VirginiaTech

CS 4604: Introduction to
Database Management Systems

B. Aditya Prakash
Lecture #9: Hashing and Sorting

[MVirginiaTech
(Static) Hashing

= Problem: “find EMP record with ssn=123"

* What if disk space was free, and time was at
premium?

Prakash 2015 VT CS 4604

MVirginiaTech

Hashing
= A: Brilliant idea: key-to-address
transformation:
#0 page
AV AV
123; Smith; Main str — #123 page
NTOR
#999,999,999

Prakash 2015 VT CS 4604 3

MVirginiaTech

Hashing

" Since space is NOT free:
= yse M, instead of 999,999,999 slots

" hash function: h(key) = slot-id

#0 page

123; Smith; Main str

Prakash 2015

T #123 page

#999,999,999

VT CS 4604

MVirginiaTech
Hashing

= Typically: each hash bucket is a page, holding
many records:

#0 page

123; Smith; Mainstr———__, #h(123)

Prakash 2015 VT CS 4604

MVirginiaTech
Hashing

= Notice: could have clustering, or non-

clustering versions:
‘Q’ #0 page
vV vV
123; Smith; Main str. ‘\

< ~ #h(123)
NN

Prakash 2015 VT CS 4604

MVirginiaTech

Hashing

= Notice: could have clustering, or non-
clustering versions:

1

EMP file

234; Johnson; Forbes ave

(>#h(123) 123
4 {\\'v \

Prakash 2015

VT CS 4604

123; Smith; Main str.

345; Tompson; Fifth ave

MVirginiaTech
Design decisions

= 1) formula h() for hashing function
= ?2) size of hash table M
= 3) collision resolution method

Prakash 2015 VT CS 4604

MVirginiaTech
Design decisions - functions

" Goal: uniform spread of keys over hash
buckets

= Popular choices:
— Division hashing

— Multiplication hashing

Prakash 2015 VT CS 4604

MVirginiaTech
Division hashing

= h(x) = (a*x+b) mod M
= eg., h(ssn) =(ssn) mod 1,000
— gives the last three digits of ssn

= M: size of hash table - choose a prime
number, defensively (why?)

Prakash 2015 VT CS 4604

10

MVirginiaTech
Division hashing

" eg., M=2; hash on driver-license number
(dIn), where last digit is ‘gender’ (0/1 =M/
F)

" in an army unit with predominantly male
soldiers

" Thus: avoid cases where M and keys have
common divisors - prime M guards against
that!

Prakash 2015 VT CS 4604 11

MVirginiaTech
Multiplication hashing

h(x) = [fractional-part-of (x *¢@)] * M
= ¢: golden ratio (0.618... = (sqrt(5)-1)/2)
" in general, we need an irrational number
= advantage: M need not be a prime number

" but ¢ must be irrational

Prakash 2015 VT CS 4604

WVirginiaTech

Other hashing functions

" quadratic hashing (bad)

Prakash 2015 VT CS 4604 13

MVirginiaTech

Other hashing functions

" quadratic hashing (bad)

= conclusion: use division hashing

Prakash 2015 VT CS 4604

14

MVirginiaTech
Size of hash table

= eg., 50,000 employees, 10 employee-
records / page

= Q: M=?7? pages/buckets/slots

Prakash 2015 VT CS 4604

15

MVirginiaTech
Size of hash table

" eg., 50,000 employees, 10 employees/page
= Q: M=?7? pages/buckets/slots
" A: utilization ~ 90% and

— M: prime number

Eg., in our case: M= closest prime to 50,000/10 /
0.9 =5,555

Prakash 2015 VT CS 4604

16

WVirginiaTech

Collision resolution

= Q: whatisa ‘collision’ ?
m A 7?7

Prakash 2015 VT CS 4604

17

MVirginiaTech

Collision resolution

N

123; Smith; Main str. ” UL

N

v

Prakash 2015 VT CS 4604

#0 page

#h(123)

18

MVirginiaTech
Collision resolution

= Q: whatisa ‘collision’ ?
m A 7?7

= Q: why worry about collisions/overflows?
(recall that buckets are ~90% full)

= A: ‘birthday paradox’

Prakash 2015 VT CS 4604

19

[MVirginiaTech
Collision resolution

= open addressing
— linear probing (ie., put to next slot/bucket)
— re-hashing

" separate chaining (ie., put links to overflow
pages)

Prakash 2015 VT CS 4604

20

WVirginiaTech

Collision resolution

linear probing: 4o
page

N

v

#h(123)

123; Smith; Main str. \\
N

% "

Prakash 2015 VT CS 4604 21

WVirginiaTech

Collision resolution

re-hashing

h1()

123; Smith; Main str.

h2()

Prakash 2015 VT CS 4604

#0 page

y
M #h(123)

M

22

MVirginiaTech

Collision resolution

separate chaining

123; Smith; Main str.

