
CS	4604:	Introduc0on	to	
Database	Management	Systems	

B.	Aditya	Prakash	
Lecture	#19:	Logging	and	Recovery	2:	

ARIES	

Motivation

§  Atomicity:
– Transactions may abort (“Rollback”).

§  Durability:
– What if DBMS stops running? (Causes?)

crash!
❖  Desired state after system restarts:
–  T1 & T3 should be durable.
–  T2, T4 & T5 should be aborted (effects

not seen).

T1
T2
T3
T4
T5

Abort
Commit

Commit

Prakash	2016	 VT	CS	4604	 2	

General Overview

§  Preliminaries
§  Write-Ahead Log - main ideas
§  (Shadow paging)
§  Write-Ahead Log: ARIES

Prakash	2016	 VT	CS	4604	 3	

Main ideas so far:

§  Write-Ahead Log, for loss of volatile storage,
§  with incremental updates (STEAL, NO

FORCE)
§  and checkpoints
§  On recovery: undo uncommitted; redo

committed transactions.

Prakash	2016	 VT	CS	4604	 4	

Today: ARIES

With full details on
–  fuzzy checkpoints
–  recovery algorithm

C. Mohan (IBM)

Prakash	2016	 VT	CS	4604	 5	

Overview

§  Preliminaries
§  Write-Ahead Log - main ideas
§  (Shadow paging)
§  Write-Ahead Log: ARIES

– LSN’s
– examples of normal operation & of abort
–  fuzzy checkpoints
–  recovery algo

Prakash	2016	 VT	CS	4604	 6	

LSN

§  Log Sequence Number
§  every log record has an LSN
§  Q: Why do we need it?

Prakash	2016	 VT	CS	4604	 7	

LSN
<T1 start>
<T2 start>
<T4 start>
<T4, A, 10, 20>
<T1 commit>
<T4, B, 30, 40>
<T3 start>
<T2 commit>
<T3 commit>
~~~~ CRASH ~~~~ 

A1: e.g, undo T4 - it is 
faster, if we have a 
linked list of the T4 log 
records 
A2: and many other 
uses - see later 

Prakash	2016	 VT	CS	4604	 8	



Types of log records 
<T1 start> 
<T2 start> 
<T4 start> 
<T4, A, 10, 20> 
<T1 commit> 
<T4, B, 30, 40> 
<T3 start> 
<T2 commit> 
<T3 commit> 
~~~~ CRASH ~~~~ 

Q1: Which types?
A1:
Q2: What format?
A2:

