
CS	4604:	Introduc0on	to	
Database	Management	Systems	

B.	Aditya	Prakash	
Lecture	#3:	SQL---Part	1	

Announcements---Project	
§  Goal:	design	a	database	system	applica=on	with	a	web	
front-end	

§  Project	Assignment	1	released	today	
–  Due	Feb	3,	in	class,	hardcopy	(1	per	project	group)	
–  Total	of	3	during	the	semester	

§  Heads-up:	Start	thinking	about	groups		
–  same	group	for	rest	of	the	semester		
–  You	are	free	to	choose	your	own	project	members	
–  You	can	post	on	piazza	as	well		
–  If	you	like	me	to	assign	you	to	a	group,	send	me	email	
– Min	size=2	members,	Max	size=3	members.	Anything	else	
needs	an	excellent	reason	(and	my	permission)	

Prakash	2016	 VT	CS	4604	 2	

Annoucements	

§  Reminder:	Handout	1	is	also	on	the	website	
– We	will	discuss	it	in	the	next	class,	for	prac=ce	
– Bring	a	printed	copy	to	class	

Prakash	2016	 VT	CS	4604	 3	

Last	lecture	

§  Rela=onal	Algebra	

Prakash	2016	 VT	CS	4604	 4	

Quick	Quiz:	Independence	of	
Operators	

R \ S = R� (R� S)
R ./C= �C(R⇥ S)
R ./ S =??

Prakash	2016	 VT	CS	4604	 5	

Quick	Quiz:	Independence	of	
Operators	

§  Suppose	R	and	S	share	the	aZributes	A1,A2,..An	
§  Let	L	be	the	list	of	aZributes	in	R	\Union	list	of	
aZributes	in	S	(so	no	duplicate	aZributes)		

§  Let	C	be	the	condi=on		
	R.A1	=	S.A1		AND	R.A2	=	S.A2	AND	…..	R.An	=	S.An	

R ./ S

R ./ S = ⇡L(�C(R⇥ S))
Prakash	2016	 VT	CS	4604	 6	

Quick	Aside:	RA	queries	can	become	
long!			

§  Normal	expression:	

§  “Linear”	Nota=on:			
	

⇡S1.Name,S2.Name(
�S1.Address=S2.Address

(⇢S1(Students)⇥ ⇢S2(Students)))

Pairs(P1, N1, A1, P2, N2, A2) := ⇢S1(Students)⇥ ⇢S2(Students)
Matched(P1, N1, A1, P2, N2, A2) :=
�A1=A2(Pairs(P1, N1, A1, P2, N2, A2))
Answer(Name1, Name2) := ⇡N1,N2(Matched(P1, N1, A1, P2, N2, A2))

Prakash	2016	 VT	CS	4604	 7	

This	lecture	

§  Structured	Query	Language	(SQL)	
– Pronounced	‘Sequel’	

Prakash	2016	 VT	CS	4604	 8	

Overview - detailed - SQL

§  DML
– select, from, where, renaming
– set operations
– ordering
– aggregate functions
– nested subqueries

§  other parts: DDL, constraints etc.

Prakash	2016	 VT	CS	4604	 9	

Relational Query Languages

§  A major strength of the relational model:
supports simple, powerful querying of data.

§  Two sublanguages:
§  DDL – Data Definition Language

– define and modify schema (at all 3 levels)

§  DML – Data Manipulation Language
– Queries can be written intuitively.

Prakash	2016	 VT	CS	4604	 10	

Relational languages

§  The DBMS is responsible for efficient
evaluation.
– Query optimizer: re-orders operations and

generates query plan

Prakash	2016	 VT	CS	4604	 11	

The SQL Query Language

§ The most widely used relational query
language.
–  Major standard is SQL-1999 (=SQL3)

•  Introduced “Object-Relational” concepts
• SQL 2003, SQL 2008 have small extensions

–  SQL92 is a basic subset

Prakash	2016	 VT	CS	4604	 12	

SQL (cont’d)
– PostgreSQL has some “unique” aspects (as

do most systems).
– XML is the next challenge for SQL.

Prakash	2016	 VT	CS	4604	 13	

SQLite	

	
§ Most	popular	embedded	db	in	the	world	

–  Iphone	(iOS),	Android,	Chrome….	

§  (Very)	Easy	to	use:	no	need	to	set	it	up	
§  Self-contained:	data+schema	
§  DB	on	your	laptop:	useful	for	tes=ng,	
understanding….	