Prakash 2015 VT CS 4604 23

[MVirginiaTech
Design decisions - conclusions

» function: division hashing
— h(x) = (a*x+b) mod M
" size M: ~¥90% util.; prime number.
= collision resolution: separate chaining

— easier to implement (deletions!);

— no danger of becoming full

Prakash 2015 VT CS 4604

24

MVirginiaTech

Problem with static hashing

= problem: overflow?
= problem: underflow? (underutilization)

Prakash 2015 VT CS 4604 25

[MVirginiaTech
Solution: Dynamic/extendible

hashing

» idea: shrink / expand hash table on demand..
= ..dynamic hashing
= Details: how to grow gracefully, on overflow?

= Many solutions - One of them: ‘extendible
hashing™ [Fagin et al]

Prakash 2015 VT CS 4604 26

MVirginiaTech

Extendible hashing

N

123; Smith; Main str. ” UL

N

v

Prakash 2015 VT CS 4604

#0 page

#h(123)

27

MVirginiaTech

Extendible hashing

solution: #0 page
split the bucket in two k R;
123; Smith; Main str. > UL #h(123)
N
M

Prakash 2015 VT CS 4604 28

MVirginiaTech
Extendible hashing

in detail:
= keep a directory, with ptrs to hash-buckets
= Q: how to divide contents of bucket in two?

" A: hash each key into a very long bit string;
keep only as many bits as needed

Eventually:

Prakash 2015 VT CS 4604 29

MVirginiaTech

Extendible hashing

///////////' 0001...
0111...
/

10101.4

10011.4

directory
00... |
01... -
10... | |
11... |

101001...

Prakash 2015

10110.4

*

1101...

VT CS 4604

30

MVirginiaTech

Extendible hashing

directory

00...

01...

10101.4

///////////' 0001...
0111...
?'

10011.4

10110.4

11...

*

1101...

NRN

101001...

Prakash 2015

VT CS 4604

31

MVirginiaTech

Extendible hashing

///////////' 0001...
0111...
/

10101..

10011..
10110..

directory
00... |
01... -
10... | |
11... |

Prakash 2015

\]_0‘1001---

split on 3-rd bit

1101...

VT CS 4604

32

MVirginiaTech

Extendible hashing

directory
///////////' 0001...
00 - 0111...
01... -
_//
10... — 10011..) 10101..}
11... | — | 101001}..
_\ 10110.}

Prakash 2015

new page / bucket

1101...

VT CS 4604

33

MVirginiaTech

Extendible hashing

directory

000
001...

010...

011...
100...

(doubled)/

M\N\\

v

0111...

new page / bucket

10101..

101001..

101...

110...

ERE

111...

Prakash 2015

1101...

VT CS 4604

10110..

34

MVirginiaTech
Extendible hashing

BEFORE AFTER
/ 0001... 000L. I ——— [000...
00... 1 0111... 0111... \— 001...
01... ~
. 010...
10 —— — [10101.] I]
SUN I 10011.! |!10011. |10101.4 h 011...
11 — 10110. . 101001}.. 1 100
XX _\10‘1001." 10110." [~ Y
101...
1101... 1101... \—
— 110...
- 111...

Prakash 2015 VT CS 4604

MVirginiaTech
Extendible hashing

= Summary: directory doubles on demand
= or halves, on shrinking files
* needs ‘local’ and ‘global’ depth

Prakash 2015 VT CS 4604

36

WVirginiaTech
Linear hashing - overview

= Motivation

" main idea

" search algo

" insertion/split algo
= deletion

Prakash 2015 VT CS 4604

37

MVirginiaTech
Linear hashing

= Motivation: ext. hashing needs directory etc
etc; which doubles (ouch!)

