
CS 4604: Introduction to
Database Management Systems

Virginia Tech CS 4604 Sprint 2021
Instructor: Yinlin Chen

SQL III

Today’s Topics

• SQL Statements (Continue)

More on Set-Comparison Operators

• The comparison condition v > ALL V returns TRUE if the
value v is greater than all the values in the multiset V.
– If the nested query doesn’t return a value, it evaluates the

condition as TRUE.
• The comparison condition v > ANY V returns TRUE if the

value v is greater than at least one value in the multiset
V.
– If the nested query doesn’t return a value, it evaluates the whole

condition as FALSE.

3

Queries with ALL/ANY

4

Q42: Find sailors whose rating is
greater than that of some sailor called
Popeye:
SELECT *
FROM Sailors S
WHERE S.rating > ANY

(SELECT S2.rating
FROM Sailors S2
WHERE
S2.sname='Popeye')

Sailors

Queries with ALL/ANY

5

SELECT *
FROM Sailors S
WHERE S.rating > ALL

(SELECT S2.rating
FROM Sailors S2)

Sailors

Division

• Relational Division: “Find sailors who’ve reserved all
boats.”
Said differently: “sailors with no counterexample missing
boats”

SELECT S.sname FROM Sailors S
WHERE NOT EXISTS

(SELECT B.bid FROM Boats B
WHERE NOT EXISTS

(SELECT R.bid FROM Reserves R
WHERE R.bid=B.bid

AND R.sid=S.sid))

What we have so far

• Joins
• Nested Queries
• ALL, ANY, MAX(), etc.

Example

• Find the sailor with the highest rating

Sailors

Example
• Find the sailor with the highest rating
SELECT
MAX(S.rating)
FROM Sailors S;

VS

SELECT S.*,
MAX(S.rating)
FROM Sailors S;

SELECT *
FROM Sailors S
WHERE S.rating >= ALL
(SELECT S2.rating
FROM Sailors S2)

VS
SELECT *
FROM Sailors S
WHERE S.rating =
(SELECT
MAX(S2.rating)
FROM Sailors S2)

SELECT *
FROM Sailors S
ORDER BY rating
DESC
LIMIT 1;

Queries with Subqueries in SELECT/FROM

Q46: SELECT P.PRODNR, P.PRODNAME,
(SELECT SUM(QUANTITY) FROM PO_LINE POL
WHERE P.PRODNR = POL.PRODNR) AS TOTALORDERED
FROM PRODUCT P

10

Q47: SELECT M.PRODNR, M.MINPRICE, M.MAXPRICE FROM
(SELECT PRODNR, MIN(PURCHASE_PRICE) AS MINPRICE,
MAX(PURCHASE_PRICE) AS MAXPRICE
FROM SUPPLIES GROUP BY PRODNR) AS M
WHERE M.MAXPRICE-M.MINPRICE > 1

Set Semantics

• Set: a collection of distinct elements
• Standard ways of manipulating/combining sets

– Union
– Intersect
– Except

• Treat tuples within a relation as
elements of a set

Default: Set Semantics

R = {A, A, A, A, B, B, C, D}
S = {A, A, B, B, B, C, E}

• UNION
{A, B, C, D, E}

• INTERSECT
{A, B, C}

• EXCEPT
{D}

• These are relations. They are not sets, since they
have duplicates.

• A = {10, 5, 25, 30, 45}

• B = {15, 20, 10, 30, 50}

• A UNION B = {5, 10, 15, 20, 25, 30, 45, 50}

• A INTERSECT B = {10, 30}

• A EXCEPT B = {5, 25, 45}

UNION vs UNION ALL
• The UNION operator is used to combine the result-set of

two or more SELECT statements.
– Each SELECT statement within UNION must have the same

number of columns
– The columns must also have similar data types
– The columns in each SELECT statement must also be in the

same order
• The UNION operator selects only distinct values by

default. To allow duplicate values, use UNION ALL

Example: UNION ALL

• Sid’s of sailors who reserved a red OR a green boat

SELECT R.sid
FROM Boats B,Reserves R
WHERE R.bid=B.bid AND

(B.color='red’ OR
B.color='green')

