CS 4604: Introduction to Database Management Systems

B. Aditya Prakash

Lecture #16: Transactions 1: Intro. to ACID
Why Transactions?

- Database systems are normally being accessed by many users or processes at the same time.
 - Both queries and modifications.
- Unlike operating systems, which support interaction of processes, a DMBS needs to keep processes from troublesome interactions.
Transactions - dfn

- unit of work, eg.
 - move $10 from savings to checking
Statement of Problem

- Concurrent execution of independent transactions (why do we want that?)
Statement of Problem

- Concurrent execution of independent transactions
 - utilization/throughput ("hide" waiting for I/Os.)
 - response time
Statement of Problem

- Concurrent execution of independent transactions
 - utilization/throughput (“hide” waiting for I/Os.)
 - response time
- would also like:
 - correctness &
 - fairness
- Example: Book an airplane seat
Definitions

- **database** - a fixed set of named data objects \((A, B, C, \ldots)\)
- **transaction** - a sequence of read and write operations \((\text{read}(A), \text{write}(B), \ldots)\)

 — DBMS’s abstract view of a user program
Example: ‘Lost-update’ problem

T1
Read(N)
N = N - 1
Write(N)

T2
Read(N)
N = N - 1
Write(N)
Statement of problem (cont.)

- Arbitrary interleaving can lead to
 - Temporary inconsistency (ok, unavoidable)
 - “Permanent” inconsistency (bad!)

- Need formal correctness criteria.
Example: Bad Interaction

- You and friend each take $100 from different ATMs at about the same time.
 - The DBMS better make sure one account deduction doesn’t get lost.

- **Compare**: An OS allows two people to edit a document at the same time. If both write, one’s changes get lost.
ACID Transactions

- **ACID transactions** are:
 - **Atomic**: Whole transaction or none is done.
 - **Consistent**: Database constraints preserved.
 - **Isolated**: It appears to the user as if only one process executes at a time.
 - **Durable**: Effects of a process survive a crash.

- **Optional**: weaker forms of transactions are often supported as well (like Google, Amazon system etc.): Recall NoSQL systems
The SQL statement COMMIT causes a transaction to complete.

– It’s database modifications are now permanent in the database.
ROLLBACK

- The SQL statement ROLLBACK also causes the transaction to end, but by *aborting*.
 - No effects on the database.
- Failures like division by 0 or a constraint violation can also cause rollback, even if the programmer does not request it.
Overview

- **ACID transactions** are:
 - **Atomic**: Whole transaction or none is done.
 - **Consistent**: Database constraints preserved.
 - **Isolated**: It appears to the user as if only one process executes at a time.
 - **Durable**: Effects of a process survive a crash.
Atomicity of Transactions

- Two possible outcomes of executing a transaction:
 - Xact might commit after completing all its actions
 - or it could abort (or be aborted by the DBMS) after executing some actions.
- DBMS guarantees that Xacts are atomic.
 - From user’s point of view: Xact always either executes all its actions, or executes no actions at all.
Transaction states

- active
- partially committed
- committed
- failed
- aborted
Mechanisms for Ensuring Atomicity

- What would you do?
Mechanisms for Ensuring Atomicity

- One approach: LOGGING
 - DBMS logs all actions so that it can undo the actions of aborted transactions.
- ~ like black box in airplanes ...
Mechanisms for Ensuring Atomicity

- Logging used by all modern systems.
- Q: why?
Mechanisms for Ensuring Atomicity

- Logging used by all modern systems.
- Q: why?
- A:
 - audit trail &
 - efficiency reasons
- What other mechanism can you think of?
Mechanisms for Ensuring Atomicity

- Another approach: SHADOW PAGES

 – (not as popular)
Overview

- **ACID transactions** are:
 - *Atomic*: Whole transaction or none is done.
 - *Consistent*: Database constraints preserved.
 - *Isolated*: It appears to the user as if only one process executes at a time.
 - *Durable*: Effects of a process survive a crash.
Transaction Consistency

- “Database consistency” - data in DBMS is accurate in modeling real world and follows integrity constraints
Transaction Consistency

- "Transaction Consistency": if DBMS consistent before Xact (running alone), it will be after also
- Transaction consistency: User’s responsibility
 - DBMS just checks IC

![Diagram showing transaction T from consistent database S1 to consistent database S2]
Recall: Integrity constraints
 – must be true for DB to be considered consistent
Examples:
1. FOREIGN KEY R.sid REFERENCES S
2. ACCT-BAL >= 0
System checks ICs and if they fail, the transaction rolls back (i.e., is aborted).

