
CS	4604:	Introduc0on	to	
Database	Management	Systems	

B.	Aditya	Prakash	
Lecture	#18:	Logging	and	Recovery	1	

Announcements	

§  Recita5on	on	Project	Assignment	3	on	April	20		
– Given	by	Sorour	and	Shamimul	
– Will	go	over	what	you	need	to	do	for	the	
assignment	

–  In-class	demo	of	a	sample	solu5on	

Prakash	2016	 VT	CS	4604	 2	

General Overview

§  Preliminaries
§  Write-Ahead Log - main ideas
§  (Shadow paging)
§  Write-Ahead Log: ARIES

Prakash	2016	 VT	CS	4604	 3	

NOTICE:

§  NONE of the methods in this lecture is used
‘as is’

§  we mention them for clarity, to illustrate the
concepts and rationale behind ‘ARIES’,
which is the industry standard.

Prakash	2016	 VT	CS	4604	 4	

Transactions - dfn

= unit of work, eg.
move $10 from savings to checking

Atomicity (all or none)
Consistency
Isolation (as if alone)
Durability

recovery

concurrency
control

Prakash	2016	 VT	CS	4604	 5	

Overview - recovery

§  problem definition
–  types of failures
–  types of storage

§  solution#1: Write-ahead log - main ideas
– deferred updates
–  incremental updates
– checkpoints

§  (solution #2: shadow paging)

Prakash	2016	 VT	CS	4604	 6	

Recovery

§  Durability - types of failures?

Prakash	2016	 VT	CS	4604	 7	

Recovery

§  Durability - types of failures?
§  disk crash (ouch!)
§  power failure
§  software errors (deadlock, division by zero)

Prakash	2016	 VT	CS	4604	 8	

Reminder: types of storage

§  volatile (eg., main memory)
§  non-volatile (eg., disk, tape)
§  “stable” (“never” fails - how to implement it?)

Prakash	2016	 VT	CS	4604	 9	

Classification of failures:

§  logical errors (eg., div. by 0)
§  system errors (eg. deadlock - pgm can run

later)
§  system crash (eg., power failure - volatile

storage is lost)
§  disk failure

frequent; ‘cheap’

rare; expensive

Prakash	2016	 VT	CS	4604	 10	

Problem definition

§  Records are on disk
§  for updates, they are copied in memory
§  and flushed back on disk, at the discretion of

the O.S.! (unless forced-output: ‘output(B)’ =
fflush())

Prakash	2016	 VT	CS	4604	 11	

Problem definition - eg.:

read(X)
X=X+1
write(X)

disk
main
memory

5
}page

buffer{
5

Prakash	2016	 VT	CS	4604	 12	

Problem definition - eg.:

read(X)
X=X+1
write(X)

disk
main
memory

6
5

Prakash	2016	 VT	CS	4604	 13	

Problem definition - eg.:

read(X)
X=X+1
write(X)

disk

6
5

buffer joins an ouput queue,
but it is NOT flushed immediately!
Q1: why not?
Q2: so what?

Prakash	2016	 VT	CS	4604	 14	

Problem definition - eg.:

read(X)
read(Y)
X=X+1
Y=Y-1
write(X)
write(Y)

disk

6

Q2: so what?

X
3

5

Y
3

Prakash	2016	 VT	CS	4604	 15	

Problem definition - eg.:

read(X)
read(Y)
X=X+1
Y=Y-1
write(X)
write(Y)

disk

6

3

Q2: so what?
Q3: how to guard against it?

X
3

5

Y

Prakash	2016	 VT	CS	4604	 16	

Overview - recovery

§  problem definition
–  types of failures
–  types of storage

§  solution#1: Write-ahead log - main ideas
– deferred updates
–  incremental updates
– checkpoints

§  (solution #2: shadow paging)

Prakash	2016	 VT	CS	4604	 17	

Solution #1: W.A.L.

§  redundancy, namely
§  write-ahead log, on ‘stable’ storage
§  Q: what to replicate? (not the full page!!)
§  A:
§  Q: how exactly?