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND
B.color='red'

UNION ALL

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND
B.color='green'

EXCEPT vs EXCEPT ALL

• The EXCEPT operator returns distinct rows from the first
(left) query that are not in the output of the second (right)
query
– The number of columns and their orders must be the same in the

two queries
– The data types of the respective columns must be compatible

• With ALL, a row that has m duplicates in the left table and
n duplicates in the right table will appear max(m-n,0)
times in the result set

R = {A, A, A, A, B, B, C, D} S = {A, A, B, B, B, C, E}

EXCEPT ALL: {A, A, D }

Example: Except

• Find sailors who have not reserved a boat

SELECT S.sid
FROM Sailors S

EXCEPT

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

INTERSECT vs INTERSECT ALL

• The INTERSECT operator returns any rows that are
available in both result sets
– The number of columns and their order in the SELECT clauses

must be the same
– The data types of the columns must be compatible

• With ALL, min of cardinalities

R = {A, A, A, A, B, B, C, D} S = {A, A, B, B, B, C, E}

INTERSECT ALL: {A, A, B, B, C}

Example: Intersect

• Sid’s of sailors who reserved a red AND a green boat

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color='red'

INTERSECT

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color='green'

Let’s Do Labs

• https://github.com/VTCourses/CS4604_Labs
• Lab3: 3.more_queries

https://github.com/VTCourses/CS4604_Labss
https://github.com/VTCourses/CS4604_TA/tree/master/labs/3.more_queries

SQL Views
• SQL views are part of the external data model
• A view is defined by a query over other relations (tables and/or

views)
• A view is a virtual table that does not exist physically
• A view can be

– Queried: the query processor replaces the view by its definition.
– Used in other queries.

• Views allow for logical data independence which makes them a key
component in the three-layer database architecture

Views: Named Queries

CREATE VIEW view_name
AS select_statement

CREATE VIEW Redcount

AS SELECT B.bid, COUNT(*) AS scount
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color='red'
GROUP BY B.bid

SQL Views
CREATE VIEW TOPSUPPLIERS
AS SELECT SUPNR, SUPNAME FROM SUPPLIER
WHERE SUPSTATUS > 50

CREATE VIEW TOPSUPPLIERS_SF
AS SELECT * FROM TOPSUPPLIERS
WHERE SUPCITY = 'San Francisco'

SQL Views
CREATE VIEW ORDEROVERVIEW

(PRODNR, PRODNAME, TOTQUANTITY)
AS

SELECT P.PRODNR, P.PRODNAME, SUM(POL.QUANTITY)
FROM PRODUCT AS P
LEFT OUTER JOIN
PO_LINE AS POL

ON (P.PRODNR = POL.PRODNR)
GROUP BY P.PRODNR

SQL Views
SELECT * FROM TOPSUPPLIERS_SF
SELECT * from redcount;
SELECT * FROM ORDEROVERVIEW WHERE PRODNAME LIKE '%CHARD%’

SELECT bname, scount
FROM Boats B,
(SELECT B.bid, COUNT (*)

FROM Boats B, Reserves R
WHERE R.bid = B.bid AND
B.color = 'red'
GROUP BY B.bid) AS
Reds(bid, scount)

WHERE Reds.bid=B.bid
AND scount < 10

SELECT bname,
scount
FROM Redcount R,
Boats B
WHERE R.bid=B.bid
AND scount < 10;

VS

WITH Queries (Common Table Expressions)

• MySQL 8.0 finally support it

SELECT bname, scount
FROM Boats B, Reds
WHERE Reds.bid=B.bid
AND scount < 10

WITH Reds(bid, scount) AS
(SELECT B.bid, COUNT (*)
FROM Boats B, Reserves R
WHERE R.bid = B.bid AND
B.color = 'red'
GROUP BY B.bid)

WITH Queries (Common Table Expressions)

• Can have many queries in WITH

UnpopularReds AS
(SELECT bname, scount
FROM Boats B, Reds
WHERE Reds.bid=B.bid
AND scount < 10)