Prakash	2016	 VT	CS	4604	 9	

Types of log records
<T1 start>
<T2 start>
<T4 start>
<T4, A, 10, 20>
<T1 commit>
<T4, B, 30, 40>
<T3 start>
<T2 commit>
<T3 commit>
~~~~ CRASH ~~~~ 

Q1: Which types? 
A1: Update, commit, ckpoint, … 
Q2: What format? 
A2: x-id, type, (old value, …) 
 

Prakash	2016	 VT	CS	4604	 10	



Log Records 
Possible log record types: 
§  Update, Commit, Abort 
§  Checkpoint (for log 

maintenance) 
§  Compensation Log 

Records (CLRs)  
–  for UNDO actions 

§  End (end of commit or 
abort) 

 
prevLSN 

XID 

type 

length 

pageID 

offset 

before-image 

after-image 

LogRecord fields: 

update 
records 
only 

Prakash	2016	 VT	CS	4604	 11	



Overview 

§  Preliminaries 
§  Write-Ahead Log - main ideas 
§  (Shadow paging) 
§  Write-Ahead Log: ARIES 

– LSN’s 
– examples of normal operation & of abort 
–  fuzzy checkpoints 
–  recovery algo 

Prakash	2016	 VT	CS	4604	 12	



Writing log records 

§  We don’t want to write one record at a time 
–  (why not?) 

§  How should we buffer them? 

Prakash	2016	 VT	CS	4604	 13	



Writing log records  

§  We don’t want to write one record at a time 
–  (why not?) 

§  How should we buffer them? 
– Batch log updates; 
– Un-pin a data page ONLY if all the corresponding 

log records have been flushed to the log. 

Prakash	2016	 VT	CS	4604	 14	



WAL & the Log 

§  Each data page contains a pageLSN. 
–  The LSN of the most recent update to 

that page. 
§  System keeps track of flushedLSN. 

–  The max LSN flushed so far. 
§  WAL:  For a page i to be written 
must flush log at least to the  
point where: 

pageLSNi ≤ flushedLSN 
pageLSN 

Log records 
flushed to disk 

“Log tail” 
  in RAM 

flushedLSN 

Prakash	2016	 VT	CS	4604	 15	



WAL & the Log 

§  Can we un-pin the gray page? 

pageLSN 

Log records 
flushed to disk 

“Log tail” 
  in RAM 

flushedLSN 

Prakash	2016	 VT	CS	4604	 16	



WAL & the Log 

§  Can we un-pin the gray page? 
§  A: yes 

pageLSN 

Log records 
flushed to disk 

“Log tail” 
  in RAM 

flushedLSN 

Prakash	2016	 VT	CS	4604	 17	



WAL & the Log 

§  Can we un-pin the blue page? 

pageLSN 

Log records 
flushed to disk 

“Log tail” 
  in RAM 

flushedLSN 

Prakash	2016	 VT	CS	4604	 18	



WAL & the Log 

§  Can we un-pin the blue page? 
§  A: no  

pageLSN 

Log records 
flushed to disk 

“Log tail” 
  in RAM 

flushedLSN 

Prakash	2016	 VT	CS	4604	 19	



WAL & the Log 

LSNs 

DB 

pageLSNs 

RAM 

flushedLSN 

pageLSN 

Log records 
flushed to disk 

“Log tail” 
  in RAM 

flushedLSN 

Q: why not on disk or log? 

Prakash	2016	 VT	CS	4604	 20	



Overview 

§  Preliminaries 
§  Write-Ahead Log - main ideas 
§  (Shadow paging) 
§  Write-Ahead Log: ARIES 

– LSN’s 
– examples of normal operation & of abort 
–  fuzzy checkpoints 
–  recovery algo 

Prakash	2016	 VT	CS	4604	 21	



Normal Execution of an Xact 

§  Series of reads & writes, followed by commit 
or abort. 
– We will assume that disk write is atomic. 

•  In practice, additional details to deal with non-atomic 
writes. 

§  Strict 2PL.  
§  STEAL, NO-FORCE buffer management, with 

Write-Ahead Logging. 

Prakash	2016	 VT	CS	4604	 22	



Normal execution of an Xact 