Prakash	2016	 VT	CS	4604	 14	

DML

General form
select a1, a2, … an
from r1, r2, … rm
where P
[order by ….]
[group by …]
[having …]

Prakash	2016	 VT	CS	4604	 15	

Reminder: mini-U db

STUDENT
Ssn Name Address

123 smith main str
234 jones forbes ave

CLASS
c-id c-name units

4602 s.e. 2
4603 o.s. 2

TAKES	
SSN c-id grade

123 4613 A
234 4613 B

Prakash	2016	 VT	CS	4604	 16	

DML - eg:

find the ssn(s) of everybody called “smith”
select ssn
from student
where name=“smith”

Prakash	2016	 VT	CS	4604	 17	

DML - observation

General form
select a1, a2, … an
from r1, r2, … rm
where P

equivalent rel. algebra query?

Prakash	2016	 VT	CS	4604	 18	

DML - observation

General form
select a1, a2, … an
from r1, r2, … rm
where P

))...21((,...2,1 rmrrPanaa ×××σπ

Prakash	2016	 VT	CS	4604	 19	

DML – observation – Set VS Bags

General form
select distinct a1, a2, … an
from r1, r2, … rm
where P

))...21((,...2,1 rmrrPanaa ×××σπ

Prakash	2016	 VT	CS	4604	 20	

NOTE:	
•  Rela=onal	Algebra	is	set	seman0cs	(everything	is	a	set),	so	removes	

duplicates	automa=cally.	
	
•  SQL	is	bag	seman0cs	(everything	is	a	mul=set),	so	removes	duplicates	only	

when	asked	to	(using	dis=nct)	

select clause

select [distinct | all] name
from student
where address=“main”

Prakash	2016	 VT	CS	4604	 21	

where clause

find ssn(s) of all “smith”s on “main”
select ssn
from student
where address=“main” and
 name = “smith”

Prakash	2016	 VT	CS	4604	 22	

where clause

§  boolean operators (and or not …)
§  comparison operators (<, >, =, …)
§  and more…

Prakash	2016	 VT	CS	4604	 23	

What about strings?

find student ssns who live on “main” (st or str or
street - ie., “main st” or “main str” …)

Prakash	2016	 VT	CS	4604	 24	

What about strings?

find student ssns who live on “main” (st or str or
street)
select ssn
from student
where address like “main%”

%: variable-length don’t care
_: single-character don’t care

Prakash	2016	 VT	CS	4604	 25	

from clause

find names of people taking 4604

STUDENT
Ssn Name Address

123 smith main str
234 jones forbes ave

CLASS
c-id c-name units

4602 s.e. 2
4603 o.s. 2

TAKES	
SSN c-id grade

123 4613 A
234 4613 B

Prakash	2016	 VT	CS	4604	 26	

from clause

find names of people taking 4604
select name
from student, takes
where ???

Prakash	2016	 VT	CS	4604	 27	

from clause

find names of people taking 4604
select name
from student, takes
where student.ssn = takes.ssn and
 takes.c-id = “4604”

Prakash	2016	 VT	CS	4604	 28	

renaming - tuple variables

find names of people taking 4604
select name
from ourVeryOwnStudent, studentTakingClasses
where ourVeryOwnStudent.ssn =
 studentTakingClasses.ssn
 and studentTakingClasses.c-id = “4604”

Prakash	2016	 VT	CS	4604	 29	

renaming - tuple variables

find names of people taking 4604
select name
from ourVeryOwnStudent as S,

studentTakingClasses as T
where S.ssn =T.ssn
 and T.c-id = “4604”

Prakash	2016	 VT	CS	4604	 30	

renaming - self-join

§  self -joins: find Tom’s grandparent(s)

PC
p-id c-id
Mary Tom
Peter Mary
John Tom

PC
p-id c-id
Mary Tom
Peter Mary
John Tom

Prakash	2016	 VT	CS	4604	 31	

renaming - self-join

find grandparents of “Tom” (PC(p-id, c-id))
select gp.p-id
from PC as gp, PC
where gp.c-id= PC.p-id
 and PC.c-id = “Tom”

Prakash	2016	 VT	CS	4604	 32	

renaming - theta join

find course names with more units than 4604
select c1.c-name
from class as c1, class as c2
where c1.units > c2.units
 and c2.c-id = “4604”

Prakash	2016	 VT	CS	4604	 33	

renaming - theta join

find course names with more units than 4604
select c1.c-name
from class as c1, class as c2
where c1.units > c2.units
 and c2.c-id = “4604”

Prakash	2016	 VT	CS	4604	 34	

Overview - detailed - SQL

§  DML
– select, from, where
– set operations
– ordering
– aggregate functions
– nested subqueries

§  other parts: DDL, constraints etc.

