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Framework

1. Information Integration : Making databases
from various places work as one.

2. Semistructured Data : A (not really) new data
model designed to cope with problems of
information integration.

3. XML : A standard language for describing
semistructured data schemas and
representing data.
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The Information-Integration Problem

= Related data exists in many places and
could, in principle, work together.

= But different databases differ in:
Model (relational, object-oriented?).

2. Schema (normalized/unnormalized?).

3. Terminology: are consultants employees?
Retirees? Subcontractors?

4. Conventions (meters versus feet?).
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Example

= Every bar in Bburg has a database.

— One may use a relational DBMS; another keeps
the menu in an MS-Word document.

— One stores the phones of distributors, another
does not.

— One distinguishes ales from other beers, another
doesn’ t.

— One counts beer inventory by bottles, another by
cases.
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Two Approaches to Integration

1. Warehousing : Make copies of the data sources at a
central site and transform it to a common schema.

— Reconstruct data daily/weekly, but do not try to keep it
more up-to-date than that.

2. Mediation : Create a view of all sources, as if they
were integrated.

— Answer a view query by translating it to terminology of
the sources and querying them.
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Warehouse Diagram

N

Wrapper Adapter

Prakash 2015 VT CS 4604




VirginiaTech

A Mediator

User query

Result

Query Result
Avlt Query

Adapter

A

Query Result

Prakash 2015

Wrappe

A

Query Result

VT CS 4604
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Semistructured Data

" Purpose: represent data from independent
sources more flexibly than either relational or

object-oriented models.

" Think of objects, but with the type of each
object its own business, not that of its “class.’

’

= Labels to indicate meaning of substructures.
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Graphs of Semistructured Data

" Nodes = objects.
= Labels on arcs (attributes, relationships).

= Atomic values at leaf nodes (nodes with no
arcs out).

= Flexibility: no restriction on:

— Labels out of a node.

— Number of successors with a given label.
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XML

= XML = EXtensible Markup Language.

= While HTML uses tags for formatting (e.g.,
“italic”), XML uses tags for semantics (e.g.,
“this is an address”).

= Key idea: create tag sets for a domain (e.g.,
genomics), and translate all data into properly
tagged XML documents.
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Well-Formed and Valid XML

= Well-Formed XML allows you to invent your

own tags.
— Similar to labels in semistructured data.

" Valid XML involves a DTD (Document Type
Definition), which limits the labels and gives a

grammar for their use.
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Is a Well-formed Document Valid?

" An XML document is said to be well-formed if it
follows all of the "rules" of XML, such as proper
nesting and attribute use, so by definition all XML
documents are well-formed.

= Avalid document, on the other hand, is one that is
not only well-formed, but also follows the
restrictions set out in a specific grammar, typically
specified in a Document Type Definition (DTD) or
some form of XML Schema.
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Is a Wellformed Document Valid?

= An example of a document that is well-
formed but not valid based upon the XHTML

grammar.
<body>
<p>Example of Well-formed HTML<L/p> -
<head> ®
<title>Example</title> ,©
</head>

<zorko>What is this?</zorko>
</body>
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HTML vs. XML

" |n the case of HTML, browsers have been taught
how to ignore invalid HTML such as the <zorko>
element and generally do their best when dealing
with badly placed HTML elements.

" The XML processor, on the other hand, can not
tell us which elements and attributes are valid. As
a result we need to define the XML markup we
are using. To do this, we need to define the
markup language’ s grammar.
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Well-Formed XML

= Start the document with a declaration,
surrounded by <? ... ?>.

= Normal declaration is:
<? XML VERSION = “1.0” STANDALONE

7

= “yes 2>
— “Standalone” = “no DTD provided.”

" Balance of document is a root tag surrounding
nested tags.
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Tags

" Tags, as in HTML, are normally matched pairs,
as <FOO> ... </FOO>.

"= Tags may be nested arbitrarily.