§  Page ‘i’ can be written out only after the 
corresponding log record has been flushed 

Prakash	2016	 VT	CS	4604	 23	



Transaction Commit 

§  Write commit record to log. 
§  All log records up to Xact’s commit record 

are flushed to disk. 

Q: why not flush the dirty pages, too? 

Prakash	2016	 VT	CS	4604	 24	



Transaction Commit 

§  Write commit record to log. 
§  All log records up to Xact’s commit record 

are flushed to disk. 
– Note that log flushes are sequential, 

synchronous writes to disk. 
– Many log records per log page. 

§  Commit() returns. 
§  Write end record to log. 

Prakash	2016	 VT	CS	4604	 25	



Example 
LSN  prevLSN  tid  type        item  old  new 
10     NULL     T1  update    X       30   40 
.... 
50     10            T1 update    Y        22   25 
... 
63     50            T1 commit 
... 
 
68     63            T1 end 

dbms flushes  
log records 
+ some  
record-keeping 

Prakash	2016	 VT	CS	4604	 26	



Overview 

§  Preliminaries 
§  Write-Ahead Log - main ideas 
§  (Shadow paging) 
§  Write-Ahead Log: ARIES 

– LSN’s 
– examples of normal operation & of abort 
–  fuzzy checkpoints 
–  recovery algo 

Prakash	2016	 VT	CS	4604	 27	



Abort 

Actually, a special case of the up-coming ‘undo’ 
operation, 

applied to only one transaction - e.g.: 

Prakash	2016	 VT	CS	4604	 28	



Abort - Example 

LSN  prevLSN  tid  type        item  old  new 
10     NULL     T2  update    Y       30   40 
... 
63     10            T2 abort 
 

Prakash	2016	 VT	CS	4604	 29	



Abort - Example 

LSN  prevLSN  tid  type        item  old  new 
10     NULL     T2  update    Y       30   40 
... 
63     10            T2 abort 
... 
72     63            T2 CLR   (LSN 10) 
... 
78     72            T2 end 

compensating 
log 
record 

Prakash	2016	 VT	CS	4604	 30	



Abort - Example 

LSN  prevLSN  tid  type        item  old  new undoNextLSN  
10     NULL     T2  update    Y       30   40 
... 
63     10            T2 abort 
... 
72     63            T2 CLR        Y       40   30   NULL    
... 
78     72            T2 end 

Prakash	2016	 VT	CS	4604	 31	



CLR record - details 

§  a CLR record has all the fields of an ‘update’ 
record 

§  plus the ‘undoNextLSN’ pointer, to the next-
to-be-undone LSN 

Prakash	2016	 VT	CS	4604	 32	



Abort - algorithm: 

§  First, write an ‘abort’ record on log and 
§  Play back updates, in reverse order: for each 

update 
– write a CLR log record 
–  restore old value 

§  at end, write an ‘end’ log record 

Notice: CLR records never need to be undone 

Prakash	2016	 VT	CS	4604	 33	



Overview 

§  Preliminaries 
§  Write-Ahead Log - main ideas 
§  (Shadow paging) 
§  Write-Ahead Log: ARIES 

– LSN’s 
– examples of normal operation & of abort 
–  fuzzy checkpoints 
–  recovery algo 

Prakash	2016	 VT	CS	4604	 34	



(non-fuzzy) checkpoints 

§  they have performance problems - recall from 
previous lecture: 

Prakash	2016	 VT	CS	4604	 35	



(non-fuzzy) checkpoints 

We assumed that the DBMS: 
§  stops  all transactions, and 
§  flushes on disk the ‘dirty 

pages’ 
Both decisions are expensive 
Q: Solution? 

<T1 start> 
... 
<T1 commit> 
... 
<T499, C, 1000, 1200> 