Prakash	2016	 VT	CS	4604	 35	

set operations

find ssn of people taking both 4604 and 4613

TAKES	
SSN c-id grade

123 4613 A
234 4613 B

Prakash	2016	 VT	CS	4604	 36	

set operations

find ssn of people taking both 4604 and 4613
select ssn
from takes
where c-id=“4604” and
 c-id=“4613”

Prakash	2016	 VT	CS	4604	 37	

set operations

find ssn of people taking both 4604 and 4613
(select ssn from takes where c-id=“4604”)
Intersect
(select ssn from takes where c-id=“4613”)

other ops: union , except

Prakash	2016	 VT	CS	4604	 38	

Overview - detailed - SQL

§  DML
– select, from, where
– set operations
– ordering
– aggregate functions
– nested subqueries

§  other parts: DDL, constraints etc.

Prakash	2016	 VT	CS	4604	 39	

Ordering

find student records, sorted in name order
select *
from student
where

Prakash	2016	 VT	CS	4604	 40	

Ordering

find student records, sorted in name order
select *
from student
order by name asc

asc is the default

Prakash	2016	 VT	CS	4604	 41	

Ordering

find student records, sorted in name order; break
ties by reverse ssn
select *
from student
order by name, ssn desc

Prakash	2016	 VT	CS	4604	 42	

Overview - detailed - SQL

§  DML
– select, from, where
– set operations
– ordering
– aggregate functions
– nested subqueries

§  other parts: DDL, constraints etc.

Prakash	2016	 VT	CS	4604	 43	

Aggregate functions

find avg grade, across all students
select ??
from takes

TAKES	
SSN c-id grade

123 4613 A
234 4613 B

Prakash	2016	 VT	CS	4604	 44	

Aggregate functions

find avg grade, across all students
select avg(grade)
from takes

§  result: a single number
§  Which other functions?

TAKES	
SSN c-id grade

123 4613 A
234 4613 B

Prakash	2016	 VT	CS	4604	 45	

Aggregate functions

§  A: sum count min max (std)

Prakash	2016	 VT	CS	4604	 46	

Aggregate functions

find total number of enrollments
select count(*)
from takes

TAKES	
SSN c-id grade

123 4613 A
234 4613 B

Prakash	2016	 VT	CS	4604	 47	

Aggregate functions

find total number of students in 4604
select count(*)
from takes
where c-id=“4604”

TAKES	
SSN c-id grade

123 4613 A
234 4613 B

Prakash	2016	 VT	CS	4604	 48	

Aggregate functions

find total number of students in each course
select count(*)
from takes
where ???

TAKES	
SSN c-id grade

123 4613 A
234 4613 B

Prakash	2016	 VT	CS	4604	 49	

Aggregate functions

find total number of students in each course
select c-id, count(*)
from takes
group by c-id

c-id count
4613 2

TAKES	
SSN c-id grade

123 4613 A
234 4613 B

Prakash	2016	 VT	CS	4604	 50	

Aggregate functions

find total number of students in each course
select c-id, count(*)
from takes
group by c-id
order by c-id

c-id count
4613 2

TAKES	
SSN c-id grade

123 4613 A
234 4613 B

Prakash	2016	 VT	CS	4604	 51	

Aggregate functions

find total number of students in each course, and
sort by count, decreasing
select c-id, count(*) as pop
from takes
group by c-id
order by pop desc

c-id pop
4613 2

TAKES	
SSN c-id grade

123 4613 A
234 4613 B

Prakash	2016	 VT	CS	4604	 52	

Aggregate functions- ‘having’

find students with GPA > 3.0
SSN c-id grade

123 4613 4
234 4613 3

Prakash	2016	 VT	CS	4604	 53	

Aggregate functions- ‘having’

find students with GPA > 3.0
select ???, avg(grade)
from takes
group by ???

SSN c-id grade
123 4613 4
234 4613 3

Prakash	2016	 VT	CS	4604	 54	

Aggregate functions- ‘having’

find students with GPA > 3.0
select ssn, avg(grade)
from takes
group by ssn
???