= Tags requiring no matching ender, like <P> in
HTML, are also permitted.
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Example: Well-Formed XML

<? XML VERSION = “1.0” STANDALONE = “yes” ?>
<BARS>
<BAR>kNAME>Joe’ s Bar</NAME>
<BEER><NAME>Bud</NAME>
<PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME>
<PRICE>3.00</PRICE></BEER>
</BAR>
<BAR> ...
</BARS>
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XML and Semistructured Data

= Well-Formed XML with nested tags is exactly
the same idea as trees of semistructured data.

= \We shall see that XML also enables nontree
structures, as does the semistructured data
model.

Prakash 2015 VT CS 4604 19



MVirginiaTech

Example

= The <BARS> XML document is:

BARS

AW BAR
BAR

BEER

BEER

PRICE NAME PRICE
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Document Type Definitions

" Essentially a context-free grammar for
describing XML tags and their nesting.

= EFach domain of interest (e.g., electronic
components, bars-beers-drinkers) creates one

DTD that describes all the documents this
group will share.
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DTD Structure

<!DOCTYPE <root tag> |
<!ELEMENT <name>
<more elements>

] >
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Element Basics

» Defining elements within a DTD is done using an <!
ELEMENT> declaration.

e <!ELEMENT> declarations along with all other declarations within a DTD
have no content.

e <!ELEMENT> declarations are composed of several parts including the
element name and the type of information it will contain.

e The resulting element names will be case sensitive.

<IELEMENT element_name element_contents>
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DTD Elements

" The description of an element consists of its
name (tag), and a parenthesized description of
any nested tags.

— Includes order of subtags and their multiplicity.

" | eaves (text elements) have #PCDATA in place
of nested tags.
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What an < 'ELEMENT> Can Contain

" An <!ELEMENT> declaration can contain several
different types of content which include the

following:
: EMPTY.
. PCDATA.
. ANY.

. Children Elements
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EMPTY

= <!ELEMENT> declarations that include the EMPTY value
allow us to create empty elements within our xml.

- Theword EMPTY must be entered in uppercase as it is
case-sensitive.

<!ELEMENT element name EMPTY >
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PCDATA

= < IELEMENT> declarations that include the value PCDATA
allow us to include text and other parsable content in our
elements within our XML instance file.

- Theword PCDATA must be enclosed in parenthesis with a
preceding  #  and entered in uppercase as it is case-
sensitive.

- PCDATA is text that will be parsed by a parser. Tags inside
the text will treated as markup and entities will be
expanded.

<!ELEMENT element name (#PCDATA) >
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ANY

= <!ELEMENT> declarations that include the value ANY allow
us include any type of parsable content, including text and
other elements, in our elements within our XML instance file.

e The word ANY must be entered in uppercase as it is case-
sensitive.

<!ELEMENT element_name ANY>
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Element Descriptions

= Subtags must appear in order shown.

= A tag may be followed by a symbol to indicate
its multiplicity.
— * = zero or more.
— + = 0ne or more.

— ? = 7ero or one.

= Symbol | can connect alternative sequences
of tags.
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Example: DTD

A BARS object has
<IDOCTYPE Bars | zero or more BAR’ s

ted within.
<IELEMENT BARS (BAR*)> nested within
|
<IELEMENT BAR (NAME, BEER+)> A BAR e o
<!ELEMENT|NAME (#PCDATA)> NAME and one

or more BEER

<IELEMENT|BEER| (NAME, PRICE)> subobijects.

<IELEMENT[PRICE (#PCDATA)> | -

/ A BEER has a

NAME and PRICE NAME and a
are text. PRICE.
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Example: Element Description

= A name is an optional title (e.g., “Prof.”), a
first name, and a last name, in that order, or it
is an |P address:

<!ELEMENT NAME (
(TITLE?, FIRST, LAST) | IPADDR
) >
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Use of DTD s

1. Set STANDALONE = “no”.

2. Either:

a) Include the DTD as a preamble of the XML
document, or

b) Follow DOCTYPE and the <root tag> by SYSTEM
and a path to the file where the DTD can be

found.
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Example (a)

<? XML VERSION = “1.0” STANDALONE = “no” ?>

<!

