
CS 4804 Homework 3
Solution Sketches

1. (9 points = 3 × 3)

• (a) 6 models;

• (b) 12 models; and

• (c) 8 models.

2. (32 points = 8 × 4)

• (a) valid;

• (b) satisfiable;

• (c) satisfiable;

• (d) valid;

• (e) valid;

• (f) valid;

• (g) valid; and

• (h) satisfiable.

3. (9 points) One possible solution is

∀x, y, l German(x) ∧ German(y) ∧ Speaks(x, l) ⇒ Speaks(y, l).

4. (20 points) In thinking about the axioms underlying this problem, we can reason as follows:

• Wellington heard about Napoleon’s death. Let us assume that Napoleon died at time
t1. Then Wellington could have heard of it only at some time after t1, lets call it t2. An
intuitive axiom here is that a person can only hear of something after the event.

• In addition, a person can only hear of something if that person is not dead himself or
herself. This gives us another axiom and allows to infer that Wellington must not be
dead at time t2.

• A third axiom is that if a person is dead at time t1 then the person continues to be dead
at all times after t1. So Napoleon must be dead at t2.

• We need to asert the usual rules of time, e.g., the relation ‘occurs after’ is anti-symmetric
(t2 occurs after t1 implies t1 does not occur after t2) and transitive (t2 occurs after t1
and t3 occurs after t2 implies t3 occurs after t1).

• Finally, to answer the question ‘did Napoleon hear about Wellington’s death?’ we can en-
capsulate ‘Wellington’s death’ as an event, and use it to a HeardOf predicate. To achieve
this, we define an event function called Death(x) which returns an object of type event

denoting when person x died. Similarly, we can use this event in a WhenHappened(e)
function that returns the time when event e happened. Finally, we define a Dead pred-
icate to indicate that a person is dead at a certain time.

Using these ideas we are now ready to state our facts and axioms:

• Wellington heard about Napoleon’s death.
∃ t Heardof(Wellington, Death(Napoleon), t).



• A person can only hear of something after the event.
∀ p, e, t Heardof(p, e, t) ⇒ (t > WhenHappened(e))

• If a person hears of something, the person is not dead.
∀ p, e, t Heardof(p, e, t) ⇒ ¬Dead(p, t)

• After dying, a person continues to be dead.
∀ p, t1 (t1 = WhenHappened(Death(p))) ⇒ (∀ t2 (t2 > t1) ⇒ Dead(p, t2))

• The ‘occurs after’ relation is anti-symmetric.
∀ t1, t2 (t1 > t2) ⇒ ¬ (t2 > t1)

• The ‘occurs after’ relation is transitive.
∀ t1, t2, t3 (t2 > t1) ∧ (t3 > t2) ⇒ (t3 > t1)

It is easy to see that Napoleon couldn’t possibly have heard about Wellington’s death, because
he has to be alive at some point after Wellington’s death (which he is not).

5. (10 points) These axioms are sufficient to prove that x is a member of a given set s when x

is indeed a member. However, when x is not a member of s, they will be unable to prove that
x is not a member of s. This is not a problem in systems such as Prolog, where the ‘inability
to prove that something is true’ is taken to mean that the sentence is false, but could be a
drawback in other systems.

6. (20 points) Assume the following predicate terminology:

• acmember(x): true when person x is a member of the Alpine Club.

• likes(x, y): true when person x likes thing y.

• skier(x): true when person x is a skier.

• climber(x): true when person x is a mountain climber.

Then the various statements can be asserted as:

• Tony, Mike, and John belong to the Alpine Club.
acmember(Tony).
acmember(Mike).
acmember(John).

• Every member of the Alpine Club is either a skier or a mountain climber or both.
∀x acmember(x) ⇒ skier(x) ∨ climber(x).

• No mountain climber likes rain, ...
∀x climber(x) ⇒ ¬ likes(x, rain).

• ... and all skiers like snow.
∀x skier(x) ⇒ likes(x, snow).

• Mike dislikes whatever Tony likes. ...
∀x likes(Tony, x) ⇒ ¬ likes(Mike, x).

• ... and likes whatever Tony dislikes.
∀x ¬ likes(Tony, x) ⇒ likes(Mike, x).

• Tony likes rain and snow.
likes(Tony, rain).
likes(Tony, snow).



• Who is a member of the Alpine Club who is a mountain climber but not a skier?
acmember(x) ∧ climber(x) ∧ ¬ skier(x)

Let us convert each of these statements into clausal form, taking care to negate the goal (in
order to use resolution-refutation).

(a) acmember(Tony).

(b) acmember(Mike).

(c) acmember(John).

(d) ¬ acmember(x) ∨ skier(x) ∨ climber(x).

(e) ¬ climber(x) ∨ ¬ likes(x, rain).

(f) ¬ skier(x) ∨ likes(x, snow).

(g) ¬ likes(Tony, x) ∨ ¬ likes(Mike, x).

(h) likes(Tony, x) ∨ likes(Mike, x).

(i) likes(Tony, rain).

(j) likes(Tony, snow).

(k) ¬ acmember(x) ∨ ¬ climber(x) ∨ skier(x)

By suitably renaming variables so that there are no clashes, and applying resolution system-
atically, we will find that the person we are looking for is Mike. An example of a bushy proof is:

(d) (b) (k) (g) (j) (f)

climber(Mike) V skier(Mike) ~ climber(Mike) V skier(Mike) ~ likes(Mike,snow)

~ skier(Mike)

~ climber(Mike)

skier(Mike)

{}