" Q: can we do something simpler, with
smoother growth?

Prakash 2015 VT CS 4604

38

MVirginiaTech

Linear hashing

= Motivation: ext. hashing needs directory etc
etc; which doubles (ouch!)

" Q: can we do something simpler, with
smoother growth?

= A:split buckets from left to right, regardless of
which one overflowed (‘crazy’, but it works
well!) - Eg.:

Prakash 2015 VT CS 4604 39

MVirginiaTech
Linear hashing

Initially: h(x) =x mod N (N=4 here)
Assume capacity: 3 records / bucket

Insert key ‘17’

bucket- id 0 1 2 3

Prakash 2015 VT CS 4604

40

WVirginiaTech
Linear hashing

Initially: h(x) =x mod N (N=4 here)

overflow of bucket#1
17

bucket- id 0 1 2 3

Prakash 2015 VT CS 4604

41

MVirginiaTech
Linear hashing

Initially: h(x) =x mod N (N=4 here)

overflow of bucket#1

17 Split #0, anyway!!!
bucket- id 0 1 2 3
4 8 5 9 6 7 11
13

Prakash 2015 VT CS 4604

42

WVirginiaTech
Linear hashing

Initially: h(x) =x mod N (N=4 here)

Split #0, anyway!!!

17 Q: But, how?

bucket- id 0 1 2 3

Prakash 2015 VT CS 4604

43

WVirginiaTech
Linear hashing

A: use two h.f.: hO(x) =x mod N
hl(x) =x mod (2*N)

17

bucket- id 0 1 2 3

Prakash 2015 VT CS 4604

44

MVirginiaTech

Linear hashing - after split:

A: use two h.f.: hO(x) =x mod N
hl(x) =x mod (2*N)

bucket- id 0 1 2 3 4

17

Prakash 2015 VT CS 4604 45

VirginiaTech

Linear hashing - after split:

A: use two h.f.: hO(x) =x mod N

bucket- id

Prakash 2015

hl(x) =x mod (2*N)

11

17

VT CS 4604

overflow

46

VirginiaTech

Linear hashing - after split:

A: use two h.f.: hO(x) =x mod N
h1(x) =x mod (2*N)

lsplit ptr

bucket- id 0 1 2 3 4

17 overflow

Prakash 2015 VT CS 4604

WVirginiaTech

Linear hashing - searching?

hO(x) = x mod N (for the un-split buckets) h1(x) = x mod (2*N) (for

the splitted ones)
lsplit ptr
bucket- id 0 1 2 3
8 5 9 6 7 11
13
17 overflow

Prakash 2015 VT CS 4604

48

VirginiaTech

Linear hashing - searching?

Q1l: find key ‘6" ? Q2: find key ‘4’ ?

Q3: key ‘8’ ?
lsplit ptr
bucket- id 0 1 2 3 4
8 59 6 7 11 4
13
17 overflow

Prakash 2015 VT CS 4604

VirginiaTech

Linear hashing - searching?

Algo to find key ‘k’:
e compute b= h0(k);
o if b<split-ptr, compute b=h1(k)

e search bucket b

Prakash 2015 VT CS 4604

50

VirginiaTech

Linear hashing - insertion?

Algo: insert key ‘k’

e compute appropriate bucket ‘b’

e if the overflow criterion is true
esplit the bucket of ‘split-ptr’

e split-ptr ++ (*)

Prakash 2015 VT CS 4604

51

MVirginiaTech

Linear hashing - insertion?

" notice: overflow criterion is up to us!!
= Q:suggestions?

Prakash 2015 VT CS 4604 52

MVirginiaTech
Linear hashing - insertion?

" notice: overflow criterion is up to us!!
= Q:suggestions?
= Al: space utilization >= u-max

Prakash 2015 VT CS 4604

53

MVirginiaTech
Linear hashing - insertion?

" notice: overflow criterion is up to us!!
= Q:suggestions?

= Al: space utilization > u-max

= A2: avg length of ovf chains > max-len
= A3: ...

Prakash 2015 VT CS 4604

VirginiaTech

Linear hashing - insertion?

Algo: insert key ‘k’

e compute appropriate bucket ‘b’

e if the overflow criterion is true
esplit the bucket of ‘split-ptr’

e split-ptr ++ (*)
4

what if we reach the right edge??