SSN avg(grade)
123 4
234 3

SSN c-id grade
123 4613 4
234 4613 3

Prakash	2016	 VT	CS	4604	 55	

Aggregate functions- ‘having’

find students with GPA > 3.0
select ssn, avg(grade)
from takes
group by ssn
having avg(grade)>3.0

‘having’ <-> ‘where’ for groups

SSN avg(grade)
123 4
234 3

SSN c-id grade
123 4613 4
234 4613 3

Prakash	2016	 VT	CS	4604	 56	

Aggregate functions- ‘having’

find students and GPA,
 for students with > 5 courses

select ssn, avg(grade)
from takes
group by ssn
having count(*) > 5

SSN c-id grade
123 4613 4
234 4613 3

SSN avg(grade)
123 4
234 3

Prakash	2016	 VT	CS	4604	 57	

Drill:	Find	the	age	of	the	youngest	sailor	
for	each	ra0ng	level	

SELECT	S.ra7ng,	MIN	(S.age)	as	age	
FROM	Sailors	S	
GROUP	BY		S.ra7ng	

(1)	The	sailors	tuples	are	put	into	“same	
ra=ng”	groups.	

(2)	Compute	the	Minimum	age	for	each	
ra=ng	group.	

Sid	 Sname	 Ra7ng	 Age	
22	 Dus7n	 7	 45.0	
31	 Lubber	 8	 55.5	
85	 Art	 3	 25.5	
32	 Andy	 8	 25.5	
95	 Bob	 3	 63.5	

Ra7ng	 Age	
3	 25.5	
3	 63.5	
7	 45.0	
8	 55.5	
8	 25.5	

Ra7ng	 Age	
3	 25.5	
7	 45.0	
8	 25.5	

(1)

(2)

Prakash	2016	 VT	CS	4604	 58	

Drill:	Find	the	age	of	the	youngest	sailor	
for	each	ra0ng	level	

SELECT	S.ra7ng,	MIN	(S.age)	as	age	
FROM	Sailors	S	
GROUP	BY		S.ra7ng	

(1)	The	sailors	tuples	are	put	into	“same	
ra=ng”	groups.	

(2)	Compute	the	Minimum	age	for	each	
ra=ng	group.	

Sid	 Sname	 Ra7ng	 Age	
22	 Dus7n	 7	 45.0	
31	 Lubber	 8	 55.5	
85	 Art	 3	 25.5	
32	 Andy	 8	 25.5	
95	 Bob	 3	 63.5	

Ra7ng	 Age	
3	 25.5	
3	 63.5	
7	 45.0	
8	 55.5	
8	 25.5	

Ra7ng	 Age	
3	 25.5	
7	 45.0	
8	 25.5	

(1)

(2)

Prakash	2016	 VT	CS	4604	 59	

Drill:	Find	the	age	of	the	youngest	sailor	for	
each	ra0ng	level	that	has	at	least	2	members	

SELECT	S.ra7ng,	MIN	(S.age)	as	
minage	

FROM	Sailors	S	
GROUP	BY	S.ra7ng	
HAVING	COUNT(*)	>	1	

1.  The	sailors	tuples	are	put	into	
“same	ra=ng”	groups.	

2.  Eliminate	groups	that	have	<	2	
members.	

3.  Compute	the	Minimum	age	for	
each	ra=ng	group.	

Sid	 Sname	 Ra7ng	 Age	
22	 Dus7n	 7	 45.0	
31	 Lubber	 8	 55.5	
85	 Art	 3	 25.5	
32	 Andy	 8	 25.5	
95	 Bob	 3	 63.5	

Ra7ng	 Age	
3	 25.5	
3	 63.5	
7	 45.0	
8	 55.5	
8	 25.5	

Ra7ng	 Minage	
3	 25.5	
8	 25.5	Prakash	2016	 VT	CS	4604	 60	

Drill:	Find	the	age	of	the	youngest	sailor	for	
each	ra0ng	level	that	has	at	least	2	members	

SELECT	S.ra7ng,	MIN	(S.age)	as	
minage	

FROM	Sailors	S	
GROUP	BY	S.ra7ng	
HAVING	COUNT(*)	>	1	

1.  The	sailors	tuples	are	put	into	
“same	ra=ng”	groups.	

2.  Eliminate	groups	that	have	<	2	
members.	

3.  Compute	the	Minimum	age	for	
each	ra=ng	group.	

Sid	 Sname	 Ra7ng	 Age	
22	 Dus7n	 7	 45.0	
31	 Lubber	 8	 55.5	
85	 Art	 3	 25.5	
32	 Andy	 8	 25.5	
95	 Bob	 3	 63.5	

Ra7ng	 Age	
3	 25.5	
3	 63.5	
7	 45.0	
8	 55.5	
8	 25.5	

Ra7ng	 Minage	
3	 25.5	
8	 25.5	Prakash	2016	 VT	CS	4604	 61	

Overview - detailed - SQL

§  DML
– select, from, where
– set operations
– ordering
– aggregate functions
– nested subqueries

§  other parts: DDL, constraints etc.

