1. (20 points) These are trivial; the easiest way to calculate them is with a truth table: (a) true; (b) false; (c) false; and (d) false.
2. (20 points) The given entailment does hold:

1: P
$G: \neg(Q \Rightarrow P)=\neg(\neg Q \vee P)=Q \wedge \neg P$
$G 1: Q ; G 2: \neg P$
resolve 1, $G 2$ to null
3. (20 points) Assume the following predicate terminology:

- $\operatorname{took}(x, y, z)$: true when student x took class y in term z.
- score (x, y, z) : true when student x got a score of z in calss y.
- passed (x, y) : true when student x passed class y.

Then the various statements can be asserted as:

- Some students took French in Spring 2001.
$\exists x$: took (x, French, Spring2001).
You can also be pedantic about the plurality inherent in 'some students' and assert that there must be two different people x and y, satisfying the above predicate.
- Every student who took French passes it.
$\forall x y: \operatorname{took}(x, \operatorname{French}, y) \Rightarrow \operatorname{passed}(x$, French $)$
Obviously there is some relationship between score and passed, which we do not state explicitly (as it is not given).
- Only one student took Greek in Spring 2001.
$\forall x y:(\operatorname{took}(x$, Greek, Spring2001) $\wedge \operatorname{took}(y$, Greek, Spring2001 $)) \Rightarrow(x=y)$
- The best score in Greek is always higher than the best score in French.
$\exists x m: \operatorname{score}(m, \operatorname{Greek}, x) \wedge(\forall y z: \operatorname{score}(y$, Greek, $z) \Rightarrow(x \geq z))$
$\wedge(\forall a b: \operatorname{score}(a$, French,$b) \Rightarrow(x>b))$
Here we are assuming that this statement is true even across terms.

4. (20 points) Assume the following predicate terminology:

Policy(x) :- x is an insurance policy
Person(x) :- x is a person
Expensive(x) :- x is expensive
Smart(x) :- x is smart
Buys(x,y) :- x buys y
Sells(x,y,z) :- x sells y to z

Insured(x) :- x is insured
e) $\forall x y: \operatorname{Buys}(x, y) \wedge \operatorname{Person}(x) \wedge \operatorname{Policy}(y) \Rightarrow \operatorname{Smart}(x)$
f) $\forall x y: \operatorname{Buys}(x, y) \wedge \operatorname{Person}(x) \wedge \operatorname{Policy}(y) \Rightarrow \neg \operatorname{Expensive}(y)$
g) $\exists x \forall y z: \operatorname{Sells}(x, y, z) \wedge \operatorname{Person}(z) \wedge \operatorname{Policy}(y) \Rightarrow \neg \operatorname{Insured}(z)$

5. (20 points)

$1: \forall x: \operatorname{horse}(x) \Rightarrow \operatorname{animal}(x)$
In clausal form, this becomes
$\neg \operatorname{horse}(x) \vee \operatorname{animal}(x)$
$G: \forall x y:(\operatorname{horse}(x) \wedge \operatorname{headof}(x, y)) \Rightarrow(\exists z: \operatorname{animal}(z) \wedge \operatorname{headof}(z, y))$
In clausal form and negated, this gives:
$G 1: \operatorname{horse}(H) ; G 2: \operatorname{headof}(H, E) ; G 3: \neg \operatorname{animal}(z) \vee \neg \operatorname{headof}(z, E)$
resolve 1, $G 1$ to $\operatorname{animal}(H)$
resolve $\operatorname{animal}(H), G 3$ to $\neg \operatorname{headof}(H, E)$
resolve \neg headof (H, E), G 2 to null