<checkpoint> 
<T499 commit> 
<T500 start> 
<T500, A, 200, 400> 
<checkpoint> 
<T500, B, 10, 12> 

before 

crash 
Prakash	2016	 VT	CS	4604	 36	



(non-fuzzy) checkpoints 

Q: Solution? 
Hint1: record state as of the 

beginning of the ckpt 
Hint2: we need some 

guarantee about which 
pages made it to the disk 

<T1 start> 
... 
<T1 commit> 
... 
<T499, C, 1000, 1200> 
<checkpoint> 
<T499 commit> 
<T500 start> 
<T500, A, 200, 400> 
<checkpoint> 
<T500, B, 10, 12> 

before 

crash 
Prakash	2016	 VT	CS	4604	 37	



checkpoints 

Q: Solution? 
A: write on the log: 
§  the id-s of active 

transactions and 
§  the id-s (ONLY!) of dirty 

pages (rest: obviously 
made it to the disk!) 

<T1 start> 
... 
<T1 commit> 
... 
<T499, C, 1000, 1200> 
<checkpoint> 
<T499 commit> 
<T500 start> 
<T500, A, 200, 400> 
<checkpoint> 
<T500, B, 10, 12> 

before 

crash 
Prakash	2016	 VT	CS	4604	 38	



(Fuzzy) checkpoints 

Specifically, write to log: 
–   begin_checkpoint record: indicates start of ckpt 
–   end_checkpoint record:  Contains current Xact table 

and dirty page table.  This is a `fuzzy checkpoint’: 
•  Other Xacts continue to run; so these tables accurate only 

as of the time of the begin_checkpoint record. 
•  No attempt to force dirty pages to disk; effectiveness of 

checkpoint limited by oldest unwritten change to a dirty 
page.  

Prakash	2016	 VT	CS	4604	 39	



(Fuzzy) checkpoints 

Specifically, write to log: 
–   begin_checkpoint record: indicates start of ckpt 
–   end_checkpoint record:  Contains current Xact table 

and dirty page table.  This is a `fuzzy checkpoint’: 
•  Other Xacts continue to run; so these tables accurate only 

as of the time of the begin_checkpoint record. 
•  No attempt to force dirty pages to disk; effectiveness of 

checkpoint limited by oldest unwritten change to a dirty 
page.  

solved both problems of non-fuzzy ckpts!! 

Prakash	2016	 VT	CS	4604	 40	



(Fuzzy) checkpoints - cont’d 

And:  
– Store LSN of most recent chkpt record on disk 

(master record) 
•   Q: why do we need that? 

Prakash	2016	 VT	CS	4604	 41	



(Fuzzy) Checkpoints 
More details: Two in-memory tables: 
#1) Transaction Table 

Q: what would you store there? 

Prakash	2016	 VT	CS	4604	 42	



(Fuzzy) Checkpoints 
More details: Two in-memory tables: 
#1) Transaction Table 
§  One entry per currently active Xact. 

– entry removed when Xact commits or aborts 
§  Contains  

– XID,  
– status (running/committing/aborting), and  
–  lastLSN (most recent LSN written by Xact). 

Prakash	2016	 VT	CS	4604	 43	



(Fuzzy) Checkpoints 
#2) Dirty Page Table: 

– One entry per dirty page currently in buffer pool. 
– Contains recLSN -- the LSN of the log record 

which first caused the page to be dirty. 

Prakash	2016	 VT	CS	4604	 44	



Overview 

§  Preliminaries 
§  Write-Ahead Log - main ideas 
§  (Shadow paging) 
§  Write-Ahead Log: ARIES 

– LSN’s 
– examples of normal operation & of abort 
–  fuzzy checkpoints 
–  recovery algo 

Prakash	2016	 VT	CS	4604	 45	



The Big Picture:  What’s Stored 
Where 

DB 

Data pages 
    each with a 
    pageLSN 

Xact Table 
 lastLSN 
 status 

 
Dirty Page Table 

 recLSN 
 
flushedLSN 
 