Prakash	2016	 VT	CS	4604	 18	

W.A.L. - intro

§  replicate intentions: eg:
<T1 start>
<T1, X, 5, 6>
<T1, Y, 4, 3>
<T1 commit> (or <T1 abort>)

Prakash	2016	 VT	CS	4604	 19	

W.A.L. - intro

§  in general: transaction-id, data-item-id, old-
value, new-value

§  (assumption: each log record is immediately
flushed on stable store)

§  each transaction writes a log record first,
before doing the change

§  when done, write a <commit> record & exit

Prakash	2016	 VT	CS	4604	 20	

W.A.L. - deferred updates

§  idea: prevent OS from flushing buffers, until
(partial) ‘commit’.

§  After a failure, “replay” the log

Prakash	2016	 VT	CS	4604	 21	

W.A.L. - deferred updates

§  Q: how, exactly?
– value of W on disk?
– value of W after recov.?
– value of Z on disk?
– value of Z after recov.?

<T1 start>
<T1, W, 1000, 2000>
<T1, Z, 5, 10>
<T1 commit>

before

crash

Prakash	2016	 VT	CS	4604	 22	

W.A.L. - deferred updates

§  Q: how, exactly?
– value of W on disk?
– value of W after recov.?
– value of Z on disk?
– value of Z after recov.?

<T1 start>
<T1, W, 1000, 2000>
<T1, Z, 5, 10>

before

crash

Prakash	2016	 VT	CS	4604	 23	

W.A.L. - deferred updates

§  Thus, the recovery algo:
– redo committed transactions
–  ignore uncommited ones

<T1 start>
<T1, W, 1000, 2000>
<T1, Z, 5, 10>

before

crash

Prakash	2016	 VT	CS	4604	 24	

W.A.L. - deferred updates

Observations:
- no need to keep ‘old’ values
- Disadvantages?

<T1 start>
<T1, W, 1000, 2000>
<T1, Z, 5, 10>

before

crash

Prakash	2016	 VT	CS	4604	 25	

W.A.L. - deferred updates

- Disadvantages?
(e.g., “increase all balances by 5%”)
May run out of buffer space!
Hence:

Prakash	2016	 VT	CS	4604	 26	

Overview - recovery

§  problem definition
–  types of failures
–  types of storage

§  solution#1: Write-ahead log
– deferred updates
–  incremental updates
– checkpoints

§  (solution #2: shadow paging)

Prakash	2016	 VT	CS	4604	 27	

W.A.L. - incremental updates

- log records have ‘old’ and ‘new’ values.
- modified buffers can be flushed at any time
Each transaction:
- writes a log record first, before doing the

change
- writes a ‘commit’ record (if all is well)
- exits

Prakash	2016	 VT	CS	4604	 28	

W.A.L. - incremental updates

§  Q: how, exactly?
– value of W on disk?
– value of W after recov.?
– value of Z on disk?
– value of Z after recov.?

<T1 start>
<T1, W, 1000, 2000>
<T1, Z, 5, 10>
<T1 commit>

before

crash

Prakash	2016	 VT	CS	4604	 29	

W.A.L. - incremental updates

§  Q: how, exactly?
– value of W on disk?
– value of W after recov.?
– value of Z on disk?
– value of Z after recov.?

<T1 start>
<T1, W, 1000, 2000>
<T1, Z, 5, 10>

before

crash

Prakash	2016	 VT	CS	4604	 30	

W.A.L. - incremental updates

§  Q: recovery algo?
§  A:

–  redo committed xacts
– undo uncommitted ones

§  (more details: soon)

<T1 start>
<T1, W, 1000, 2000>
<T1, Z, 5, 10>

before

crash

Prakash	2016	 VT	CS	4604	 31	

High level conclusion:

§  Buffer management plays a key role
§  FORCE policy: DBMS immediately forces

dirty pages on the disk (easier recovery; poor
performance)

§  STEAL policy == ‘incremental updates’: the
O.S. is allowed to flush dirty pages on the disk

Prakash	2016	 VT	CS	4604	 32	

Buffer Management summary

Force

No Force

No Steal Steal

 UNDO
REDO

Force

No Force

No Steal Steal

Slowest

Fastest

Performance
Implications

Logging/Recovery
Implications

No UNDO

No REDO

Prakash	2016	 VT	CS	4604	 33	

W.A.L. - incremental updates

Observations
§  “increase all balances by

5%” - problems?
§  what if the log is huge?