Prakash 2015 VT CS 4604

55

MVirginiaTech
Linear hashing - split now?

hO(x) =x mod N (for the un-split buckets) h1(x) = x mod (2*N) for
the splitted ones)

split ptr

Prakash 2015 VT CS 4604

56

MVirginiaTech

Linear hashing - split now?

hO(x) = x mod N
the splitted ones)

(for the un-split buckets) h1(x) = x mod (2*N) (for

split ptr

Prakash 2015

VT CS 4604

57

MVirginiaTech
Linear hashing - split now?

et O ==TTTOTI TV {Jor the un-s = 2*N) (for
the splitted ones)
split ptr
0 1 2 3 4 5 6

Prakash 2015 VT CS 4604

58

MVirginiaTech
Linear hashing - split now?

et O ==TTTOTI TV {Jor the un-s - 2*N) (for
the splitted ones)
split ptr
0 1 2 3 4 5 6

Prakash 2015 VT CS 4604

59

MVirginiaTech

Linear hashing - split now?

this state is called ‘full expansion’

split ptr

: &

0 1 2 3 4 5 6 7

Prakash 2015 VT CS 4604 60

MVirginiaTech

Linear hashing - observations

In general, at any point of time, we have at most two h.f. active, of the form:
°h (x) = x mod (N * 2")
°h,.,(x) =x mod (N * 2"1)

(after a full expansion, we have only one h.f.)

Prakash 2015 VT CS 4604 61

MVirginiaTech

Linear hashing - deletion?

" reverse of insertion:

Prakash 2015 VT CS 4604 62

MVirginiaTech

Linear hashing - deletion?

" reverse of insertion:

® if the underflow criterion is met
— contract!

Prakash 2015 VT CS 4604

63

MVirginiaTech

Linear hashing - how to contract?

hO(x) = mod N (for the un-split buckets) h1(x) = mod (2*N) (for
the splitted ones)

split ptr

Prakash 2015 VT CS 4604 64

MVirginiaTech

Linear hashing - how to contract?

hO(x) = mod N (for the un-split buckets) h1(x) = mod (2*N) (for
the splitted ones)

split ptr

Prakash 2015 VT CS 4604 65

MVirginiaTech

Prakash 2015

Hashing - pros?

VT CS 4604

66

MVirginiaTech

Hashing - pros?
= Speed,

— on exact match queries
— on the average

Prakash 2015 VT CS 4604

67

MVirginiaTech

Prakash 2015

B(+)-trees - pros?

VT CS 4604

68

MVirginiaTech
B(+)-trees - pros?

= Speed on search:
— exact match queries, worst case
— range queries
— nearest-neighbor queries

» Speed on insertion + deletion
" smooth growing and shrinking (no re-org)

Prakash 2015 VT CS 4604

69

[MVirginiaTech
Conclusions

= B-trees and variants: in all DBMSs

® hash indices: in some
— (but hashing in useful for joins...)

Prakash 2015 VT CS 4604

70

W VirginiaTech

SORTING

Prakash 2015

VT CS 4604

71

MVirginiaTech

Prakash 2015

Why Sort?

VT CS 4604

72

IVirginiaTech
Why Sort?

= select ... order by

- e.g., find students in increasing gpa order
" bulk loading B+ tree index.
" duplicate elimination (select distinct)
= select ... group by
" Sort-merge join algorithm involves sorting.

MVirginiaTech
Outline

" fwo-way merge sort
= external merge sort
" fine-tunings

" B+ trees for sorting

Prakash 2015 VT CS 4604

74

MVirginiaTech

2-Way Sort: Requires 3 Buffers

" Pass O0: Read a page, sort it, write it.

— only one buffer page is used

" Pass 1, 2, 3, ..., etc.: requires 3 buffer pages

— merge pairs of runs into runs twice as long

— three buffer pages used.

>
| 1 | INPUT 1
| : INPUT 2
v
Disk

OUTPUT

I
7

Main memory buffers

Prakash 2015 VT CS 4604

75

MVirginiaTech
Two-Way External Merge Sort

3.4 (6,2 [9.4] [87] [56] [34] [2] B input ile
= Each pass we read +] T | | Ppasso

. . . 3.4| (2,6] 4.9 [7.8] |5.6] [1.3] | 2 - 1-page runs
write each page in file.