WITH Reds(bid, scount) AS
(SELECT B.bid, COUNT (*)
FROM Boats B, Reserves R
WHERE R.bid = B.bid AND
B.color = 'red'
GROUP BY B.bid), SELECT * FROM UnpopularReds;

ARGMAX GROUP BY

• The sailor with the highest rating per age

WITH maxratings(age, maxrating) AS
(SELECT age, max(rating)
FROM Sailors
GROUP BY age)

SELECT S.*
FROM Sailors S, maxratings m

WHERE S.age = m.age
AND S.rating = m.maxrating;

SQL Views
• Query modification: RDBMS modifies queries that

query views into queries on the underlying base
tables

• View materialization: a physical table is created
when the view is first queried

• Unlike a table, a view cannot be updated unless it
satisfies certain conditions
– In this case, the view serves as a window through which

updates are propagated to the underlying base table(s)

28

SQL Views
CREATE VIEW ORDEROVERVIEW(PRODNR, PRODNAME,
TOTQUANTITY)
AS SELECT P.PRODNR, P.PRODNAME, SUM(POL.QUANTITY)
FROM PRODUCT AS P LEFT OUTER JOIN PO_LINE AS POL
ON (P.PRODNR = POL.PRODNR)
GROUP BY P.PRODNR

UPDATE VIEW ORDEROVERVIEW
SET TOTQUANTITY=10
WHERE PRODNR= '0154'

29

ERROR!

SQL Views
• WITH CHECK option checks UPDATE and INSERT

statements for conformity with the view definition

CREATE VIEW TOPSUPPLIERS
AS SELECT SUPNR, SUPNAME FROM SUPPLIER
WHERE SUPSTATUS > 50 WITH CHECK OPTION

30

OK!
NOT OK!

INSERT INTO
TOPSUPPLIERS VALUES(12,
‘new supplier');

NOT OK!

UPDATE TOPSUPPLIERS
SET SUPSTATUS =80

WHERE SUPNR='32'

UPDATE TOPSUPPLIERS
SET SUPSTATUS =20
WHERE SUPNR='32'

Views and Security

▪ Views can be used to present necessary information
(or a summary), while hiding details in underlying
relation(s).
– Given YoungStudents, but not Students or Enrolled, we can

find students who are enrolled, but not the cid’s of the
courses they are enrolled in.

Delete VIEW

• DROP VIEW TOPSUPPLIERS;
• Like a Symbolic Link: only the view definition is deleted
• delete from viewtest where sid = 11; ? NOT OK!

Null Values

• Field values are sometimes unknown
– SQL provides a special value NULL for such situations.
– Every data type can be NULL

• The presence of null complicates many issues. E.g.:
– Selection predicates (WHERE)
– Aggregation

• But NULLs comes naturally from Outer joins

NULL in the WHERE clause

• Consider a tuple where rating IS NULL.

INSERT INTO sailors VALUES
(11, 'Jack Sparrow', NULL, 35);

SELECT * FROM sailors
WHERE rating > 8;

Is Jack Sparrow in the output?

NULL in Comparators

• Rule: (x op NULL) evaluates to … NULL!
SELECT 100 = NULL;

SELECT 100 < NULL;
SELECT 100 >= NULL;

SELECT * FROM sailors WHERE rating IS NULL;

SELECT * FROM sailors WHERE rating IS NOT NULL;

NULL in Boolean Logic

General rule: NULL column values are
ignored by aggregate functions

AND T F N

T T F N

F F F F

N N F N

OR T F N

T T T T

F T F N

N T N N

NOT T F N

F T N

Three-valued logic:

NULL and Aggregation
SELECT count(*) FROM sailors;

SELECT count(rating) FROM sailors;

SELECT sum(rating) FROM sailors;

SELECT avg(rating) FROM sailors;

General rule: NULL **column values** are ignored by
aggregate functions

sid sname rating age

1 Popeye 10 22

2 OliveOyl 11 39

3 Garfield 1 27

4 Bob 5 19

5 Jack Sparrow NULL 35

NULLs: Summary

• NULL op NULL is NULL
• WHERE NULL: do not send to output
• Boolean connectives: 3-valued logic
• Aggregates ignore NULL-valued inputs