Prakash	2016	 VT	CS	4604	 62	

Recap: DML

General form
select a1, a2, … an
from r1, r2, … rm
where P
[order by ….]
[group by …]
[having …]

Prakash	2016	 VT	CS	4604	 63	

DML - nested subqueries

find names of students of 4604
select name
from student
where ...

“ssn in the set of people that take 4604”

Prakash	2016	 VT	CS	4604	 64	

DML - nested subqueries

find names of students of 15-415
select name
from student
where ………...

 select ssn
 from takes
 where c-id =“4604”

Prakash	2016	 VT	CS	4604	 65	

DML - nested subqueries

find names of students of 15-415
select name
from student
where ssn in (

 select ssn
 from takes
 where c-id =“4604”)

Prakash	2016	 VT	CS	4604	 66	

DML - nested subqueries

§  ‘in’ compares a value with a set of values
§  ‘in’ can be combined other boolean ops
§  it is redundant (but user friendly!):

select name
from student …..
where c-id = “4604” ….

Prakash	2016	 VT	CS	4604	 67	

DML - nested subqueries

§  ‘in’ compares a value with a set of values
§  ‘in’ can be combined other boolean ops
§  it is redundant (but user friendly!):

select name
from student, takes
where c-id = “4604” and
 student.ssn=takes.ssn

Prakash	2016	 VT	CS	4604	 68	

DML - nested subqueries

find names of students taking 4604 and living on
“main str”
select name
from student
where address=“main str” and ssn in
 (select ssn from takes where c-id =“4604”)

Prakash	2016	 VT	CS	4604	 69	

DML - nested subqueries

§  ‘in’ compares a value with a set of values
§  other operators like ‘in’ ??

Prakash	2016	 VT	CS	4604	 70	

DML - nested subqueries

find student record with highest ssn
 select *
 from student
 where ssn
 is greater than every other ssn

Prakash	2016	 VT	CS	4604	 71	

DML - nested subqueries

find student record with highest ssn
 select *
 from student
 where ssn greater than every
 select ssn from student

Prakash	2016	 VT	CS	4604	 72	

DML - nested subqueries

find student record with highest ssn
 select *
 from student
 where ssn > all (
 select ssn from student)

Prakash	2016	 VT	CS	4604	 73	

DML - nested subqueries

find student record with highest ssn
 select *
 from student
 where ssn >= all (
 select ssn from student)

Prakash	2016	 VT	CS	4604	 74	

DML - nested subqueries

find student record with highest ssn - without
nested subqueries?

 select S1.ssn, S1.name, S1.address
 from student as S1, student as S2
 where S1.ssn > S2.ssn
is not the answer (what does it give?)

Prakash	2016	 VT	CS	4604	 75	

DML - nested subqueries

STUDENT
Ssn Name Address

123 smith main str
234 jones forbes ave

STUDENT
Ssn Name Address

123 smith main str
234 jones forbes ave

S1 S2

S1. ssn S2.ssn ….
123 123 …
234 123 …
123 234
234 234

S1 x S2

S1.ssn>S2.ssn

Prakash	2016	 VT	CS	4604	 76	

DML - nested subqueries

 select S1.ssn, S1.name, S1.address
 from student as S1, student as S2
 where S1.ssn > S2.ssn
gives all but the smallest ssn -
aha!

Prakash	2016	 VT	CS	4604	 77	

DML - nested subqueries

find student record with highest ssn - without
nested subqueries?

 select S1.ssn, S1.name, S1.address
 from student as S1, student as S2
 where S1.ssn < S2.ssn
gives all but the highest - therefore….

Prakash	2016	 VT	CS	4604	 78	

DML - nested subqueries

find student record with highest ssn - without nested
subqueries?