RAM 

prevLSN 
XID 
type 

length 
pageID 

offset 
before-image 
after-image 

LogRecords 

LOG 

master record 
    LSN of most  
    recent checkpoint 

update 
CLR 

undoNextLSN CLR 
Prakash	2016	 VT	CS	4604	 46	



Crash Recovery: Big Picture 

•  Start from a checkpoint (found 
via master record). 

•  Three phases. 
–  Analysis - Figure out which Xacts 

committed since checkpoint, which failed. 
–  REDO all actions (repeat history) 
–  UNDO effects of failed Xacts. 

Oldest log 
rec. of Xact 
active at 
crash 

Smallest 
recLSN in 
dirty page 
table after 
Analysis 

Last chkpt 

CRASH 

A R U 
Prakash	2016	 VT	CS	4604	 47	



Crash Recovery: Big Picture 

• Notice: relative ordering of A, 
B, C may vary! 

Oldest log 
rec. of Xact 
active at 
crash 

Smallest 
recLSN in 
dirty page 
table after 
Analysis 

Last chkpt 

CRASH 

A R U 

A 

B 

C 

Prakash	2016	 VT	CS	4604	 48	



Recovery: The Analysis Phase 

§  Re-establish knowledge of state at checkpoint. 
– via transaction table and dirty page table stored in the 

checkpoint 

Prakash	2016	 VT	CS	4604	 49	



Recovery: The Analysis Phase 

§  Scan log forward from checkpoint. 
–   End record: Remove Xact from Xact table. 
– All Other records:  

•  Add Xact to Xact table, with status ‘U’ (=candidate for 
undo) 

•   set lastLSN=LSN,  
•  on commit, change Xact status to ‘C’. 

– also, for Update records: If page P not in Dirty Page 
Table (DPT),  
•  add P to DPT, set its recLSN=LSN. 

Prakash	2016	 VT	CS	4604	 50	



Recovery: The Analysis Phase 

§  At end of Analysis: 
–  transaction table says which xacts were active at time 

of crash. 
– DPT says which dirty pages might not have made it to 

disk 

Prakash	2016	 VT	CS	4604	 51	



Phase 2: REDO 

Goal: repeat History to reconstruct state at crash: 
– Reapply all updates (even of aborted Xacts!), redo 

CLRs. 
–  (and try to avoid unnecessary reads and writes!) 

Specifically: 
§  Scan forward from log rec containing smallest 

recLSN in DPT.    Q: why start here? 

Prakash	2016	 VT	CS	4604	 52	



Phase 2: REDO (cont’d) 

§  ... 
§  For each update log record or CLR  with a given 

LSN, REDO the action unless:   
– Affected page is not in the Dirty Page Table, or 
– Affected page is in D.P.T., but has recLSN > LSN, or 
– pageLSN (in DB) ≥ LSN. (this last case requires I/O) 

Prakash	2016	 VT	CS	4604	 53	



Phase 2: REDO (cont’d) 

§  ... 
§  To REDO an action: 

– Reapply logged action. 
– Set pageLSN to LSN.  No additional logging, no 

forcing! 

Prakash	2016	 VT	CS	4604	 54	



Phase 2: REDO (cont’d) 

§  ... 
§  at the end of REDO phase, write ‘end’ log 

records for all xacts with status ‘C’, 
§  and remove them from transaction table 

Prakash	2016	 VT	CS	4604	 55	



Phase 3: UNDO 

Goal: Undo all transactions that were active at the 
time of crash (‘loser xacts’) 

 
§  That is, all xacts with ‘U’ status on the xact 

table of the Analysis phase 
§  Process them in reverse LSN order 
§  using the lastLSN’s to speed up traversal 
§  and issuing CLRs 

Prakash	2016	 VT	CS	4604	 56	



Phase 3: UNDO 
ToUndo={lastLSNs of ‘loser’ Xacts} 
Repeat: 

– Choose (and remove) largest LSN among ToUndo. 
