
CS	4604:	Introduc0on	to	
Database	Management	Systems	

B.	Aditya	Prakash	
Lecture	#18:	Logging	and	Recovery	1	



Announcements	

§  Recita5on	on	Project	Assignment	3	on	April	20		
– Given	by	Sorour	and	Shamimul	
– Will	go	over	what	you	need	to	do	for	the	
assignment	

–  In-class	demo	of	a	sample	solu5on	
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General Overview 

§  Preliminaries 
§  Write-Ahead Log - main ideas 
§  (Shadow paging) 
§  Write-Ahead Log: ARIES 
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NOTICE: 

§  NONE of the methods in this lecture is used 
‘as is’ 

§  we mention them for clarity, to illustrate the 
concepts and rationale behind ‘ARIES’, 
which is the industry standard. 
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Transactions - dfn 

= unit of work, eg. 
move $10 from savings to checking 
 

Atomicity (all or none) 
Consistency 
Isolation (as if alone) 
Durability 

recovery 

concurrency 
control 
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Overview - recovery 

§  problem definition 
–  types of failures 
–  types of storage 

§  solution#1: Write-ahead log - main ideas 
– deferred updates 
–  incremental updates 
– checkpoints 

§   (solution #2: shadow paging) 
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Recovery 

§  Durability - types of failures? 
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Recovery 

§  Durability - types of failures? 
§  disk crash (ouch!) 
§  power failure 
§  software errors (deadlock, division by zero) 
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Reminder: types of storage 

§  volatile (eg., main memory) 
§  non-volatile (eg., disk, tape) 
§  “stable” (“never” fails - how to implement it?) 
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Classification of failures: 

§  logical errors (eg., div. by 0) 
§  system errors (eg. deadlock - pgm can run 

later) 
§  system crash (eg., power failure - volatile 

storage is lost) 
§  disk failure 

frequent; ‘cheap’ 

rare; expensive 
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Problem definition 

§  Records are on disk 
§  for updates, they are copied in memory 
§  and flushed back on disk, at the discretion of 

the O.S.! (unless forced-output: ‘output(B)’ = 
fflush()) 
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Problem definition - eg.: 

read(X) 
X=X+1 
write(X) 

disk 
main 
memory 

5 
}page 

buffer{ 
5 
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Problem definition - eg.: 

read(X) 
X=X+1 
write(X) 

disk 
main 
memory 

6 
5 
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Problem definition - eg.: 

read(X) 
X=X+1 
write(X) 

disk 

6 
5 

buffer joins an ouput queue, 
but it is NOT flushed immediately!  
Q1: why not? 
Q2: so what? 
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Problem definition - eg.: 

read(X) 
read(Y) 
X=X+1 
Y=Y-1 
write(X) 
write(Y) 

disk 

6 

Q2: so what? 

X 
3 

5 

Y
3 
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Problem definition - eg.: 

read(X) 
read(Y) 
X=X+1 
Y=Y-1 
write(X) 
write(Y) 

disk 

6 

3 

Q2: so what? 
Q3: how to guard against it? 

X 
3 

5 

Y
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Overview - recovery 

§  problem definition 
–  types of failures 
–  types of storage 

§  solution#1: Write-ahead log - main ideas 
– deferred updates 
–  incremental updates 
– checkpoints 

§   (solution #2: shadow paging) 
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Solution #1: W.A.L. 

§  redundancy, namely 
§  write-ahead log, on ‘stable’ storage 
§  Q: what to replicate? (not the full page!!) 
§  A: 
§  Q: how exactly? 
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W.A.L. - intro 

§  replicate intentions: eg: 
<T1 start> 
<T1, X, 5, 6> 
<T1, Y, 4, 3> 
<T1 commit>  (or <T1 abort>) 

Prakash	2016	 VT	CS	4604	 19	



W.A.L. - intro 

§  in general: transaction-id, data-item-id, old-
value, new-value 

§  (assumption: each log record is immediately 
flushed on stable store) 

§  each transaction writes a log record first, 
before doing the change 

§  when done, write a <commit> record & exit 
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W.A.L. - deferred updates 

§  idea: prevent OS from flushing buffers, until 
(partial) ‘commit’. 