– Beyond this, DBMS does not understand the semantics of the data.

– e.g., it does not understand how interest on a bank account is computed.

Since it is the user’s responsibility, we don’t discuss it further.
Overview

- **ACID transactions** are:
 - *Atomic*: Whole transaction or none is done.
 - *Consistent*: Database constraints preserved.
 - *Isolated*: It appears to the user as if only one process executes at a time.
 - *Durable*: Effects of a process survive a crash.
Isolation of Transactions

- Users submit transactions, and
- Each transaction executes as if it was running by itself.
 - Concurrency is achieved by DBMS, which interleaves actions (reads/writes of DB objects) of various transactions.
- Q: How would you achieve that?
 - Tough problem!
Isolation of Transactions

A: Many methods - two main categories:

- Pessimistic – don’t let problems arise in the first place
- Optimistic – assume conflicts are rare, deal with them after they happen.
Example

Consider two transactions (Xacts):

| T1: BEGIN A=A+100, B=B-100 END |
| T2: BEGIN A=1.06*A, B=1.06*B END |

- 1st xact transfers $100 from B’s account to A’s
- 2nd credits both accounts with 6% interest.
- Assume at first A and B each have $1000. What are the legal outcomes of running T1 and T2?
Example

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

- many - but A+B should be: $2000 * 1.06 = $2120
- There is no guarantee that T1 will execute before T2 or vice-versa, if both are submitted together. But, the net effect must be equivalent to these two transactions running serially in some order.
Legal outcomes: $A=1166, B=954$ or $A=1160, B=960$

Consider a possible interleaved *schedule*:

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A=A+100, \quad B=B-100$</td>
<td>$A=1.06A, \quad B=1.06B$</td>
</tr>
</tbody>
</table>

This is OK (same as T1;T2). But what about:

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A=A+100, \quad B=B-100$</td>
<td>$A=1.06A, \quad B=1.06B$</td>
</tr>
</tbody>
</table>
Example (Contd.)

- Legal outcomes: $A=1166, B=954$ or $A=1160, B=960$
- Consider a possible interleaved **schedule**:

\[
\begin{array}{ll}
T1: & A=A+100, \quad B=B-100 \\
T2: & A=1.06*A, \quad B=1.06*B \\
\end{array}
\]

- This is OK (same as T1;T2). But what about:

\[
\begin{array}{ll}
T1: & A=A+100, \quad B=B-100 \\
T2: & A=1.06*A, \quad B=1.06*B \\
\end{array}
\]

- **Result**: $A=1166$, $B=960$; $A+B = 2126$, bank loses 6
- The DBMS’ s view of the second schedule:

\[
\begin{array}{ll}
T1: & R(A), W(A), \quad R(B), W(B) \\
T2: & R(A), W(A), R(B), W(B) \\
\end{array}
\]
‘Correctness’?

- Q: How would you judge that a schedule is ‘correct’?
 (‘schedule’ = ‘interleaved execution’)

Prakash 2015

VT CS 4604
‘Correctness’?

- Q: How would you judge that a schedule is ‘correct’?
- A: if it is equivalent to some serial execution
Formal Properties of Schedules

- Serial schedule: Schedule that does not interleave the actions of different transactions.
- Equivalent schedules: For any database state, the effect of executing the first schedule is identical to the effect of executing the second schedule. (*)

(*) no matter what the arithmetic etc. operations are!
Formal Properties of Schedules

- Serializable schedule: A schedule that is equivalent to some serial execution of the transactions.

(Note: If each transaction preserves consistency, every serializable schedule preserves consistency.)
Anomalies with interleaved execution:

- R-W conflicts
- W-R conflicts
- W-W conflicts

(why not R-R conflicts?)
Anomalies with Interleaved Execution

- Reading Uncommitted Data (WR Conflicts, “dirty reads”):

<table>
<thead>
<tr>
<th>T1</th>
<th>R(A), W(A), R(B), W(B), Abort</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>R(A), W(A), C</td>
</tr>
</tbody>
</table>
Anomalies with Interleaved Execution

- Reading Uncommitted Data (WR Conflicts, “dirty reads”):

