CS 4604: Introduction to Database Management Systems

B. Aditya Prakash

Final Review
Final Exam

- **30% of the grade**
- **No** books, no notes, no laptops
- **Allowed:**
 - Only 2 letter-size pages
 - You can use both sides
 - Must be *hand-written*
 - And a calculator (recommended)
- **Duration:** 2 hours. 3:25-5:25pm, May 10, 2016
- **Location:** regular classroom
Syllabus

- **Comprehensive exam**
 - But main focus towards and emphasis on post-midterm stuff (= starting from lecture 10)
 - Will cover all material in all lectures
 - EXCEPT (i.e. things NOT in exam)
 1. NoSQL/MapReduce
 2. Semi-structured data/XML
 3. Data Mining/Warehousing
 (No PHP too of course)
Office Hours this week

- **Sorour**: (all at McB 106)
 - May 2: 10-11:00am (extra)
 - May 4: 2:30-3:30pm (extra)
 - May 5: 3:30-5:00pm (regular time)
 - May 10: 9:30-11am (regular time)

- **Shamimul**: (all at McB 106)
 - May 6: 3:00-4:00pm (extra)
 - May 8: 1:00-2pm (extra, note that this is a Sunday)
 - May 9: 10:00-11:00am (extra)

- **Aditya**: (all at Torg 3160 F)
 - May 2: 2:30-3:45pm (regular)
 - May 9: 1:00-4:00pm (extra)
 - May 10: 12:30-1:30pm (extra)
 - and by appointment

Also posted on Piazza
What you learnt in the course

- **Weeks 1–4: Query/Manipulation Languages and Data Modeling**
 - Relational Algebra
 - Data definition
 - Programming with SQL
 - Entity-Relationship (E/R) approach
 - Specifying Constraints
 - Good E/R design

- **Weeks 5–8: Indexes, Processing and Optimization**
 - Storing
 - Hashing/Sorting
 - Query Optimization
 - NoSQL and Hadoop

- **Week 9-10: Relational Design**
 - Functional Dependencies
 - Normalization to avoid redundancy

- **Week 11-12: Concurrency Control**
 - Transactions
 - Logging and Recovery

- **Week 13–14: Students’ choice**
 - Practice Problems
 - XML
 - Data mining and warehousing
naive app. pgmr casual DBA

users

emb. DML DML proc. DDL int.

app. pgm(o) query eval.

query proc.

trans. mgr buff. mgr file mgr

storage mgr.

data meta-data
SQL/RA

- Make sure you know all the operators for SQL and RA
 - Select, From, Where, Group-by, Having, Order-by
 - Set-semantics/Bag-semantics

- The base for DB
ER

- You should already have enough practice!
FDs

- Definitions of FDs, closures (Attributes vs FDs), cover, normal forms, decompositions etc. etc.
 - Pay attention to multiple ways of defining the same thing!
 - E.g. ‘Key’: multiple ways of defining and understanding

- Various procedures to compute the above
Indexing and Hashing

- Know your basic structure, and definitions
- Less emphasis (as we have covered this in the midterm)
Query Processing

- Estimating costs
 - What are you estimating? = #disk accesses
 - How to estimate?
 - sorting
 - Different types of joins (NLJ, Block-NLJ, SMJ, HJ)
 - Don’t just memorize the formulae, understand how they are derived, the ‘best-case’ ‘worst-case’ scenarios
Query Optimization

- Algebraic manipulation
- Selectivity estimation
 - Many cases
 - How to use selectivities to get the output size
Transactions

- ACID
- Problems with concurrency and Serializability concept
- Conflict-Serializability, how to detect
- 2PL, when, why, what, how, limitations
- Strict 2PL, when, why, what, how, limitations
- Know your venn diagrams!
- Deadlocks, how to detect and avoid them
- Dependency graph vs Waits-for graphs
Logging and Recovery: Big Picture

LogRecords
- prevLSN
- XID
- type
- pageID
- length
- offset
- before-image
- after-image

Data pages each with a pageLSN
- master record
 - LSN of most recent checkpoint

Xact Table
- lastLSN
- status

Dirty Page Table
- recLSN
- flushedLSN

LOG

DB

RAM
Crash Recovery: Big Picture

- Start from a **checkpoint** (found via **master** record).
- Three phases.
 - **Analysis** - Figure out which Xacts committed since checkpoint, which failed.
 - **REDO** all actions (repeat history)
 - **UNDO** effects of failed Xacts.
Crash Recovery: Big Picture

Oldest log rec. of Xact active at crash

Smallest recLSN in dirty page table after Analysis

Last chkpt

CRASH

• Notice: relative ordering of A, B, C may vary!
Logging and Recovery

- Make sure you know *exactly* how recovery takes place, and what is logged
 - Practice, practice
 - Check out problems in lectures, practice problems and hws
 - Be comfortable with small conceptual questions (see practice problems)
Tips

- Know your definitions!
 - Different ways of defining same thing e.g. keys

- Go through the slides
 - Checking the textbook if you are unclear

- **Go through HWs, Handouts, Exams, and Practice problems**
 - Textbook also has good problems! Even numbered problems have solutions on-line
 - Take advantage of our office hours

- Make use of your 2 allowed written notes!

- Bring a calculator
There will be **negative marking** for some questions

Read the whole question carefully before answering

Raise your hand if you need any clarification
Data Management

- Is a really exciting field (‘BIG-Data’)

- High commercial *and* academic research interest
Lots more stuff we did not cover

- Storage Manager
 - File organization
- More details about query processing
 - Fine-tuning Join algorithms
- Other powerful query languages
 - Datalog etc.
- More sophisticated locking, concurrency control
 - E.g. Hierarchical locking, time-stamped CC
- Spatial Data Management
- Distributed Databases
- More advanced data mining
- More details on NoSQL/Map Reduce etc.
-
Course Plug: CS 5614: (Big) Data Management Systems

- Spring 2017: Graduate level course
- Project, research papers
 - Will cover the state-of-the-art
- Would be exciting and fun!
- Good way to get exposed to the state-of-the-art in large data management and mining, network analysis, graph databases etc.
Good Luck!

- Especially for those of you who will graduate!

- Feel free to keep in touch 😊
FINAL EXAMS

YES WE CAN