
CS 4804 Homework 2
Solution Sketches

1. (10 points) As the textbook states, the original cryptarithmetic problem can be thought of
as having the following constraints:

F 6= O

F 6= U

· · ·
U 6= W

2O = R + 10X1

X1 + 2W = U + 10X2

X2 + 2T = O + 10F

where X1 and X2 are variables capturing the carryovers in the addition. Of these constraints
only the last three need to be re-expressed as binary constraints. We illustrate the basic idea
using the constraint

2O = R + 10X1

Introduce a new variable (say V1) whose domain consists of the cartesian product of the
domains of all variables in the given constraint (i.e., O, R, and X1). The (common) domain
of O and R is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and the domain of X1 is (0, 1). Thus the domain of V1

is the set of 200 tuples:
{(0, 0, 0),
(0, 0, 1),
(0, 1, 0),
(0, 1, 1),

· · ·
(9, 8, 0),
(9, 8, 1),
(9, 9, 0),
(9, 9, 1)}

Then the constraint 2O = R + 10X1 can really be captured as

2(first attribute of V1) = second attribute of V1 + 10(third attribute of V1)

In other words, this becomes a unary constraint! Meaning we can actually simplify the domain
of V1 to contain only the ten legal values:

{(0, 0, 0),
(1, 2, 0),
(2, 4, 0),
(3, 6, 0),
(4, 8, 0),
(5, 0, 1),
(6, 2, 1),
(7, 4, 1),
(8, 6, 1),
(9, 8, 1)}



The only task left is to relate this new variable to the existing variables. We introduce a
binary constraint between V1 and O with the annotation ‘O = first attribute of V1’; a binary
constraint between V1 and R with the annotation ‘R = second attribute of V1’; and a binary
constraint between V1 and X1 with the annotation ‘X1 = third attribute of V1’. Similarly,
we can model the other two non-binary constraints.

2. (10 points) Define the propositional variable xi,j that is true when pigeon i is placed in hole
j and false otherwise. Then the pigeonhole problem is to find a satisfying assignment of the
CNF:

(x1,1 ∨ x1,2 ∨ · · · ∨ x1,n) // pigeon 1 is in at least one of the holes
∧ (x2,1 ∨ x2,2 ∨ · · · ∨ x2,n) // pigeon 2 is in at least one of the holes
∧ · · ·
∧ (xn+1,1 ∨ xn+1,2 ∨ · · · ∨ xn+1,n) // pigeon n+1 is in at least one of the holes
∧ (¬x1,1 ∨ ¬x2,1) // hole 1 cannot have both pigeons 1 and 2
∧ (¬x1,1 ∨ ¬x3,1) // hole 1 cannot have both pigeons 1 and 3
∧ · · ·
∧ (¬x2,1 ∨ ¬x3,1) // hole 1 cannot have both pigeons 2 and 3
∧ (¬x2,1 ∨ ¬x4,1) // hole 1 cannot have both pigeons 2 and 4
∧ · · ·
∧ (¬xn,1 ∨ ¬xn+1,1) // hole 1 cannot have both pigeons n and n + 1
∧ (¬x1,2 ∨ ¬x2,2) // hole 2 cannot have both pigeons 1 and 2
∧ (¬x1,2 ∨ ¬x3,2) // hole 2 cannot have both pigeons 1 and 3
∧ · · ·
∧ (¬xn,2 ∨ ¬xn+1,2) // hole 2 cannot have both pigeons n and n + 1
∧ · · ·
∧ (¬x1,n ∨ ¬x2,n) // hole n cannot have both pigeons 1 and 2
∧ · · ·
∧ (¬xn,n ∨ ¬xn+1,n) // hole n cannot have both pigeons n and n + 1

This gives a total of (n + 1 + n2

2 (n + 1)) clauses involving n(n + 1) variables. The constraints
declaring that a pigeon can be in only one hole are not modeled here as they fall out indirectly
from the given constraints. You could have been more pedantic and included (n + 1) n(n−1)

2
more clauses. These clauses will have the form:

(¬x1,1 ∨ ¬x1,2) // pigeon 1 cannot be in both holes 1 and 2
∧ (¬x1,1 ∨ ¬x1,3) // pigeon 1 cannot be in both holes 1 and 3
∧ · · ·
∧ (¬x1,1 ∨ ¬x1,n) // pigeon 1 cannot be in both holes 1 and n