<table>
<thead>
<tr>
<th></th>
<th>T1: R(A), W(A), R(B), W(B), Abort</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2:</td>
<td>R(A), W(A), C</td>
</tr>
</tbody>
</table>
I
Anomalies with Interleaved Execution

- Unrepeatable Reads (RW Conflicts):

<table>
<thead>
<tr>
<th>T1:</th>
<th>R(A), R(A), W(A), C</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2:</td>
<td>R(A), W(A), C</td>
</tr>
</tbody>
</table>
Anomalies with Interleaved Execution

- Unrepeatable Reads (RW Conflicts):

<table>
<thead>
<tr>
<th>T1:</th>
<th>R(A), R(A), W(A), C</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2:</td>
<td>R(A), W(A), C</td>
</tr>
</tbody>
</table>
Anomalies (Continued)

- Overwriting Uncommitted Data (WW Conflicts):

<table>
<thead>
<tr>
<th>T1:</th>
<th>W(A), W(B), C</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2:</td>
<td>W(A), W(B), C</td>
</tr>
</tbody>
</table>
Anomalies (Continued)

- Overwriting Uncommitted Data (WW Conflicts):

 T1: \(W(A), W(B), C \)
 T2: \(W(A), W(B), C \)
Objective: find non-serial schedules, which allow transactions to execute concurrently without interfering, thereby producing a DB state that could be produced by a serial execution.

BUT

– Trying to find schedules equivalent to serial execution is too slow!
Conflict Serializability

- We need a formal notion of equivalence that can be implemented efficiently...
 - Base it on the notion of “conflicting” operations

- Definition: Two operations conflict if:
 - They are by different transactions,
 - they are on the same object,
 - and at least one of them is a write.
Conflict Serializable Schedules

- Definition: Two schedules are conflict equivalent iff:
 - They involve the same actions of the same transactions, and
 - every pair of conflicting actions is ordered the same way

- Definition: Schedule S is conflict serializable if:
 - S is conflict equivalent to some serial schedule.

- Note, some “serializable” schedules are NOT conflict serializable (See Example 4 later)
A schedule S is conflict serializable if:
- You are able to transform S into a serial schedule by swapping consecutive non-conflicting operations of different transactions

$R(A) \ W(A)$

$R(A) \ W(A)$

$R(B) \ W(B)$

$R(B) \ W(B)$

=====

$R(A) \ W(A)$ $R(B) \ W(B)$

$R(A) \ W(A)$ $R(B) \ W(B)$

$R(A) \ W(A) \ R(B) \ W(B)$

$R(A) \ W(A) \ R(B) \ W(B)$
CS---Intuition

- A schedule S is conflict serializable if:
 - You are able to transform S into a serial schedule by swapping consecutive non-conflicting operations of different transactions

\[
R(A) \quad W(A) \\
R(A) \quad W(A) \quad IS \ NOT \ SERIALIZABLE!
\]
Q: any faster algorithm? (faster than transposing operations?)
Dependency Graph

- One node per Xact
- Edge from Ti to Tj if:
 - An operation Oi of Ti conflicts with an operation Oj of Tj and
 - Oi appears earlier in the schedule than Oj.
THEOREM: Schedule is conflict serializable iff the dependency graph is acyclic

Dependency graph is also called the precedence graph
 – different than the waits-for graph we will see later
Example

- **T1**: R(A), W(A) \(\quad \) R(B), W(B)
- **T2**: \(\quad \) R(A) W(A) R(B) W(B)

D. Graph:

- **NOT Conflict serializable**
 - Cycle is the problem---output of T1 depends on T2 and vice versa
Example #2 (Lost update)

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read(N)</td>
<td>Read(N)</td>
</tr>
<tr>
<td>N = N - 1</td>
<td>N = N - 1</td>
</tr>
<tr>
<td>Write(N)</td>
<td>Write(N)</td>
</tr>
</tbody>
</table>
Example #2 (Lost update)

T1

Read(N)

N = N - 1

Write(N)

T2

R/W

Read(N)

N = N - 1

Write(N)
Example #2 (Lost update)

T1
Read(N)
N = N - 1
Write(N)

T2
Read(N)
N = N - 1
Write(N)
Example #2 (Lost update)

T1
Read(N)
N = N - 1
Write(N)

T2
Read(N)
N = N - 1
Write(N)

T1
T2
R/W
Example #3

T1 T2 T3

Read(A)
...
write(A)

Read(A)
...
Write(A)

Read(B)
...
Write(B)

Read(B)
...
Write(B)
Example #3

T1
Read(A)
...
write(A)

T2
Read(B)
...
Write(B)

T3
Read(A)
...
Write(A)

equivalent serial execution?
Example #3

- A: T2, T1, T3

 (Notice that T3 should go after T2 in the equivalent serial order, although it starts before it!)