§  After a failure, “replay” the log 
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W.A.L. - deferred updates 

§  Q: how, exactly? 
– value of W on disk? 
– value of W after recov.? 
– value of Z on disk? 
– value of Z after recov.? 

 

<T1 start> 
<T1, W, 1000, 2000> 
<T1, Z, 5, 10> 
<T1 commit> 

before 

crash 
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W.A.L. - deferred updates 

§  Q: how, exactly? 
– value of W on disk? 
– value of W after recov.? 
– value of Z on disk? 
– value of Z after recov.? 

 

<T1 start> 
<T1, W, 1000, 2000> 
<T1, Z, 5, 10> 

before 

crash 
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W.A.L. - deferred updates 

§  Thus, the recovery algo: 
– redo committed transactions 
–  ignore uncommited ones 

 

<T1 start> 
<T1, W, 1000, 2000> 
<T1, Z, 5, 10> 

before 

crash 
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W.A.L. - deferred updates 

Observations: 
- no need to keep ‘old’ values 
- Disadvantages? 
 

<T1 start> 
<T1, W, 1000, 2000> 
<T1, Z, 5, 10> 

before 

crash 
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W.A.L. - deferred updates 

- Disadvantages? 
(e.g., “increase all balances by 5%”) 
May run out of buffer space! 
Hence: 
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Overview - recovery 

§  problem definition 
–  types of failures 
–  types of storage 

§  solution#1: Write-ahead log 
– deferred updates 
–  incremental updates 
– checkpoints 

§   (solution #2: shadow paging) 
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W.A.L. - incremental updates 

- log records have ‘old’ and ‘new’ values. 
- modified buffers can be flushed at any time 
Each transaction: 
- writes a log record first, before doing the 

change 
- writes a ‘commit’ record (if all is well) 
- exits 
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W.A.L. - incremental updates 

§  Q: how, exactly? 
– value of W on disk? 
– value of W after recov.? 
– value of Z on disk? 
– value of Z after recov.? 

 

<T1 start> 
<T1, W, 1000, 2000> 
<T1, Z, 5, 10> 
<T1 commit> 

before 

crash 
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W.A.L. - incremental updates 

§  Q: how, exactly? 
– value of W on disk? 
– value of W after recov.? 
– value of Z on disk? 
– value of Z after recov.? 

 

<T1 start> 
<T1, W, 1000, 2000> 
<T1, Z, 5, 10> 

before 

crash 
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W.A.L. - incremental updates 

§  Q: recovery algo? 
§  A: 

–  redo committed xacts 
– undo uncommitted ones 

§  (more details: soon) 
 

<T1 start> 
<T1, W, 1000, 2000> 
<T1, Z, 5, 10> 

before 

crash 
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High level conclusion: 

§  Buffer management plays a key role 
§  FORCE policy: DBMS immediately forces 

dirty pages on the disk (easier recovery; poor 
performance) 

§  STEAL policy == ‘incremental updates’: the 
O.S. is allowed to flush dirty pages on the disk 
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Buffer Management summary 

Force 

No Force 

No Steal Steal 

 UNDO 
REDO 

Force 

No Force 

No Steal Steal 

Slowest 

Fastest 

Performance 
Implications 

Logging/Recovery 
Implications 

No UNDO 

No REDO 
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W.A.L. - incremental updates 

Observations 
§  “increase all balances by 

5%” - problems? 
§  what if the log is huge? 
 

<T1 start> 
<T1, W, 1000, 2000> 
<T1, Z, 5, 10> 

before 

crash 
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Overview - recovery 

§  problem definition 
–  types of failures 
–  types of storage 

§  solution#1: Write-ahead log 
– deferred updates 
–  incremental updates 
– checkpoints 

§   (solution #2: shadow paging) 
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W.A.L. - check-points 

Idea: periodically, flush 
buffers 

Q: should we write 
anything on the log? 