∧ · · ·
∧ (¬x1,n−1 ∨ ¬x1,n) // pigeon 1 cannot be in both holes n − 1 and n

∧ · · ·
∧ (¬xn+1,1 ∨ ¬xn+1,2) // pigeon n+1 cannot be in both holes 1 and 2
∧ · · ·
∧ (¬xn+1,n−1 ∨ ¬xn+1,n) // pigeon n+1 cannot be in both holes n − 1 and n

An example of an incorrect answer: Create variables pi for the pigeons and hi for the holes
(giving a total of 2n + 1 variables). This is a dubious formulation because the variables are
always true! i.e., there are indeed n + 1 pigeons and n holes. There is no point creating a



CNF formula when you know for sure the truth assignments of all variables. Any clause that
you create after that is going to be true! e.g., p1 ∨ h2 ∨ p3 is true because the two pigeons
and the one hole are indeed present. Meaning, your final formula is most likely true (which
is another bug, because the pigeonhole problem is not satisfiable).

3. (20 points) Let us think of the puzzle from the viewpoint of the five houses. To each house,
we need to assign a color, situate a person, associate a cigarette, drink, and pet. Let us
first order the houses, colors, people, cigarettes, drinks, and pets in some manner. Define
propositional variables cij that is true when house i has color j and false otherwise. Similarly,
pij , tij, dij, and pij capture the association from house to people, cigarettes, drinks, and pets.
Then the portion of the CNF dealing with colors can be given by:

(c11 ∨ c12 ∨ c13 ∨ c14 ∨ c15) // house 1 has at least one color
∧ (c21 ∨ c22 ∨ c23 ∨ c24 ∨ c25) // house 2 has at least one color
∧ (c31 ∨ c32 ∨ c33 ∨ c34 ∨ c35) // house 3 has at least one color
∧ (c41 ∨ c42 ∨ c43 ∨ c44 ∨ c45) // house 4 has at least one color
∧ (c51 ∨ c52 ∨ c53 ∨ c54 ∨ c55) // house 5 has at least one color
∧ (¬c11 ∨ ¬c12) // house 1 cannot have both colors 1 and 2
∧ (¬c11 ∨ ¬c13) // house 1 cannot have both colors 1 and 3
∧ · · ·
∧ (¬c12 ∨ ¬c13) // house 1 cannot have both colors 2 and 3
∧ · · ·
∧ (¬c54 ∨ ¬c55) // house 5 cannot have both colors 4 and 5

Similarly, we can add clauses to represent uniqueness of cigarette, drink, people, and pets.

You could also be more adventurous and attempt to encode the specific facts given in the
question. For instance, the constraint ‘the Ukrainian drinks tea’ can be modeled by first
restating it in terms of houses, i.e., ‘the house the Ukranian lives in is the same as the house
in which tea is consumed.’ We then take the index of the Ukranian (say she is the third
person in our list of people), the index of tea (say it is the fourth drink in our list of drinks),
and add the constraint:

(p13 ⇔ d14) // house 1 has both Ukranian and tea, or neither
∧ (p23 ⇔ d24) // house 2 has both Ukranian and tea, or neither
∧ (p33 ⇔ d34) // house 3 has both Ukranian and tea, or neither
∧ (p43 ⇔ d44) // house 4 has both Ukranian and tea, or neither
∧ (p53 ⇔ d54) // house 5 has both Ukranian and tea, or neither

Notice that each ⇔ can be restated in terms of a conjunction of implications, which in turn
can be reformulated as disjunctions; the net effect is that you can restate the entire formula
in CNF.

An example of an incorrect answer: Create variables n, e, s, u, j for the Norwegian, En-
glishman, Spaniard, Ukranian, and the Japanese respectively. These are always true!!!! It is
given in the problem that these people are present. What you need are variables representing
the truth of ‘the Norwegian is in the first hourse,’ ‘the Norwegian lives in the blue house,’
etc. which have the potential to be false.

4. (60 points) If you coded the three algorithms correctly, you will find that the arc-consistency
algorithm generates the fewest number of nodes, followed by the forward propagation algo-
rithm, followed by backtracking. However, depending on your implementation, arc-consistency



might end up spending more time ‘thinking’ than ‘doing’ and in this respect, forward propa-
gation will appear as the best of the three. The difficulty of problems is also not monotonous
as n increases, and you should notice ‘bumps’ in the plots of nodes generated versus n. 30
points for coding, 10 points for correct execution, 10 points each for the above observations
about (i) nodes generated versus n, for the three algorithms, and (ii) time spent thinking
versus doing, for the three algorithms.


