
	 1	

Virginia Tech. CS 4604 – Introduction to DBMS
Computer Science Spring 2016, Prakash

Homework 5: MapReduce
(due March 28th, 2016, 4:00pm, hard-copy in-class)

Reminders:

a. Out of 100 points. Contains 4 pages.
b. Rough time estimates 6-8 hours.
c. Please type your answers. Illegible handwriting may get no points, at the discretion of the grader.

Only drawings may be hand-drawn, as long as they are neat and legible.
d. There could be more than one correct answer. We shall accept them all.
e. Whenever you are making an assumption, please state it clearly.
f. Lead TA for his homework: Sorour Amiri.

Q1: AWS MapReduce [100 points + 10 points bonus]
In this problem, we will learn how to use Hadoop to generate degree distributions of a
large graph/network. The idea is to convince you that using Hadoop on AWS has now
really become a low-cost/effort proposition (compared to setting up your own cluster).

Familiarize yourself with AWS (Amazon Web Services). Read the set-up guidelines
posted on piazza---to set up your AWS account and redeem your free credit ($35). Do
the setup early!

Link to setup:
http://courses.cs.vt.edu/~cs4604/Spring16/homeworks/hw5/AWS-setup.pdf

Link to ‘how to run a sample wordcount application on AWS’:
http://courses.cs.vt.edu/~cs4604/Spring16/homeworks/hw5/SBS-AWS-Wordcount.pdf

The pricing for various services provided by AWS can be found at
http://aws.amazon.com/pricing/. The services we would be primarily using for this
assignment are the Amazon S3 storage, the Amazon Elastic Cloud Computing (EC2)
virtual servers in the cloud and the Amazon Elastic MapReduce (EMR) managed
Hadoop framework. Play around with AWS and try to create MapReduce job flows (not
required, or graded) or try the sample job flows on AWS. Of course, after you are done
with the HW, feel free to use your remaining credits for any other fun
computations/applications you may have in mind! These credits are applicable more
generally for AWS as a whole, not just MapReduce.

The questions in this assignment will ideally use up only a very small fraction of your
$35 credit. AWS allows you to use up to 20 instances total (that means 1 master instance
and up to 19 core instances) without filling out a “limit request form”. For this
assignment, you should not exceed this quota of 20 instances. You can learn about
these instance types by going through the extensive AWS documentations.

	 2	

Important: You should always check how much credit you have left from time to time.
Sometimes this takes a while to update. Always make sure to test your mappers and
reducers on some sample local data before using the AWS. Note that if you run over,
your card will be charged! Ideally for this assignment you would need a small fraction
of your credits. To check how much credit you have spent go to “Billing and Cost
Management Dashboard” from the AWS management console. The link to this page is
in the dropdown under your name on the top right corner of the AWS management
console. On this page, you can check the “month-to-date” credit you spent. You should
also check the “Bills” page (sometimes that is updated more frequently than the credit
page). The link to this page is in the left column of the “Billing and Cost Management
Dashboard” page. Click on the “Bills” link.

We will use data from http://www.livejournal.com: Live Journal is a free on-line
community with almost 10 million members; a significant fraction of these members are
highly active. (For example, roughly 300,000 update their content in any given 24-hour
period.) LiveJournal allows members to maintain journals, individual and group blogs,
and for people to declare which other members are their friends. For purposes of this
assignment, we will assume that it is an undirected social network i.e. if A has declared B
as a friend, we will assume B has also declared A as a friend, and hence there is an
undirected edge between nodes A and B.

We have uploaded the undirected LiveJournal (LJ) friendship network to the following
Amazon S3 bucket (directory):

s3n://cs4604-2016-vt-cs-data/livejournal/

Refer to the guidelines to see how to set this data as input to your MapReduce job. We
have provided a screenshot to configure the EMR cluster, which demonstrates how to
access the input data from the given bucket.

We have stored the graph as an edge-list. The format of the data is:

Id FriendID (tab separated)

For each node Id we store all friends of that user. This means that there is an edge
between Node #Id and Node #FriendID. A data snippet will look like:

0 1
0 2
0 3
0 7
1 0
1 7
......