<T1 start>
<T1, W, 1000, 2000>
<T1, Z, 5, 10>

before

crash

Prakash	2016	 VT	CS	4604	 34	

Overview - recovery

§  problem definition
–  types of failures
–  types of storage

§  solution#1: Write-ahead log
– deferred updates
–  incremental updates
– checkpoints

§  (solution #2: shadow paging)

Prakash	2016	 VT	CS	4604	 35	

W.A.L. - check-points

Idea: periodically, flush
buffers

Q: should we write
anything on the log?

<T1 start>
<T1, W, 1000, 2000>
<T1, Z, 5, 10>
...
<T500, B, 10, 12>

before

crash

Prakash	2016	 VT	CS	4604	 36	

W.A.L. - check-points

Q: should we write
anything on the log?

A: yes!
Q: how does it help us?

<T1 start>
<T1, W, 1000, 2000>
<T1, Z, 5, 10>
<checkpoint>
...
<checkpoint>
<T500, B, 10, 12>

before

crash

Prakash	2016	 VT	CS	4604	 37	

W.A.L. - check-points

Q: how does it help us?
A=? on disk?
A=? after recovery?
B=? on disk?
B=? after recovery?
C=? on disk?
C=? after recovery?

<T1 start>
...
<T1 commit>
...
<T499, C, 1000, 1200>
<checkpoint>
<T499 commit>
<T500 start>
<T500, A, 200, 400>
<checkpoint>
<T500, B, 10, 12>

before

crash
Prakash	2016	 VT	CS	4604	 38	

W.A.L. - check-points

Q: how does it help us?
I.e., how is the recovery
algorithm?

<T1 start>
...
<T1 commit>
...
<T499, C, 1000, 1200>
<checkpoint>
<T499 commit>
<T500 start>
<T500, A, 200, 400>
<checkpoint>
<T500, B, 10, 12>

crash
Prakash	2016	 VT	CS	4604	 39	

before

W.A.L. - check-points

Q: how is the recovery
algorithm?
A:

 - undo uncommitted
xacts (eg., T500)

 - redo the ones
committed after the last
checkpoint (eg., none)

<T1 start>
...
<T1 commit>
...
<T499, C, 1000, 1200>
<checkpoint>
<T499 commit>
<T500 start>
<T500, A, 200, 400>
<checkpoint>
<T500, B, 10, 12>

crash
Prakash	2016	 VT	CS	4604	 40	

before

W.A.L. - w/ concurrent xacts

Assume: strict 2PL

Prakash	2016	 VT	CS	4604	 41	

W.A.L. - w/ concurrent xacts

Log helps to rollback
transactions (eg., after a
deadlock + victim
selection)

Eg., rollback(T500): go
backwards on log;
restore old values

<T1 start>

<checkpoint>

<T499 commit>

<T500 start>

<T500, A, 200, 400>

<T300 commit>

<checkpoint>

<T500, B, 10, 12>

<T500 abort>

before

Prakash	2016	 VT	CS	4604	 42	

W.A.L. - w/ concurrent xacts

-recovery algo?
- undo uncommitted ones
- redo ones committed

after the last checkpoint

<T1 start>

...

<T300 start>

...

<checkpoint>

<T499 commit>

<T500 start>

<T500, A, 200, 400>

<T300 commit>

<checkpoint>

<T500, B, 10, 12>

before

Prakash	2016	 VT	CS	4604	 43	

W.A.L. - w/ concurrent xacts

-recovery algo?
- undo uncommitted

ones
- redo ones

committed after
the last checkpoint

- Eg.?

time

T1
T2
T3

T4

ck ck crash

Prakash	2016	 VT	CS	4604	 44	

W.A.L. - w/ concurrent xacts

-recovery algo?
specifically:

- find latest
checkpoint

- create the ‘undo’
and ‘redo’ lists

 time

T1
T2
T3

T4

ck ck crash

Prakash	2016	 VT	CS	4604	 45	

W.A.L. - w/ concurrent xacts

time

T1
T2
T3

T4

ck ck crash <T1 start>
<T2 start>
<T4 start>
<T1 commit>
<checkpoint >
<T3 start>
<T2 commit>
<checkpoint >
<T3 commit>