 

<T1 start> 
<T1, W, 1000, 2000> 
<T1, Z, 5, 10> 
... 
<T500, B, 10, 12> 

before 

crash 
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W.A.L. - check-points 

Q: should we write 
anything on the log? 

A: yes!  
Q: how does it help us? 
 

<T1 start> 
<T1, W, 1000, 2000> 
<T1, Z, 5, 10> 
<checkpoint> 
... 
<checkpoint> 
<T500, B, 10, 12> 

before 

crash 
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W.A.L. - check-points 

Q: how does it help us? 
A=? on disk? 
A=? after recovery? 
B=? on disk? 
B=? after recovery? 
C=? on disk? 
C=? after recovery? 

 
 

<T1 start> 
... 
<T1 commit> 
... 
<T499, C, 1000, 1200> 
<checkpoint> 
<T499 commit> 
<T500 start> 
<T500, A, 200, 400> 
<checkpoint> 
<T500, B, 10, 12> 

before 

crash 
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W.A.L. - check-points 

Q: how does it help us? 
I.e., how is the recovery  
algorithm? 
 
 

<T1 start> 
... 
<T1 commit> 
... 
<T499, C, 1000, 1200> 
<checkpoint> 
<T499 commit> 
<T500 start> 
<T500, A, 200, 400> 
<checkpoint> 
<T500, B, 10, 12> 

crash 
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W.A.L. - check-points 

Q: how is the recovery  
algorithm? 
A: 

 - undo uncommitted 
xacts (eg., T500) 

   - redo the ones 
committed after the last 
checkpoint (eg., none) 

 
 

<T1 start> 
... 
<T1 commit> 
... 
<T499, C, 1000, 1200> 
<checkpoint> 
<T499 commit> 
<T500 start> 
<T500, A, 200, 400> 
<checkpoint> 
<T500, B, 10, 12> 

crash 
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W.A.L. - w/ concurrent xacts 

Assume: strict 2PL 
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W.A.L. - w/ concurrent xacts 

Log helps to rollback 
transactions (eg., after a 
deadlock + victim 
selection) 

Eg., rollback(T500): go 
backwards on log; 
restore old values 
  

 
 

<T1 start> 

 

<checkpoint> 

<T499 commit> 

<T500 start> 

<T500, A, 200, 400> 

<T300 commit> 

<checkpoint> 

<T500, B, 10, 12> 

<T500 abort> 

before 
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W.A.L. - w/ concurrent xacts 

-recovery algo? 
- undo uncommitted ones 
- redo ones committed 

after the last checkpoint
  

 
 

<T1 start> 

... 

<T300 start> 

... 

<checkpoint> 

<T499 commit> 

<T500 start> 

<T500, A, 200, 400> 

<T300 commit> 

<checkpoint> 

<T500, B, 10, 12> 

before 
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W.A.L. - w/ concurrent xacts 

-recovery algo? 
- undo uncommitted 

ones 
- redo ones 

committed after 
the last checkpoint 

- Eg.?   
 
 

time 

T1 
T2 
T3 

T4 

ck ck crash 
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W.A.L. - w/ concurrent xacts 

-recovery algo? 
specifically: 

- find latest 
checkpoint 

- create the ‘undo’ 
and ‘redo’ lists 

 time 

T1 
T2 
T3 

T4 

ck ck crash 
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W.A.L. - w/ concurrent xacts 

time 

T1 
T2 
T3 

T4 

ck ck crash <T1 start> 
<T2 start> 
<T4 start> 
<T1 commit> 
<checkpoint          > 
<T3 start> 
<T2 commit> 
<checkpoint         > 
<T3 commit> 
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W.A.L. - w/ concurrent xacts 
<T1 start> 
<T2 start> 
<T4 start> 
<T1 commit> 
<checkpoint          > 
<T3 start> 
<T2 commit> 
<checkpoint         > 
<T3 commit> 
 