Prakash 2015

MVirginiaTech
Two-Way External Merge Sort

- Input file

3.4/ (62| 94| [8,7] |56 [3.1

= Each pass we read + — 14—

+— PASS 0
. . . 3.4| |2,6] (4,9 |7.8 |5.6/ |13 1-page runs
write each page in file. | == =~

“— PASS 1
2.3 4.7 1,3 2-page runs
4.6 8,9 5»,6 .

IN [N

Prakash 2015

MVirginiaTech

Two-Way External Merge Sort

= Each pass we read +
write each page in file.

Prakash 2015

- Input file

| PASS 0

1-page runs

“— PASS 1
E 2-page runs

4-page runs

3.4 16,2] [9.4] [8,7] [5,6] (3.1 2
Y 4 Y Y A4 A Y
3.4| |2,6] (4,9 |7.8 |5.6] 13| | 2
AN Z \, Z \, AN
N N N
2,3 4,7 1,3
4.6 8,9 5,6
N PASS 2
4.4 1,2
6.7 3,56
8.9 6

MVirginiaTech
Two-Way External Merge Sort

34 |62 9.4 8.7 5.6 3.1 B inputiile
= Each pass we read +] T | | Ppasso
. . . 3.4| |2,6] (4,9 |7.8 |5.6] 13| | 2 1-page runs
write each page in file. S =" i1
2.3 4.7 1,3 2-page runs
4.6 8,9 5,6
. PASS 2
4.4 1.2 4-page runs
6,7 3,5
8.9 6
1,2
2,3
3.4 8-page runs
4,5
6,6
7,8
Prakash 2015 VT CS 4604 9 79

MVirginiaTech

Two-Way External Merge Sort

= Each pass we read + write

each page in file.

= N pagesin the file =>
= [log2 N] +1

= So total cost is:

2N(|'10g2 N" + 1)

" |/dea: Divide and conquer:
sort subfiles and merge

Prakash 2015

3,4 16,2 0.4 (87 |56 3.1 B inputiile
| PASSO
3.4| (2.6 49| (7.8 [5.6] [1,3] [2 1-page runs
\\ // \\ // \M/ \ / PASS 1
2.3 4.7 1,3 E 2-page runs
4.6 8,9 5,6
N PASS 2
4.4 1.2 4-page runs
6,7 3,5
8.9 6
\-/ PASS 3
1,2
2,3
3.4 8-page runs
4.5
6,6
7,8
VT CS 4604 9 80

MVirginiaTech

External merge sort

B > 3 buffers
= Q1: how to sort?
m (Q2: cost?

Prakash 2015 VT CS 4604

81

MVirginiaTech

General External Merge Sort

B>3 buffer pages. How to sort a file with N pages?

Disk

Prakash 2015

B Main memory buffers

VT CS 4604

82

WVirginiaTech
General External Merge Sort

— Pass 0: use B buffer pages. Produce [N/ B] sorted runs
of B pages each.

- Pass 1, 2, ..., etc.: merge B-1 runs.

< > INPUT 1 < >
_// >

I I | |
| | » INPUT 2 \
\ . | |

OUTPUT ,
.~ | TinNPuT B-1 ~

Disk B Main memory buffers Disk

Prakash 2015 VT CS 4604 83

MVirginiaTech
Sorting

— create sorted runs of size B (how many?)
— merge them (how?)

HRNi
]

Prakash 2015 VT CS 4604

84

MVirginiaTech

Sorting

— create sorted runs of size B
— merge first B-1 runs into a sorted run of
(B-1) *B, ...

e | L
HEnE

el

Prakash 2015 VT CS 4604

MVirginiaTech
Sorting

— How many steps we need to do?
‘i, where B*(B-1)"i>N
— How many reads/writes per step? N+N

HRNi
ENEE

Prakash 2015 VT CS 4604

MVirginiaTech
Cost of External Merge Sort

* Number of passes: 1+[log, [N/ B]]
" Cost=2N * (# of passes)

Prakash 2015 VT CS 4604 87

MVirginiaTech
Cost of External Merge Sort

= E.g., with 5 buffer pages, to sort 108 page
file:
— Pass0: [108/ 5% 22 sorted runs of 5 pages
each (last run is only 3 pages)

- Pass1: [22/4T6 sorted runs of 20 pages
each (last run is only 8 pages)