- Q: algo for generating serial execution from (acyclic) dependency graph?
Example #3

- **A:** T2, T1, T3

 (Notice that T3 should go after T2 in the equivalent serial order, although it starts before it!)

- **Q:** algo for generating serial execution from (acyclic) dependency graph?

- **A:** Topological sorting
Example #4 (Inconsistent Analysis)

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
<th>dependency graph?</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (A)</td>
<td>R(A)</td>
<td></td>
</tr>
<tr>
<td>A = A - 10</td>
<td>Sum = A</td>
<td></td>
</tr>
<tr>
<td>W (A)</td>
<td>R (B)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sum += B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R (B)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B = B + 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W (B)</td>
<td></td>
</tr>
</tbody>
</table>
Example #4 (Inconsistent Analysis)

T1

R (A)
A = A - 10
W (A)

T2

R (A)
Sum = A
R (B)
Sum += B

So NOT Conflict
Serializable (and not serializable)
Example #4 (Inconsistent Analysis)

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (A)</td>
<td>Q: create a 'correct' Schedule based on this one that is not conflict-serializable</td>
</tr>
<tr>
<td>A = A-10</td>
<td></td>
</tr>
<tr>
<td>W (A)</td>
<td></td>
</tr>
<tr>
<td>R (A)</td>
<td></td>
</tr>
<tr>
<td>Sum = A</td>
<td></td>
</tr>
<tr>
<td>R (B)</td>
<td></td>
</tr>
<tr>
<td>Sum += B</td>
<td></td>
</tr>
<tr>
<td>R(B)</td>
<td></td>
</tr>
<tr>
<td>B = B+10</td>
<td></td>
</tr>
<tr>
<td>W(B)</td>
<td></td>
</tr>
</tbody>
</table>

A = A-10

B = B+10
Example #4’ (Inconsistent Analysis)

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (A)</td>
<td>R (A)</td>
</tr>
<tr>
<td>$A = A - 10$</td>
<td></td>
</tr>
<tr>
<td>W (A)</td>
<td>R (A)</td>
</tr>
<tr>
<td></td>
<td>if ($A > 0$), $count = 1$</td>
</tr>
<tr>
<td></td>
<td>R (B)</td>
</tr>
<tr>
<td></td>
<td>if ($B > 0$), $count++$</td>
</tr>
<tr>
<td></td>
<td>R (B)</td>
</tr>
<tr>
<td></td>
<td>$B = B + 10$</td>
</tr>
<tr>
<td></td>
<td>W (B)</td>
</tr>
</tbody>
</table>

A: T2 asks for the count of my active Accounts (assuming $A > 10$, $B > 0$)

NOTES:

1. This schedule is still not CS
2. BUT it is serializable! It is equivalent to either of [T1 T2] or [T2 T1] (both are OK)
Serializability in Practice

- DBMS does not test for conflict serializability of a given schedule
 - Impractical as interleaving of operations from concurrent Xacts could be dictated by the OS

- Approach:
 - Use specific protocols that are known to produce conflict serializable schedules
 - But may reduce concurrency
Solution?

- One solution for "conflict serializable" schedules is Two Phase Locking (2PL)
(Full answer:) use locks; keep them until commit (‘strict 2 phase locking’)
We’ll see the details later (in next class!)
(Review) Goal: ACID Properties

- **ACID transactions** are:
 - **Atomic**: Whole transaction or none is done.
 - **Consistent**: Database constraints preserved.
 - **Isolated**: It appears to the user as if only one process executes at a time.
 - **Durable**: Effects of a process survive a crash.

What happens if system crashes between commit and flushing modified data to disk?
Durability

- == Recovery
- We’ll see it later (after concurrency control)
Summary

- **Concurrency control and recovery** are among the most important functions provided by a DBMS.

- **Concurrency control is automatic**
 - System automatically inserts lock/unlock requests and schedules actions of different Xacts
 - Property ensured: resulting execution is equivalent to executing the Xacts one after the other in some order.
ACID properties

Atomicity (all or none)
Consistency
Isolation (as if alone)
Durability