1>

DOCTYPE Bars |
<IELEMENT BARS (BAR*)>
<IELEMENT BAR (NAME, BEER+)> The DTD
<IELEMENT NAME (#PCDATA)> /
<IELEMENT BEER (NAME, PRICE)>
<IELEMENT PRICE (#PCDATA)>

The document
<BARS> /

<BAR><NAME>Joe’ s Bar</NAME>
<BEER><NAME>Bud</NAME> <PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME> <PRICE>3.00</PRICE></BEER>

</BAR>

<BAR> ...

</BARS>

Prakash 2015 VT CS 4604

33



MVirginiaTech
Example (b)
= Assume the BARS DTD is in file bar.dtd.

<? XML VERSION = “1.0” STANDALONE = “no” ?>
<IDOCTYPE Bars SYSTEM “bar.dtd”>

<BARS> Get the DTD
<BAR><NAME>Joe’ s Bar</NAME> from the file
bar.dtd

<BEER><NAME>Bud</NAME>
<PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME>
<PRICE>3.00</PRICE></BEER>
</BAR>
<BAR> ...
</BARS>

Prakash 2015 VT CS 4604 34



MVirginiaTech

Attributes
" Opening tags in XML can have attributes, like
<A HREF = “..."> in HTML.
=" |na DTD,

<!ATTLIST <element name>... >

gives a list of attributes and their datatypes
for this element.
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Example: Attributes

= Bars can have an attribute kind, which is
either sushi, sports, or “other.”

<!ELEMENT BAR (NAME BEER*) >
<!ATTLIST BAR kind = “sushi’ |

11 7 14 4
sports | other >
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Example: Attribute Use

" |n a document that allows BAR tags, we might see:
<BAR kind = “sushi’>
<NAME>Akasaka</NAME>

<BEER><NAME>Sapporo</NAME>
<PRICE>5.00</PRICE></BEER>

</BAR>
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ID’ s and IDREF’ s

" These are pointers from one object to
another, in analogy to HTML's  NAME =
“foo” and HREF = “#foo”.

" Allows the structure of an XML document to
be a general graph, rather than just a tree.
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Creating ID" s

" Give an element E an attribute A of type ID.

= When using tag <E > in an XML document,
give its attribute A a unique value.

= Example:
<BE A = “xyz">
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Creating IDREF’ s

" To allow objects of type F to refer to another
object with an ID attribute, give F an attribute
of type IDREF.

" Or, let the attribute have type IDREFS, so the F
—object can refer to any number of other
objects.
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Example: ID’ s and IDREF s

= Let sredesign our BARS DTD to include both BAR
and BEER subelements.

= Both bars and beers will have ID attributes called
name.

= Bars have PRICE subobjects, consisting of a number
(the price of one beer) and an IDREF theBeer
leading to that beer.

= Beers have attribute sol1dBy, which is an IDREFS
leading to all the bars that sell it.
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The DTD

Bar objects have name

<!DOCTYPE Bars [ as an ID attribute and

1>

have one or more

<|ELEMENT BARS (BAR*, BEERTV PRICE subobjects.

<IELEMENYBAR (PRICE+)> _
PRICE objects have
<IATTLIST BAR name = ID> a number (the

<!ELEMEWCE (#PCDATA)> price) and one
f t ;
<IATTLIST PRICE theBeer = IDREE> reference to a beer.

<IELEMENT BEER ()>
<IATTLIST BEER name = ID, soldBy = IDREFS>

T

Beer objects have an ID attribute called name,
and a soldBy attribute that is a set of Bar names.
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Example Document

<BARS>
<BAR name = “JoesBar >
<PRICE theBeer = “Bud”">2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>
</BAR> ...
<BEER name = “Bud”, soldBy = “JoesBar,

’

SuesBar,...” >
</BEER> ...

