge two sorted lists $A = a_1, a_2, ..., a_k$ and $B = b_1, b_2, ..., b_l$.
 - Maintain a *current* pointer for each list.
 - Initialise each pointer to the front of the list.
 - While both lists are nonempty:
 - Let a_i and b_j be the elements pointed to by the *current* pointers.
 - Append the smaller of the two to the output list.
 - Advance the current pointer in the list that the smaller element belonged to.

EndWhile

Append the rest of the non-empty list to the output.

▶ Running time of this algorithm is O(k + I).

Analysing Mergesort

- ▶ Worst-case running time for n elements (T(n)) is at most the sum of the worst-case running time for $\lfloor n/2 \rfloor$ elements, for $\lceil n/2 \rceil$ elements, for splitting the input into two lists, and for merging two sorted lists.
- ightharpoonup Assume n is a power of 2.

Analysing Mergesort

- ▶ Worst-case running time for n elements (T(n)) is at most the sum of the worst-case running time for $\lfloor n/2 \rfloor$ elements, for $\lceil n/2 \rceil$ elements, for splitting the input into two lists, and for merging two sorted lists.
- \triangleright Assume *n* is a power of 2.

$$T(n) \le 2T(n/2) + cn, n > 2$$

 $T(2) \le c$

Analysing Mergesort

- ▶ Worst-case running time for n elements (T(n)) is at most the sum of the worst-case running time for $\lfloor n/2 \rfloor$ elements, for $\lceil n/2 \rceil$ elements, for splitting the input into two lists, and for merging two sorted lists.
- \triangleright Assume *n* is a power of 2.

$$T(n) \le 2T(n/2) + cn, n > 2$$

 $T(2) \le c$

- ▶ Three basic ways of solving this recurrence relation:
 - 1. "Unroll" the recurrence (somewhat informal method).
 - 2. Guess a solution and substitute into recurrence to check.
 - 3. Guess solution in O() form and substitute into recurrence to determine the constants.

Unrolling the recurrence

Figure 5.1 Unrolling the recurrence $T(n) \le 2T(n/2) + O(n)$.

Unrolling the recurrence

Figure 5.1 Unrolling the recurrence $T(n) \le 2T(n/2) + O(n)$.

- Recursion tree has log n levels.
- ▶ Total work done at each level is cn.
- ▶ Running time of the algorithm is *cn* log *n*.

- ▶ Guess that the solution is $cn \log n$ (logarithm to the base 2).
- ▶ Use induction to check if the solution satisfies the recurrence relation.

- ▶ Guess that the solution is $cn \log n$ (logarithm to the base 2).
- ▶ Use induction to check if the solution satisfies the recurrence relation.
- ▶ Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.

- ▶ Guess that the solution is $cn \log n$ (logarithm to the base 2).
- ▶ Use induction to check if the solution satisfies the recurrence relation.
- ▶ Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- ▶ Inductive step: assume $T(m) \le cm \log_2 m$ for all m < n.

- ▶ Guess that the solution is $cn \log n$ (logarithm to the base 2).
- ▶ Use induction to check if the solution satisfies the recurrence relation.
- ▶ Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- ▶ Inductive step: assume $T(m) \le cm \log_2 m$ for all m < n. Therefore, $T(n/2) \le (cn/2) \log n cn/2$.

- ▶ Guess that the solution is $cn \log n$ (logarithm to the base 2).
- ▶ Use induction to check if the solution satisfies the recurrence relation.
- ▶ Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- ▶ Inductive step: assume $T(m) \le cm \log_2 m$ for all m < n. Therefore, $T(n/2) \le (cn/2) \log n cn/2$.

$$T(n) \leq 2T(n/2) + cn$$

$$\leq 2((cn/2)\log n - cn/2) + cn$$

$$= cn\log n$$

Partial Substitution

- ▶ Guess that the solution is $kn \log n$ (logarithm to the base 2).
- ► Substitute guess into the recurrence relation to check what value of *k* will satisfy the recurrence relation.

Partial Substitution

- ▶ Guess that the solution is $kn \log n$ (logarithm to the base 2).
- ► Substitute guess into the recurrence relation to check what value of *k* will satisfy the recurrence relation.
- ▶ $k \ge c$ will work.

Other Recurrence Relations

- ▶ Divide into q sub-problems of size n/2 and merge in O(n) time. Two distinct cases: q = 1 and q > 2.
- ▶ Divide into two sub-problems of size n/2 and merge in $O(n^2)$ time.

$$T(n) = qT(n/2) + cn, q = 1$$

Figure 5.3 Unrolling the recurrence $T(n) \le T(n/2) + O(n)$.

$$T(n) = qT(n/2) + cn, q = 1$$

Figure 5.3 Unrolling the recurrence $T(n) \le T(n/2) + O(n)$.

▶ Total work done is $cn + cn/2 + cn/2^2 + ... \le$

$$T(n) = qT(n/2) + cn, q = 1$$

Figure 5.3 Unrolling the recurrence $T(n) \le T(n/2) + O(n)$.

▶ Total work done is $cn + cn/2 + cn/2^2 + ... \le 2cn$.

$$T(n) = qT(n/2) + cn, q > 2$$

Figure 5.2 Unrolling the recurrence $T(n) \le 3T(n/2) + O(n)$.

$$T(n) = qT(n/2) + cn, q > 2$$

Figure 5.2 Unrolling the recurrence $T(n) \le 3T(n/2) + O(n)$.

▶ Total work done is $cn + qcn/2 + q^2cn/2^2 + ... \le$

$$T(n) = qT(n/2) + cn, q > 2$$

Figure 5.2 Unrolling the recurrence $T(n) \le 3T(n/2) + O(n)$.

► Total work done is $cn + qcn/2 + q^2cn/2^2 + ... \le O(n^{\log_2 q})$.

$$T(n) = 2T(n/2) + cn^2$$

► Total work done is $cn^2 + 2c(n/2)^2 + 2^2c(n/4)^2 + ... \le$

$$T(n) = 2T(n/2) + cn^2$$

► Total work done is $cn^2 + 2c(n/2)^2 + 2^2c(n/4)^2 + ... \le O(n^2)$.