–  If this LSN is a CLR and undonextLSN==NULL 

• Write an End record for this Xact. 
–  If this LSN is a CLR, and undonextLSN != NULL 

• Add undonextLSN to ToUndo  
– Else this LSN is an update.  Undo the update, write a 

CLR, add prevLSN to ToUndo. 
Until ToUndo is empty. 

Prakash	2016	 VT	CS	4604	 57	



Phase 3: UNDO - illustration 
LSN         LOG 

     00 
     05 
     10 
     20 
     30 
     40 

     45 
     50 
     60 

suppose that after end of  
analysis phase we have: 
xact table 
 

xid   status   lastLSN 
T32   U 
T41   U 

prevLSNs 

Prakash	2016	 VT	CS	4604	 58	



Phase 3: UNDO - illustration 
LSN         LOG 

     00 
     05 
     10 
     20 
     30 
     40 

     45 
     50 
     60 

suppose that after end of  
analysis phase we have: 
xact table 
 

xid   status   lastLSN 
T32   U 
T41   U 

undo 
in reverse 
LSN order 

Prakash	2016	 VT	CS	4604	 59	



RAM 

Example of Recovery 

begin_checkpoint 
 end_checkpoint 
update: T1 writes P5 
update T2 writes P3 
T1 abort 
CLR: Undo T1 LSN 10 

T1 End 
update: T3 writes P1 
update: T2 writes P5 
CRASH 

LSN         LOG 

     00 
     05 
     10 
     20 
     30 
     40 

     45 
     50 
     60 

Xact Table 
 lastLSN 
 status 

Dirty Page Table 
 recLSN 

flushedLSN 
 
ToUndo 

prevLSNs 

Prakash	2016	 VT	CS	4604	 60	



Questions 

§  Q1: After the Analysis phase, which are the 
‘loser’ transactions? 

§  Q2: UNDO phase - what will it do? 

Prakash	2016	 VT	CS	4604	 61	



Questions 

§  Q1: After the Analysis phase, which are the 
‘loser’ transactions? 

§  A1: T2 and T3 
§  Q2: UNDO phase - what will it do? 
§  A2: undo ops of LSN 60, 50, 20 

Prakash	2016	 VT	CS	4604	 62	



Example: Crash During Restart! 
begin_checkpoint, end_checkpoint 
update: T1 writes P5 
update T2 writes P3 
T1 abort 
CLR: Undo T1 LSN 10, T1 End 
update: T3 writes P1 

update: T2 writes P5 
CRASH, RESTART 
CLR: Undo T2 LSN 60 
CLR: Undo T3 LSN 50, T3 end 

CRASH, RESTART 
 

LSN         LOG 

00,05 
     10 
     20 
     30 
40,45 
     50 

     60 
 
     70 
80,85 

 
 

Xact Table 
 lastLSN 
 status 

Dirty Page Table 
 recLSN 

flushedLSN 
 
ToUndo 

RAM 

Prakash	2016	 VT	CS	4604	 63	



Example: Crash During Restart! 
begin_checkpoint, end_checkpoint 
update: T1 writes P5 
update T2 writes P3 
T1 abort 
CLR: Undo T1 LSN 10, T1 End 
update: T3 writes P1 

update: T2 writes P5 
CRASH, RESTART 
CLR: Undo T2 LSN 60 
CLR: Undo T3 LSN 50, T3 end 

CRASH, RESTART 
 

LSN         LOG 

00,05 
     10 
     20 
     30 
40,45 
     50 

     60 
 
     70 
80,85 

 
 

Xact Table 
 lastLSN 
 status 

Dirty Page Table 
 recLSN 

flushedLSN 
 
ToUndo 

undonextLSN 

RAM 

Prakash	2016	 VT	CS	4604	 64	



Example: Crash During Restart! 
begin_checkpoint, end_checkpoint 
update: T1 writes P5 
update T2 writes P3 
T1 abort 
CLR: Undo T1 LSN 10, T1 End 
update: T3 writes P1 

update: T2 writes P5 
CRASH, RESTART 
CLR: Undo T2 LSN 60 
CLR: Undo T3 LSN 50, T3 end 

CRASH, RESTART 
 

LSN         LOG 

00,05 
     10 
     20 
     30 
40,45 
     50 

     60 
 
     70 
80,85 

 
 

Xact Table 
 lastLSN 
 status 

Dirty Page Table 
 recLSN 

flushedLSN 
 
ToUndo 

undonextLSN 

