Introduction to CS 5114

T. M. Murali

January 14, 2008
Course Information

▶ Instructor
 ▶ T. M. Murali, 2160B Torgerson, 231-8534, murali@cs.vt.edu
 ▶ Office Hours: 10am–12pm Mondays and Wednesdays

▶ Teaching assistant
 ▶ Corban G. Rivera, cgrivera@vt.edu
 ▶ Office Hours: to be decided
Course Information

- **Instructor**
 - T. M. Murali, 2160B Torgerson, 231-8534, murali@cs.vt.edu
 - Office Hours: 10am–12pm Mondays and Wednesdays

- **Teaching assistant**
 - Corban G. Rivera, cgrivera@vt.edu
 - Office Hours: to be decided

- **Class meeting time**
 - MW 2:30–3:45pm, Wallace 244
Course Information

▶ Instructor
 ▶ T. M. Murali, 2160B Torgerson, 231-8534, murali@cs.vt.edu
 ▶ Office Hours: 10am–12pm Mondays and Wednesdays

▶ Teaching assistant
 ▶ Corban G. Rivera, cgrivera@vt.edu
 ▶ Office Hours: to be decided

▶ Class meeting time
 ▶ MW 2:30–3:45pm, Wallace 244

▶ Keeping in Touch
 ▶ Course web site
 http://courses.cs.vt.edu/~cs5114/spring2008, updated regularly through the semester
 ▶ Listserv: cs5114_11787@listserv.vt.edu
Course Information

- **Instructor**
 - T. M. Murali, 2160B Torgerson, 231-8534, murali@cs.vt.edu
 - Office Hours: 10am–12pm Mondays and Wednesdays

- **Teaching assistant**
 - Corban G. Rivera, cgrivera@vt.edu
 - Office Hours: to be decided

- **Class meeting time**
 - MW 2:30–3:45pm, Wallace 244

- **Keeping in Touch**
 - Course web site
 - http://courses.cs.vt.edu/~cs5114/spring2008, updated regularly through the semester
 - Listserv: cs5114_11787@listserv.vt.edu
 - Prerequisite: a grade of C or better in CS 2604
Required Course Textbook

- Algorithm Design
- Jon Kleinberg and Éva Tardos
- Addison-Wesley
- 2006
Course Goals

- Learn methods and principles to construct algorithms.
- Learn techniques to analyze algorithms mathematically for correctness and efficiency (e.g., running time and space used).
- Course roughly follows the topics suggested in textbook
 - Measures of algorithm complexity
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 - Network flow problems
 - NP-completeness
 - Coping with intractability
 - Approximation algorithms
 - Randomized algorithms
Required Readings

- Reading assignment available on the website.
- Read **before** class.
Lecture Slides

- Will be available on class web site.
- Usually posted just before class.
- Class attendance is extremely important.
Lecture Slides

- Will be available on class web site.
- Usually posted just before class.
- Class attendance is extremely important. Lecture in class contains significant and substantial additions to material on the slides.
Homeworks

- Posted on the web site \(\approx \) one week before due date.
- Prepare solutions digitally but hand in hard-copy.
Homeworks

- Posted on the web site \(\approx \) one week before due date.
- Prepare solutions digitally but hand in hard-copy.
 - Solution preparation recommended in \LaTeX.
 - Submission must be in PDF format.
Examinations

- Take-home midterm.
- Take-home final (comprehensive).
- Prepare digital solutions (recommend \LaTeX).
Examinations

- Take-home midterm.
- Take-home final (comprehensive).
- Prepare digital solutions (recommend \LaTeX).
- Examinations may change to be in class.
Grades

- Homeworks: ≈ 10, 50% of the grade.
- Take-home midterm: 20% of the grade.
- Take-home final: 30% of the grade.
What is an Algorithm?
What is an Algorithm?

Chamber’s A set of prescribed computational procedures for solving a problem; a step-by-step method for solving a problem.

Knuth, TAOCP An algorithm is a finite, definite, effective procedure, with some input and some output.
Origin of the word “Algorithm”

1. From the Arabic al-Khwarizmi, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja’far Mohammed ben Musa.
Origin of the word “Algorithm”

1. From the Arabic *al-Khwarizmi*, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja’far Mohammed ben Musa.

2. From Al Gore, the former U.S. vice-president who invented the internet.
Origin of the word “Algorithm”

1. From the Arabic *al-Khwarizmi*, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja’far Mohammed ben Musa.

2. From Al Gore, the former U.S. vice-president who invented the internet.

3. From the Greek *algos* (meaning “pain,” also a root of “analgesic”) and *rythmos* (meaning “flow,” also a root of “rhythm”).
Origin of the word “Algorithm”

1. From the Arabic *al-Khwarizmi*, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja’far Mohammed ben Musa.

2. From Al Gore, the former U.S. vice-president who invented the internet.

3. From the Greek *algos* (meaning “pain,” also a root of “analgesic”) and *rythmos* (meaning “flow,” also a root of “rhythm”). “Pain flowed throughout my body whenever I worked on CS 5114 homeworks.” – former CS 5114 student.
Origin of the word “Algorithm”

1. From the Arabic al-Khwarizmi, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja’far Mohammed ben Musa. He wrote “Kitab al-jabr wa’il-muqabala,” which evolved into today’s high school algebra text.

2. From Al Gore, the former U.S. vice-president who invented the internet.

3. From the Greek algos (meaning “pain,” also a root of “analgesic”) and rythmos (meaning “flow,” also a root of “rhythm”). “Pain flowed throughout my body whenever I worked on CS 5114 homeworks.” – former CS 5114 student.
Problem Example

Find Minimum

INSTANCE: Nonempty list x_1, x_2, \ldots, x_n of integers.

SOLUTION: Pair (i, x_i) such that $x_i = \min\{x_j \mid 1 \leq j \leq n\}$.
Algorithm Example

Find-Minimum(x_1, x_2, \ldots, x_n)

1. $i \leftarrow 1$

2. for $j \leftarrow 2$ to n

3. do if $x_j < x_i$

4. then $i \leftarrow j$

5. return (i, x_i)