 (select * from student) except
 (select S1.ssn, S1.name, S1.address
 from student as S1, student as S2
 where S1.ssn < S2.ssn)

Prakash	2016	 VT	CS	4604	 79	

DML - nested subqueries

 (select * from student) except
 (select S1.ssn, S1.name, S1.address
 from student as S1, student as S2
 where S1.ssn < S2.ssn)

			select	*	
			from	student	
			where	ssn		>=	all	(select	ssn			from	student)	

Prakash	2016	 VT	CS	4604	 80	

DML - nested subqueries

Drill: Even more readable than
 select * from student
 where ssn >= all (select ssn from student)

Prakash	2016	 VT	CS	4604	 81	

DML - nested subqueries

Drill: Even more readable than
 select * from student
 where ssn >= all (select ssn from student)

 select * from student
 where ssn in
 (select max(ssn) from student)

Prakash	2016	 VT	CS	4604	 82	

from clause

Drill: find the ssn of the student with the highest
GPA

STUDENT
Ssn Name Address

123 smith main str
234 jones forbes ave

CLASS
c-id c-name units

4602 s.e. 2
4603 o.s. 2

TAKES	
SSN c-id grade

123 4613 A
234 4613 B

Prakash	2016	 VT	CS	4604	 83	

DML - nested subqueries

Drill: find the ssn and GPA of the student with
the highest GPA

 select ssn, avg(grade) from takes
 where

Prakash	2016	 VT	CS	4604	 84	

DML - nested subqueries

Drill: find the ssn and GPA of the student with
the highest GPA
 select ssn, avg(grade) from takes
 group by ssn
 having avg(grade) …...
greater than every other GPA on file

Prakash	2016	 VT	CS	4604	 85	

DML - nested subqueries

Drill: find the ssn and GPA of the student with
the highest GPA
 select ssn, avg(grade) from takes
 group by ssn
 having avg(grade) >= all
 (select avg(grade)
 from student group by ssn)

} all GPAs

Prakash	2016	 VT	CS	4604	 86	

DML - nested subqueries

§  ‘in’ and ‘>= all’ compares a value with a set
of values

§  other operators like these?

Prakash	2016	 VT	CS	4604	 87	

DML - nested subqueries

§  <all(), <>all() ...
§  ‘<>all’ is identical to ‘not in’
§  >some(), >= some () ...
§  ‘= some()’ is identical to ‘in’
§  exists

Prakash	2016	 VT	CS	4604	 88	

DML - nested subqueries

Drill for ‘exists’: find all courses that nobody
enrolled in

select c-id from class ….with no tuples in ‘takes’

CLASS
c-id c-name units

4602 s.e. 2
4603 o.s. 2

TAKES	
SSN c-id grade

123 4613 A
234 4613 B

Prakash	2016	 VT	CS	4604	 89	

DML - nested subqueries

Drill for ‘exists’: find all courses that nobody
enrolled in

 select c-id from class
 where not exists
 (select * from takes
 where class.c-id = takes.c-id)

Prakash	2016	 VT	CS	4604	 90	

Correlated	vs	Uncorrelated	

§  The	previous	subqueries	did	not	depend	on	anything	
outside	the	subquery	
–  …and	thus	need	to	be	executed	just	once.	
–  These	are	called	uncorrelated.	

§  A	correlated	subquery	depends	on	data	from	the	
outer	query	
–  …	and	thus	has	to	be	executed	for	each	row	of	the	outer	
table(s)	

Prakash	2016	 VT	CS	4604	 91	

Correlated	Subqueries	
§  Find	course	names	that	have	been	used	for	two	or	more	

courses.	
	
SELECT CourseName
FROM Courses AS First
WHERE CourseName IN

(SELECT CourseName
FROM Courses
WHERE (Number <> First.Number)
AND (DeptName <> First.DeptName)
);

Prakash	2016	 VT	CS	4604	 92	

Evalua0ng	Correlated	Subqueries	
SELECT CourseName
FROM Courses AS First
WHERE CourseName IN

(SELECT CourseName
FROM Courses
WHERE (Number <> First.Number)
AND (DeptName <> First.DeptName)
);

§  Evaluate	query	by	looping	over	tuples	of	First,	and	for	each	
tuple	evaluate	the	subquery.	

§  Scoping	rules:	an	aZribute	in	a	subquery	belongs	to	one	of	
the	tuple	variables	in	that	subquery’s	FROM	clause,	or	to	
the	immediately	surrounding	subquery,	and	so	on.	

Prakash	2016	 VT	CS	4604	 93	

Overview - detailed - SQL

§  DML
– select, from, where
– set operations
– ordering
– aggregate functions
– nested subqueries

§  other parts: DDL, constraints etc.

Prakash	2016	 VT	CS	4604	 94	

(Next Week) Overview - detailed –
SQL

§  DML
§  other parts:

– views
– modifications
–  joins
– DDL
– Constraints

Prakash	2016	 VT	CS	4604	 95	