RAM 

Prakash	2016	 VT	CS	4604	 65	



Example: Crash During Restart! 
begin_checkpoint, end_checkpoint 
update: T1 writes P5 
update T2 writes P3 
T1 abort 
CLR: Undo T1 LSN 10, T1 End 
update: T3 writes P1 

update: T2 writes P5 
CRASH, RESTART 
CLR: Undo T2 LSN 60 
CLR: Undo T3 LSN 50, T3 end 

CRASH, RESTART 
 

LSN         LOG 

00,05 
     10 
     20 
     30 
40,45 
     50 

     60 
 
     70 
80,85 

 
 

undonextLSN 

RAM 

Prakash	2016	 VT	CS	4604	 66	



Questions 

§  Q3: After the Analysis phase, which are the 
‘loser’ transactions? 

§  Q4: UNDO phase - what will it do? 

Prakash	2016	 VT	CS	4604	 67	



Questions 

§  Q3: After the Analysis phase, which are the 
‘loser’ transactions? 

§  A3: T2 only 
§  Q4: UNDO phase - what will it do? 
§  A4: follow the string of prevLSN of T2, 

exploiting undoNextLSN 

Prakash	2016	 VT	CS	4604	 68	



Example: Crash During Restart! 
begin_checkpoint, end_checkpoint 
update: T1 writes P5 
update T2 writes P3 
T1 abort 
CLR: Undo T1 LSN 10, T1 End 
update: T3 writes P1 

update: T2 writes P5 
CRASH, RESTART 
CLR: Undo T2 LSN 60 
CLR: Undo T3 LSN 50, T3 end 

CRASH, RESTART 
 

LSN         LOG 

00,05 
     10 
     20 
     30 
40,45 
     50 

     60 
 
     70 
80,85 

 
 

Xact Table 
 lastLSN 
 status 

Dirty Page Table 
 recLSN 

flushedLSN 
 
ToUndo 

undonextLSN 

RAM 

Prakash	2016	 VT	CS	4604	 69	



Questions 

§  Q5: show the log, after the recovery is 
finished: 

Prakash	2016	 VT	CS	4604	 70	



Example: Crash During Restart! 
begin_checkpoint, end_checkpoint 
update: T1 writes P5 
update T2 writes P3 
T1 abort 
CLR: Undo T1 LSN 10, T1 End 
update: T3 writes P1 

update: T2 writes P5 
CRASH, RESTART 
CLR: Undo T2 LSN 60 
CLR: Undo T3 LSN 50, T3 end 

CRASH, RESTART 
CLR: Undo T2 LSN 20, T2 end 

LSN         LOG 

00,05 
     10 
     20 
     30 
40,45 
     50 

     60 
 
     70 
80,85 

 
90, 95 

Xact Table 
 lastLSN 
 status 

Dirty Page Table 
 recLSN 

flushedLSN 
 
ToUndo 

undonextLSN 

RAM 

Prakash	2016	 VT	CS	4604	 71	



Additional Crash Issues 

§  What happens if system crashes during 
Analysis?  During REDO? 

§  How do you limit the amount of work in 
REDO? 
– Flush asynchronously in the background. 

§  How do you limit the amount of work in 
UNDO? 
– Avoid long-running Xacts. 

Prakash	2016	 VT	CS	4604	 72	



Summary of Logging/Recovery 

§   Recovery Manager guarantees Atomicity & 
Durability. 

Atomicity 
Consistency 
Isolation 
Durability 

Prakash	2016	 VT	CS	4604	 73	



Summary of Logging/Recovery 

ARIES - main ideas: 
– WAL (write ahead log), STEAL/NO-

FORCE 
–  fuzzy checkpoints (snapshot of dirty 

page ids) 
–  redo everything since the earliest dirty 

page; undo ‘loser’ transactions 
– write CLRs when undoing, to survive 

failures during restarts 

let OS 
do its best 

idempotency 

Prakash	2016	 VT	CS	4604	 74	



Summary of Logging/Recovery 

Additional concepts: 
§  LSNs identify log records; linked into 

backwards chains per transaction (via 
prevLSN). 

§  pageLSN allows comparison of data page and 
log records. 

§  (and several other subtle concepts: undoNextLSN, 
recLSN etc) 

Prakash	2016	 VT	CS	4604	 75	