Note that data is repeated: e.g. if node 0 is a friend of node 1, then node 1 is also a friend
of node 0 (hence we will have both 0 1 and 1 0 as rows in the data). Both 0 1 and 1 0
denote the same edge (between 0 and 1) though. We have chosen to store the data like
this for convenience.

	 3	

We want to compute the degree distribution of the LJ graph. We will explain what we
mean by it step-by-step. While this is not too hard a task in general, we want to use
Hadoop/MapReduce because of the large size of the graph. You can run your code
using the AWS console by following the instructions in AWS-Setup (the easier way).
You are also welcome to use the elastic-mapreduce command-line interface based on
Ruby (read the responding part in AWS-Setup document).

For all the questions below, feel free to use the fact that you are given N = 4847571 for
the Live Journal graph.

Q1.1. (20 points) Imagine all the data was stored in a relational database table called
Friends (Id, FriendId). Write a single (possibly nested) SQL query that
operates on Friends and returns a relation Counts (NumFriends, NumIds).
If this relation stores the tuple (k, l), then it means that there are l distinct
users (Id values) in Friends, each of who has exactly k friends. As you can
imagine, you do not know beforehand all the different values of k (or l) that
should appear in Counts. Hence your SQL query should be able to figure out
all these values automatically and correctly. (Note: We do not want you to
run anything or work with the actual data for this question; just write down
the SQL query).

Now let us define 𝑃 𝑘 = !
!

 , for each value of k, l you would get in Counts. P(k) is
exactly the degree distribution of the associated social network, as it tells us how the
degrees are ‘distributed’ in the given graph. Note that P(k) is a valid probability
distribution i.e. 𝑃(𝑘)! = 1.

Q1.2. (5 points) Suppose you plot the values with P(k) on the y-axis and k on the x-
axis. Before computing the actual empirical degree distribution P(k), write
down your expectations of this plot i.e. what probability distribution do you
expect to find for the degree distribution of this LJ social network (e.g.
Gaussian? Or Exponential? Or Poisson? etc.)? Explain in 1-2 lines.

Q1.3. (70 points) Write the mapper and reducer in Python to calculate the degree
distribution 𝑃 𝑘 for the LJ graph. Run it on AWS EMR and copy the output
to your local machine and then plot 𝑃 𝑘 (y-axis) vs k (x-axis) in both linear
and log-log scales.

Q1.4. (5 points) Do your answers in Q1.2 match with what you actually got in Q1.3?
If not, did any of your prior assumptions fail? (Explain in 1-2 lines).

Q1.5. (BONUS 10 points) Consider the log-log plot of P(k) you found in Q1.3. Is

there any analytical function y = f(x) that will ‘fit’ this empirical distribution?
Write down the functional form f(x), and show the fit (i.e. plot the function
over your empirical distribution). You may have to manually guess and set
the ‘correct’ parameters in the function to match the empirical distribution
approximately e.g. the general functional form of a line is y = mx + c, so if you

	 4	

want to fit a line to some given data, you need to guess some suitable m and c.
Feel free to search the web for this question, about how to fit lines/curves etc.

Some Important Notes/Hints:

1. You will need two consecutive MapReduce jobs for Q1.3. Your SQL query in Q1.1 might
be useful for giving you an idea.

2. Again, feel free to use the fact that you are given N = 4847571. Hence first just get the
number of nodes with degree k (i.e. l for each k) using AWS, and then simply divide
everything by N while plotting on your local machine.

3. We have also created a cs4604-hw5-help.zip file available from here:
http://courses.cs.vt.edu/~cs4604/Spring16/homeworks/hw5/cs4604-hw5-help.zip.
This file contains code/files that you may find useful. Make sure you test your code on
the sample dataset we have in the zip file (first locally, then on AWS), before you run it
on the full LJ dataset (to avoid unnecessary extra charges to your account).

4. You can check and monitor your usage under the billing section of your account. Check
the AWS setup document for more details.

5. The deliverables for Q1.3 include mapper-1.py, mapper-2.py, reducer-1.py, reducer-2.py,
degree-dist.out (the raw final output from AWS) and degree-dist.jpg (the plot). Zip all of
these as YOUR-LASTNAME.zip. Then email Sorour (esorour@vt.edu) the zip file with
the subject “CS4604:HW5-Code-Q1”.

6. Also include all the code/plots in the hard-copy (everything except the raw .out files).