SQL Privileges
• A privilege corresponds to the right to use certain SQL

statements such as SELECT, INSERT, etc. on one or
more database objects

39

Privilege Explanation

SELECT Gives retrieval privilege

INSERT Gives insert privilege

UPDATE Gives update privilege

DELETE Gives delete privilege

ALTER Gives privilege to change the table definition

REFERENCES Gives the privilege to reference the table when specifying integrity constraints

ALL Gives all privileges (DBMS specific)

SQL Privileges
GRANT SELECT, INSERT, UPDATE, DELETE ON SUPPLIER TO
BBAESENS

GRANT SELECT (PRODNR, PRODNAME) ON PRODUCT TO PUBLIC

REVOKE DELETE ON SUPPLIER FROM BBAESENS

GRANT SELECT, INSERT, UPDATE, DELETE ON PRODUCT TO
WLEMAHIEU WITH GRANT OPTION

GRANT REFERENCES ON SUPPLIER TO SVANDENBROUCKE

40

SQL Privileges

CREATE VIEW SUPPLIERS_NY
AS SELECT SUPNR, SUPNAME FROM SUPPLIERS
WHERE SUPCITY = 'New York'

GRANT SELECT ON SUPPLIERS_NY TO WLEMAHIEU

41

SQL for Metadata Management

• The catalog itself can also be implemented as a relational
database

42

SQL for Metadata Management
Table(Tablename, …)

Key(Keyname, …)

Primary-Key(PK-Keyname, PK-Tablename, …)
PK-Keyname is a foreign key referring to Keyname in Key
PK-Tablename is a foreign key referring to Tablename in Table

Foreign-Key(FK-Keyname, FK-Tablename, FK-PK-Keyname, Update-rule, Delete-rule, …)
FK-Keyname is a foreign key referring to Keyname in Key
FK-Tablename is a foreign key referring to Tablename in Table
FK-PK-Keyname is a foreign key referring to PK-Keyname in Primary-Key

Column(Columnname, C-Tablename, Data type, Nulls, …)
C-Tablename is a foreign key referring to Tablename in Table

Key-Column(KC-Keyname, KC-Columnname, KC-Tablename, …)
KC-Keyname is a foreign key referring to Keyname in Key
KC-Columnname is a foreign key referring to Columnname in Column
KC-Tablename is a foreign key referring to C-Tablename in Column

43

SQL for Metadata Management
SELECT * FROM INFORMATION_SCHEMA.COLUMNS
WHERE Table_Name = 'SUPPLIER' limit 5;

44

Other SQL Functions
• DATEDIFF()
• ROUND(), Sum(), min(), max(), count()
• IFNULL()
• IF()
• ABS(), avg()
• MOD()
• Between…and
• CASE…WHEN
• A lot more: https://www.w3schools.com/sql/sql_ref_mysql.asp

Triggers

• A trigger is a stored procedure in database which
automatically invokes whenever a special event in the
database occurs.

• For example, a trigger can be invoked when a row is inserted
into a specified table or when certain table columns are
being updated

• Bad triggers: infinite loops...

Create trigger zerograde on update takes
(if new takes.grade < 0
then takes.grade = 0)

Assertions

• The assert statement is a useful shorthand for inserting
debugging checks

• Verify one or more tables, one or more attributes
• It is in the SQL standard, most DBMS does not support it
• assert condition [, message];

CREATE ASSERTION FewStudents CHECK (
(SELECT COUNT(*) FROM Students)

<= (SELECT COUNT(*) FROM Courses)
);

Can’t have more courses than students

Tips
• Life is not perfect, so does data
• Generate random data for testing

– https://mockaroo.com/
• Try to construct data that could check for the following potential

errors:
– Incorrect output schema
– Output may be missing rows from the correct answer (false

negatives)
– Output may contain incorrect rows (false positives)
– Output may have the wrong number of duplicates.
– Output may not be ordered properly.

https://mockaroo.com/

Summary

• SQL views
• SQL privileges
• SQL Functions

49

Reading and Next Class

• SQL III: Ch 5
• Next: Storing Data and Indexes:

– Ch 8.1, 8.2
– Ch 9.1, 9.4
– Ch 10.3 - 10.8