 

<checkpoint> should 
also contain a list of 
‘active’ transactions 
(= not commited yet) 

Prakash	2016	 VT	CS	4604	 47	



W.A.L. - w/ concurrent xacts 
<T1 start> 
<T2 start> 
<T4 start> 
<T1 commit> 
<checkpoint  {T4, T2}> 
<T3 start> 
<T2 commit> 
<checkpoint {T4,T3} > 
<T3 commit> 
 
 

<checkpoint> should 
also contain a list of 
‘active’ transactions 
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W.A.L. - w/ concurrent xacts 
<T1 start> 
<T2 start> 
<T4 start> 
<T1 commit> 
<checkpoint  {T4, T2}> 
<T3 start> 
<T2 commit> 
<checkpoint {T4,T3} > 
<T3 commit> 
 
 

Recovery algo: 
- build ‘undo’ and ‘redo’ lists 
- scan backwards, undoing ops 
 by the ‘undo’-list transactions 
- go to most recent checkpoint 
- scan forward, re-doing ops by 
the ‘redo’-list xacts 
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W.A.L. - w/ concurrent xacts 
<T1 start> 
<T2 start> 
<T4 start> 
<T1 commit> 
<checkpoint  {T4, T2}> 
<T3 start> 
<T2 commit> 
<checkpoint {T4,T3} > 
<T3 commit> 
 
 

Recovery algo: 
- build ‘undo’ and ‘redo’ lists 
- scan backwards, undoing ops 
 by the ‘undo’-list transactions 
- go to most recent checkpoint 
- scan forward, re-doing ops by 
the ‘redo’-list xacts 

Actual ARIES algorithm: more 
clever (and more complicated) 
than that 

swap? 
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W.A.L. - w/ concurrent xacts 
<T1 start> 
<T2 start> 
<T4 start> 
<T1 commit> 
<checkpoint  {T4, T2}> 
<T3 start> 
<T2 commit> 
<checkpoint {T4,T3} > 
<T3 commit> 
 
 

Observations/Questions 
1) what is the right order to 
undo/redo? 
2) during checkpoints: assume  
that no changes are allowed by 
xacts (otherwise, ‘fuzzy 
checkpoints’) 
3) recovery algo: must be 
idempotent (ie., can work, even 
if there is a failure during 
recovery! 
4) how to handle buffers of 
stable storage? 
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Observations 
ARIES (coming up soon) handles all issues: 
1) redo everything; undo after that 
2) ‘fuzzy checkpoints’ 
3) idempotent recovery 
4) buffer log records; 

–  flush all necessary log records before a page is 
written 

–  flush all necessary log records before a x-act 
commits 
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Overview - recovery 

§  problem definition 
–  types of failures 
–  types of storage 

§  solution#1: Write-ahead log 
– deferred updates 
–  incremental updates 
– checkpoints 

§   (solution #2: shadow paging) 
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Shadow paging 

§  keep old pages on disk 
§  write updated records on new pages on disk 
§  if successful, release old pages; else release 
‘new’ pages 

§  tried in early IBM prototype systems, but 
§  not used in practice - why not? 

NOT USED 
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Shadow paging 

§  not used in practice - why not? 
§  may need too much disk space (“increase all 

by 5%”) 
§  may destroy clustering/contiguity of pages. 
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Other topics 

§  against loss of non-volatile storage: dumps of 
the whole database on stable storage. 
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Conclusions 

§  Write-Ahead Log, for loss of volatile storage, 
§  with incremental updates (STEAL, NO 

FORCE) 
§  and checkpoints 
§  On recovery: undo uncommitted; redo 

committed transactions. 
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Next time: 

ARIES, with full details on 
–  fuzzy checkpoints 
–  recovery algorithm 
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