</BARS>
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The XPath/XQuery Data Model

= Corresponding to the fundamental
“relation” of the relational model is:
sequence of items.

=  Anijtem is either:

1. A primitive value, e.g., integer or string.
2. A node.
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Principal Kinds of Nodes

1. Document nodes represent entire
documents.

2. Elements are pieces of a document
consisting of some opening tag, its matching
closing tag (if any), and everything in
between.

3. Attributes are names that are given values
inside opening tags.
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Document Nodes

* Formed by doc(URL) or document(URL) (or
doc(filename) or document(filename)

= Example: doc(”/usr/class/cs4604/bars.xml”)

= All XPath (and XQuery) queries refer to a doc
node, either explicitly or implicitly.

Prakash 2015 VT CS 4604
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Example DTD

<IDOCTYPE Bars [
<IELEMENT BARS (BAR*, BEER*)>
<IELEMENT BAR (PRICE+)>
<IATTLIST BAR name = ID>
<IELEMENT PRICE (#PCDATA)>
<IATTLIST PRICE theBeer = IDREF>
<IELEMENT BEER ()>

<IATTLIST BEER name = ID, soldBy = IDREFS>
1>

Prakash 2015 VT CS 4604
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Example Document

<BARS> An element node
<BAR name = "JoesBar > Y
<PRICE theBeer = "Export’>2.50</PRICE>
<PRICE theBeer = "Gr.ls.”>3.00</PRICE>
</BAR> ...

<BEER hame = ”ExportlsoldBy = "JoesBar

SuesBar ... /> ... An attribute node

</BARS> Document node is all of this, plus
the header ( <? xml version... ).
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Nodes as Semistructured Data

BARS

o @B @

"Export’ "Gr.ls.”
@ @ Blue =document
Green = element

Orange = attribute
Purple = primitive

value 50
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XPATH and XQUERY

= XPATH is a language for describing paths in
XML documents.

— Really think of the semi-structured data graph and its
paths.

— The result of the described path is a sequence of items.

— Compare with SQL:

* SQL is a language for describing relations in terms of other
relations.

* The result of a query is a relation (bag) made up of tuples

= XQUERY is a full query language for XML
documents with power similar to SQL.

Prakash 2015 VT CS 4604
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Path Descriptors

= Simple path descriptors are sequences of tags
separated by slashes (/).

— The format used is strongly reminiscent of UNIX
naming conventions.

— Construct the result by starting with just the doc node
and processing each tag from the left.

= |f the descriptor begins with /, then the path
starts at the root and has those tags, in order.

= |f the descriptor begins with //, then the path can
start anywhere.
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Example: /BARS/BAR/PRICE

<BARS>

<BAR name = “JoesBar” >
<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> ...
<BEER name ud”, soldBy = “JoesBar,
>
SuesBar, /BARS/BAR/PRICE describes the
</ BEER> ... set with these two PRICE objects
< /B ARS> as well as the PRICE objects for

any other bars.
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Example: //PRICE

<BARS>

<BAR name = “JoesBar’ >
<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> ...
<BEER name ud”, soldBy = “JoesBar,
LS
SuesBar, //PRICE describes the same PRICE
</ BEER> ... objects, but only because the DTD
< /B ARS> forces every PRICE to appear within

a BARS and a BAR.
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Wild-Card *

= Astar (*) in place of a tag represents any one
tag.

= Example: /*/*/PRICE represents all price
objects at the third level of nesting.

Prakash 2015 VT CS 4604
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Example: /BARS/*

<BARS>
<BAR name = “JoesBar” >
<PRICE theBeer = “Bud”>2.50</PRICE>

<PRICE theBeer = “Miller’>3.00</PRICE>

</BAR> |..

