CS 4604: Introduction to Database Management Systems

B. Aditya Prakash
Midterm Review
MIDTERM REVIEW
Course Outline

- **Weeks 1–4: Query/Manipulation Languages and Data Modeling**
 - Relational Algebra
 - Data definition
 - Programming with SQL
 - Entity-Relationship (E/R) approach
 - Specifying Constraints
 - Good E/R design

- **Weeks 5–8: Indexes, Processing and Optimization**
 - Storing
 - Hashing/Sorting
 - Query Optimization
 - NoSQL and Hadoop

- **Week 9-10: Relational Design**
 - Functional Dependencies
 - Normalization to avoid redundancy

- **Week 11-12: Concurrency Control**
 - Transactions
 - Logging and Recovery

- **Week 13–14: Students’ choice**
 - Practice Problems
 - XML
 - Data mining and warehousing
Course Outline: For Midterm Exam

- **Weeks 1–4: Query/Manipulation Languages and Data Modeling**
 - Relational Algebra
 - Data definition
 - Programming with SQL
 - Entity-Relationship (E/R) approach
 - Specifying Constraints
 - Good E/R design

- **Weeks 5–8: Indexes, Processing and Optimization**
 - Storing
 - Hashing/Sorting
 - Query Optimization
 - NoSQL and Hadoop

- **Week 9–10: Relational Design**
 - Functional Dependencies
 - Normalization to avoid redundancy

- **Week 11–12: Concurrency Control**
 - Transactions
 - Logging and Recovery

- **Week 13–14: Students’ choice**
 - Practice Problems
 - XML
 - Data mining and warehousing
FUNDAMENTAL
Relational operators

- selection: \(\sigma_{\text{condition}} (R) \)
- projection: \(\pi_{\text{att-list}} (R) \)
- cartesian product: \(R \times S \)
- set union: \(R \cup S \)
- set difference: \(R - S \)
Relational ops

- Surprisingly, they are enough!

- Derived/convenience operators:
 - set intersection \(\bigcap \)
 - join (theta join, natural join) \(\bowtie \)
 - ‘rename’ operator \(\rho_{R'}(R) \)
 - division \(R \div S \)
Basic SQL Query

\[
\text{SELECT } [\text{DISTINCT}] \text{ target-list} \\
\text{FROM relation-list} \\
\text{WHERE qualification;}
\]

- **Relation-list**: A list of relation names (possibly with range-variable after each name).
- **Target-list**: A list of attributes of relations in relation-list
- **Qualification**: conditions on attributes
- **DISTINCT**: optional keyword for duplicate removal.
 - Default = no duplicate removal!
SQL

- Handling Sub-queries
- SQL Data Definition Commands
- Constraints
- Triggers
- ...
- Note how referential integrity can be enforced (foreign key; on delete cascade etc.)
E/R Diagrams

IMPORTANT:

- Follow only lecture slides for this topic!
- Differences from the book:
 - More details
 - Slightly different notation
Show a many-one relationship by an arrow entering the “one” side.

Show a one-one relationship by arrows entering both entity sets.

In some situations, we can also assert “exactly one,” i.e., each entity of one set must be related to exactly one entity of the other set. To do so, we use a rounded arrow.
E/R Example (does not contain ISA)

- Each department teaches multiple courses. Each course has a number. What is the key for the entity set Courses?
Converting E/R Diagrams to Relational Designs

- **Entity Set** → **Relation**
 - Attribute of **Entity Set** → Attribute of a **Relation**

- **Relationship** → **relation** whose attributes are
 - Attribute of the **relationship** itself
 - Key attributes of the connected **entity sets**

- Several special cases:
 - Weak **entity sets**.
 - Combining **relations** (especially for many-one **relationships**)
 - **ISA** relationships and subclasses

- Also note how referential integrity comes in (foreign keys)
Tree Indexes

- B+-Trees
 - Carefully internalize the Definition!
 - Searching
 - Inserting
 - Deleting
Hashing/Sorting

- Extendible Hashing
- Linear Hashing
- External Sorting

- Again, how to search and build, internalize the structure
- Sorting: understand the process, how to cost it, how many passes it takes etc.
Exam

- **No** aids allowed EXCEPT:
 - **Only written (not typed)** 1 letter-size page (you may use **both** sides)
 - A calculator (NOT your smartphone)

- **Duration:** 75 mins, during class March 4, Wednesday

- **More or less equal weightage to all the topics**
 - Questions will be similar to the HWs, Handouts