Prakash	2016	 VT	CS	4604	 46	

W.A.L. - w/ concurrent xacts
<T1 start>
<T2 start>
<T4 start>
<T1 commit>
<checkpoint >
<T3 start>
<T2 commit>
<checkpoint >
<T3 commit>

<checkpoint> should
also contain a list of
‘active’ transactions
(= not commited yet)

Prakash	2016	 VT	CS	4604	 47	

W.A.L. - w/ concurrent xacts
<T1 start>
<T2 start>
<T4 start>
<T1 commit>
<checkpoint {T4, T2}>
<T3 start>
<T2 commit>
<checkpoint {T4,T3} >
<T3 commit>

<checkpoint> should
also contain a list of
‘active’ transactions

Prakash	2016	 VT	CS	4604	 48	

W.A.L. - w/ concurrent xacts
<T1 start>
<T2 start>
<T4 start>
<T1 commit>
<checkpoint {T4, T2}>
<T3 start>
<T2 commit>
<checkpoint {T4,T3} >
<T3 commit>

Recovery algo:
- build ‘undo’ and ‘redo’ lists
- scan backwards, undoing ops
 by the ‘undo’-list transactions
- go to most recent checkpoint
- scan forward, re-doing ops by
the ‘redo’-list xacts

Prakash	2016	 VT	CS	4604	 49	

W.A.L. - w/ concurrent xacts
<T1 start>
<T2 start>
<T4 start>
<T1 commit>
<checkpoint {T4, T2}>
<T3 start>
<T2 commit>
<checkpoint {T4,T3} >
<T3 commit>

Recovery algo:
- build ‘undo’ and ‘redo’ lists
- scan backwards, undoing ops
 by the ‘undo’-list transactions
- go to most recent checkpoint
- scan forward, re-doing ops by
the ‘redo’-list xacts

Actual ARIES algorithm: more
clever (and more complicated)
than that

swap?

Prakash	2016	 VT	CS	4604	 50	

W.A.L. - w/ concurrent xacts
<T1 start>
<T2 start>
<T4 start>
<T1 commit>
<checkpoint {T4, T2}>
<T3 start>
<T2 commit>
<checkpoint {T4,T3} >
<T3 commit>

Observations/Questions
1) what is the right order to
undo/redo?
2) during checkpoints: assume
that no changes are allowed by
xacts (otherwise, ‘fuzzy
checkpoints’)
3) recovery algo: must be
idempotent (ie., can work, even
if there is a failure during
recovery!
4) how to handle buffers of
stable storage?

Prakash	2016	 VT	CS	4604	 51	

Observations
ARIES (coming up soon) handles all issues:
1) redo everything; undo after that
2) ‘fuzzy checkpoints’
3) idempotent recovery
4) buffer log records;

–  flush all necessary log records before a page is
written

–  flush all necessary log records before a x-act
commits

Prakash	2016	 VT	CS	4604	 52	

Overview - recovery

§  problem definition
–  types of failures
–  types of storage

§  solution#1: Write-ahead log
– deferred updates
–  incremental updates
– checkpoints

§  (solution #2: shadow paging)

Prakash	2016	 VT	CS	4604	 53	

Shadow paging

§  keep old pages on disk
§  write updated records on new pages on disk
§  if successful, release old pages; else release
‘new’ pages

§  tried in early IBM prototype systems, but
§  not used in practice - why not?

NOT USED

Prakash	2016	 VT	CS	4604	 54	

Shadow paging

§  not used in practice - why not?
§  may need too much disk space (“increase all

by 5%”)
§  may destroy clustering/contiguity of pages.

Prakash	2016	 VT	CS	4604	 55	

Other topics

§  against loss of non-volatile storage: dumps of
the whole database on stable storage.

Prakash	2016	 VT	CS	4604	 56	

Conclusions

§  Write-Ahead Log, for loss of volatile storage,
§  with incremental updates (STEAL, NO

FORCE)
§  and checkpoints
§  On recovery: undo uncommitted; redo

committed transactions.

Prakash	2016	 VT	CS	4604	 57	

Next time:

ARIES, with full details on
–  fuzzy checkpoints
–  recovery algorithm

Prakash	2016	 VT	CS	4604	 58	