<BEER name\ﬁud”, soldBy = “JoesBar,

SuesBar,...” >

</BEER> /BARS/* captures all BAR
</BARS> and BEER objects, such

as these.

Prakash 2015 VT CS 4604
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Attributes

= |n XPATH, we refer to attributes by
prepending @ to their name.

= Attributes of a tag may appear in paths as if
they were nested within that tag.

Prakash 2015 VT CS 4604
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Example: /BARS/*/@name

<BARS>
<BAR |name = “JoesBar” >
<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller’>3.00</PRICE>
</BAR> ...
<BEER hame = “Bud”

SuesBar,...” > '\\

</BEER> /BARS/*/@name selects all
name attributes of immediate

</BARS> subobjects of the BARS object.

, soldBy = “JoesBar,
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Selection Conditions

= A condition inside [...] may follow a tag.

" |f so, then only paths that have that tag and
also satisfy the condition are included in the
result of a path expression.
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Example: Selection Condition

= /BARS/BAR/PRICE[PRICE < 2.75]
<BARS>

<BAR name = “JoesBar” >
<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer Winer”>3.00</PRICE>
</BAR> ...

The condition that the PRICE be
< $2.75 makes this price, but not
the Miller price
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Example: Attribute in Selection

= /BARS/BAR/PRICE[@theBeer = “Miller”]
<BARS>

<BAR name = “JoesBar” >
<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> ... |

Now, this PRICE object is
selected, along with any
other prices for Miller.
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Axes

" |n general, path expressions allow us to start
at the root and execute a sequence of steps to
find a set of nodes at each step.

= At each step, we may follow any one of
several axes.

"= The default axis is child:: --- go to any child of
the current set of nodes.
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Example: Axes

= /BARS/BEER is really shorthand for /BARS/
child::BEER .

= @ is really shorthand for the attribute:: axis.

— Thus, /BARS/BEER[@name = “Bud’ ] is shorthand
for

/BARS/BEER[attribute::name = “Bud”’]
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More Axes

= Some other useful axes are:
— parent:: = parent(s) of the current node(s).

— descendant-or-self:: = the current node(s) and all
descendants.
* Note: // is really a shorthand for this axis.

— ancestor::, ancestor-or-self, etc.

Prakash 2015 VT CS 4604
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XQuery

= XQuery extends XPath to a query language
that has power similar to SQL.

= Uses the same sequence-of-items data model
as XPath.

= XQuery is an expression language.

— Like relational algebra --- any XQuery expression
can be an argument of any other XQuery
expression.
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FLWR Expressions Q

" The most important form of XQuery expressions involves
for-, let-, where-, return- (FLWR) clauses.

= A query begins with one or more for and/or let clauses.
— The for’ s and let’ s can be interspersed.

* Then an optional where clause.
= Asingle return clause.

= Form:
for variable in expression
let variable := expression
where condition
return expression
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Example

= Find all the beer objects where the beer is
sold by Joe’ s Bar for less than 3.00.
= Strategy:

1. Sbeer will for-loop over all beer objects.

2. For each Sbeer, let Sjoe be either the Joe’ s-Bar
object, if Joe sells the beer, or the empty set of
bar objects.

3. Test whether Sjoe sells the beer for < 3.00.
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Example: The Query g

Attribute soldBy is of type
IDREFS. Follow each ref

to a BAR and check if its
FOR $beer IN /BARS/BEER / name is Joe s Bar.

LET $joe := $beer/@soldBy=>BAR[@name="JoesBar”]
LET $joePrice :=|$joe/PRICE[ @theBeer=$beer/@name]
WHERE |$joePrice < 3.00 “
RETURN <CHEAPIBEER>$beer</CHEAPBEER>

Only pass the values of Find that PRICE subobject
$beer, $joe, $joePrice to of the Joe’ s Bar object that
the RETURN clause if the represents whatever beer is
string inside the PRICE currently $beer.

object $joePrice is < 3.00
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