— Pass 2: 2 sorted runs, 80 pages and 28 pages
— Pass 3: Sorted file of 108 pages

Formula check: Tlog, 22'=3 ...+ 1 = 4 passes V

Prakash 2015 VT CS 4604

88

MVirginiaTech

Number of Passes of External Sort

(1/0 cost is 2N times number of passes)

N B=3 |B=5 |B=9 |B=17 |B=129|B=257
100 7 4 3 2 1 1
1,000 10 | 5 4 3 2 2
10,000 13 | 7 5 4 2 2
100,000 17 | 9 6 5 3 3
1,000,000 20 | 10 7 5 3 3
10,000,000 23 | 12 8 6 4 3
100,000,000 | 26 | 14 9 7 4 4
1,000,000,000| 30 | 15 10 8 5 4

Prakash 2015

VT CS 4604

89

WVirginiaTech

Internal Sort Algorithm

" Quicksort is a fast way to sort in memory.

Prakash 2015 VT CS 4604 90

MVirginiaTech
Blocked 1/0 & double-buffering

= So far, we assumed random disk access

= Cost changes, if we consider that runs are
written (and read) sequentially

=" What could we do to exploit it?

Prakash 2015 VT CS 4604

91

MVirginiaTech

Blocked 1/0 & double-buffering

= So far, we assumed random disk access

= Cost changes, if we consider that runs are
written (and read) sequentially

=" What could we do to exploit it?

= Al: Blocked I/O (exchange a few r.d.a for
several sequential ones)

= A2: double-buffering

Prakash 2015 VT CS 4604 92

MVirginiaTech
Double Buffering

" To reduce wait time for |/O request to

complete, can prefetch into shadow
block’ .

— Potentially, more passes; in practice, most files
still sorted in 2-3 passes.

INPUT 1

~ INPUT 2

Ea——
ey 21 Ol
o 0 0 b
m block size
INPUT K]

Prakash 2015 VT CS 4604

93

MVirginiaTech
Using B+ Trees for Sorting

= Scenario: Table to be sorted has B+ tree index on
sorting column(s).

" /dea: Can retrieve records in order by traversing
leaf pages.

" /s this a good idea?

= Cases to consider:
— B+ tree is clustered
— B+ tree is not clustered

Prakash 2015 VT CS 4604 94

[MVirginiaTech
Using B+ Trees for Sorting

= Scenario: Table to be sorted has B+ tree index on
sorting column(s).

" /dea: Can retrieve records in order by traversing
leaf pages.

" /s this a good idea?

= Cases to consider:
— B+ tree is clustered Good ideal!
— B+ tree is not clustered Could be a very bad idea!

Prakash 2015 VT CS 4604 95

MVirginiaTech
Clustered B+ Tree Used for Sorting

= Cost: root to the left- Index
most leaf, then (Directs search)
retrieve all leaf pages

T e Data Entries

TR TR TR NN TR TR

Rt ("Sequence set")

LT L T T L L T T

Nl SN

Data Records

(Alternative 1)

Always better than external sorting!

Prakash 2015 VT CS 4604 96

WVirginiaTech
Unclustered B+ Tree Used for Sorting

= Alternative (2) for data entries; each data
entry contains rid of a data record. In
general, one I/O per data record!

Index
(Directs search)

e Data Entries
kX -.-..::.. (!!Sequence Set")

Data Records

Prakash 2015 97

MVirginiaTech
External Sorting vs. Unclustered Inde»

N Sorting p=1 p=10 p=100
100 200 100 1,000 10,000
1,000 2,000 1,000 10,000 100,000

10,000 40,000 10,000 100,000 1,000,000
100,000 600,000 {100,000 |1,000,000 {10,000,000
1,000,000 |8,000,000 {1,000,000 (10,000,000 {100,000,000
10,000,000 80,000,000 {10,000,000 {100,000,000 |{1,000,000,000

p: # of records per page
B=1,000 and block size=32 for sorting
Prakash 2015 p=100 is the more realistic value. °

MVirginiaTech
Summary

" External sorting is important

= External merge sort minimizes disk 1/O cost:
— Pass 0: Produces sorted runs of size B (# buffer
pages).
— Later passes: merge runs.
= Clustered B+ tree is good for sorting;
unclustered tree is usually very bad.

