CS 4604: Introduction to Database Management Systems

B. Aditya Prakash
Midterm Review
MIDTERM REVIEW
Course Outline

- **Weeks 1–4: Query/Manipulation Languages and Data Modeling**
 - Relational Algebra
 - Data definition
 - Programming with SQL
 - Entity-Relationship (E/R) approach
 - Specifying Constraints
 - Good E/R design

- **Weeks 5–8: Indexes, Processing and Optimization**
 - Storing
 - Hashing/Sorting
 - Query Optimization
 - NoSQL and Hadoop

- **Week 9-10: Relational Design**
 - Functional Dependencies
 - Normalization to avoid redundancy

- **Week 11-12: Concurrency Control**
 - Transactions
 - Logging and Recovery

- **Week 13–14: Students’ choice**
 - Practice Problems
 - XML
 - Data mining and warehousing
Course Outline: For Midterm Exam

- **Weeks 1–4: Query/Manipulation Languages and Data Modeling**
 - Relational Algebra
 - Data definition
 - Programming with SQL
 - Entity-Relationship (E/R) approach
 - Specifying Constraints
 - Good E/R design

- **Weeks 5–8: Indexes, Processing and Optimization**
 - Storing
 - Hashing/Sorting
 - Query Optimization
 - NoSQL and Hadoop

- **Week 9-10: Relational Design**
 - Functional Dependencies
 - Normalization to avoid redundancy

- **Week 11-12: Concurrency Control**
 - Transactions
 - Logging and Recovery

- **Week 13–14: Students’ choice**
 - Practice Problems
 - XML
 - Data mining and warehousing

No Query Processing/Optimization
FUNDAMENTAL
Relational operators

- selection
 \[\sigma_{\text{condition}}(R) \]
- projection
 \[\pi_{\text{att-list}}(R) \]
- cartesian product
 \[R \times S \]
- set union
 \[R \cup S \]
- set difference
 \[R - S \]
Relational ops

- Surprisingly, they are enough!

- Derived/convenience operators:
 - set intersection \(\cap \)
 - {\textbf{join}} (theta join, natural join) \(\Join \)
 - ‘rename’ operator \(\rho_{R'}(R) \)
 - division \(R \div S \)
Basic SQL Query

```
SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification;
```

- **Relation-list**: A list of relation names (possibly with range-variable after each name).
- **Target-list**: A list of attributes of relations in relation-list
- **Qualification**: conditions on attributes
- **DISTINCT**: optional keyword for duplicate removal.
 - Default = no duplicate removal!
- **ORDER BY**: for sorting values
SQL

- Handling Sub-queries
- SQL Data Definition Commands
- Constraints
- Triggers
- ...
- Note how referential integrity can be enforced (foreign key; on delete cascade etc.)
E/R Diagrams

- IMPORTANT:
 - Follow only lecture slides for this topic!
 - Differences from the book:
 • More details
 • Slightly different notation
Relationships

- Show a many-one relationship by an arrow entering the “one” side.

- Show a one-one relationship by arrows entering both entity sets.

- In some situations, we can also assert “exactly one,” i.e., each entity of one set must be related to exactly one entity of the other set. To do so, we use a rounded arrow.
Each department teaches multiple courses. Each course has a number. What is the key for the entity set Courses?
Converting E/R Diagrams to Relational Designs

- **Entity Set** \rightarrow **Relation**
 - Attribute of Entity Set \rightarrow Attribute of a Relation

- **Relationship** \rightarrow relation whose attributes are
 - Attribute of the relationship itself
 - Key attributes of the connected entity sets

- **Several special cases:**
 - Weak entity sets.
 - Combining relations (especially for many-one relationships)
 - *ISA* relationships and subclasses

- **Also note how referential integrity comes in** (foreign keys)
Tree Indexes

- B+-Trees
 - Carefully understand the Definition!
 - Searching
 - Inserting
 - Deleting
Hashing/Sorting

- Extendible Hashing
- Linear Hashing
- External Sorting

- Again, how to search and build, internalize the structure
- Sorting: understand the process, how to cost it, how many passes it takes etc.
Exam

- **No** aids allowed EXCEPT:
 - **Only written (not typed)** 1 letter-size page (you may use both sides)
 - A calculator (NOT your smartphone)

- Duration: 75 mins, during class March 2, Wednesday

- More or less equal weightage to all the topics
 - Questions will be similar to the HWs, Handouts