VirginiaTech

CS 4604: Introduction to
Database Management Systems

B. Aditya Prakash

Lecture #13: Semi-Structured Data
and XML

MVirginiaTech
Framework

1. Information Integration : Making databases
from various places work as one.

2. Semistructured Data : A (not really) new data
model designed to cope with problems of
information integration.

3. XML : A standard language for describing
semistructured data schemas and
representing data.

Prakash 2015 VT CS 4604

MVirginiaTech
The Information-Integration Problem

= Related data exists in many places and
could, in principle, work together.

= But different databases differ in:
Model (relational, object-oriented?).

2. Schema (normalized/unnormalized?).

3. Terminology: are consultants employees?
Retirees? Subcontractors?

4. Conventions (meters versus feet?).

Prakash 2015 VT CS 4604

MVirginiaTech

Example

= Every bar in Bburg has a database.

— One may use a relational DBMS; another keeps
the menu in an MS-Word document.

— One stores the phones of distributors, another
does not.

— One distinguishes ales from other beers, another
doesn’ t.

— One counts beer inventory by bottles, another by
cases.

[MVirginiaTech
Two Approaches to Integration

1. Warehousing : Make copies of the data sources at a
central site and transform it to a common schema.

— Reconstruct data daily/weekly, but do not try to keep it
more up-to-date than that.

2. Mediation : Create a view of all sources, as if they
were integrated.

— Answer a view query by translating it to terminology of
the sources and querying them.

Prakash 2015 VT CS 4604

MVirginiaTech

Warehouse Diagram

N

Wrapper Adapter

Prakash 2015 VT CS 4604

VirginiaTech

A Mediator

User query

Result

Query Result
Avlt Query

Adapter

A

Query Result

Prakash 2015

Wrappe

A

Query Result

VT CS 4604

MVirginiaTech
Semistructured Data

" Purpose: represent data from independent
sources more flexibly than either relational or

object-oriented models.

" Think of objects, but with the type of each
object its own business, not that of its “class.’

’

= Labels to indicate meaning of substructures.

Prakash 2015 VT CS 4604

MVirginiaTech
Graphs of Semistructured Data

" Nodes = objects.
= Labels on arcs (attributes, relationships).

= Atomic values at leaf nodes (nodes with no
arcs out).

= Flexibility: no restriction on:

— Labels out of a node.

— Number of successors with a given label.

Prakash 2015 VT CS 4604

name'/ : addr S
S S |
'@. ‘@D S The beer object

giniaTech

Example: Data Graph

new kind
beer of data.

bar

manf manf

prize

a \O N

@ year award
S e K /

servedAt

N for Bud
The bar object
for Joe’ s Bar

Prakash 2015 VT CS 4604 10

IVirginiaTech
XML

= XML = EXtensible Markup Language.

= While HTML uses tags for formatting (e.g.,
“italic”), XML uses tags for semantics (e.g.,
“this is an address”).

= Key idea: create tag sets for a domain (e.g.,
genomics), and translate all data into properly
tagged XML documents.

[MVirginiaTech
Well-Formed and Valid XML

= Well-Formed XML allows you to invent your

own tags.
— Similar to labels in semistructured data.

" Valid XML involves a DTD (Document Type
Definition), which limits the labels and gives a

grammar for their use.

Prakash 2015 VT CS 4604 12

MVirginiaTech
Is a Well-formed Document Valid?

" An XML document is said to be well-formed if it
follows all of the "rules" of XML, such as proper
nesting and attribute use, so by definition all XML
documents are well-formed.

= Avalid document, on the other hand, is one that is
not only well-formed, but also follows the
restrictions set out in a specific grammar, typically
specified in a Document Type Definition (DTD) or
some form of XML Schema.

Prakash 2015 VT CS 4604 13

MVirginiaTech
Is a Wellformed Document Valid?

= An example of a document that is well-
formed but not valid based upon the XHTML

grammar.
<body>
<p>Example of Well-formed HTML<L/p> -
<head> ®
<title>Example</title> ,©
</head>

<zorko>What is this?</zorko>
</body>

Prakash 2015 VT CS 4604 14

MVirginiaTech

HTML vs. XML

" |n the case of HTML, browsers have been taught
how to ignore invalid HTML such as the <zorko>
element and generally do their best when dealing
with badly placed HTML elements.

" The XML processor, on the other hand, can not
tell us which elements and attributes are valid. As
a result we need to define the XML markup we
are using. To do this, we need to define the
markup language’ s grammar.

Prakash 2015 VT CS 4604 15

MVirginiaTech
Well-Formed XML

= Start the document with a declaration,
surrounded by <? ... ?>.

= Normal declaration is:
<? XML VERSION = “1.0” STANDALONE

7

= “yes 2>
— “Standalone” = “no DTD provided.”

" Balance of document is a root tag surrounding
nested tags.

Prakash 2015 VT CS 4604 16

IVirginiaTech
Tags

" Tags, as in HTML, are normally matched pairs,
as <FOO> ... </FOO>.

"= Tags may be nested arbitrarily.

= Tags requiring no matching ender, like <P> in
HTML, are also permitted.

MVirginiaTech
Example: Well-Formed XML

<? XML VERSION = “1.0” STANDALONE = “yes” ?>
<BARS>
<BAR>kNAME>Joe’ s Bar</NAME>
<BEER><NAME>Bud</NAME>
<PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME>
<PRICE>3.00</PRICE></BEER>
</BAR>
<BAR> ...
</BARS>

Prakash 2015 VT CS 4604

18

MVirginiaTech
XML and Semistructured Data

= Well-Formed XML with nested tags is exactly
the same idea as trees of semistructured data.

= \We shall see that XML also enables nontree
structures, as does the semistructured data
model.

Prakash 2015 VT CS 4604 19

MVirginiaTech

Example

= The <BARS> XML document is:

BARS

AW BAR
BAR

BEER

BEER

PRICE NAME PRICE

Prakash 2015 VT CS 4604 20

MVirginiaTech
Document Type Definitions

" Essentially a context-free grammar for
describing XML tags and their nesting.

= EFach domain of interest (e.g., electronic
components, bars-beers-drinkers) creates one

DTD that describes all the documents this
group will share.

Prakash 2015 VT CS 4604 21

MVirginiaTech

DTD Structure

<!DOCTYPE <root tag> |
<!ELEMENT <name>
<more elements>

] >

Prakash 2015 VT CS 4604

(

<components>

) >

22

MVirginiaTech
Element Basics

» Defining elements within a DTD is done using an <!
ELEMENT> declaration.

e <!ELEMENT> declarations along with all other declarations within a DTD
have no content.

e <!ELEMENT> declarations are composed of several parts including the
element name and the type of information it will contain.

e The resulting element names will be case sensitive.

<IELEMENT element_name element_contents>

Prakash 2015 VT CS 4604 23

MVirginiaTech

DTD Elements

" The description of an element consists of its
name (tag), and a parenthesized description of
any nested tags.

— Includes order of subtags and their multiplicity.

" | eaves (text elements) have #PCDATA in place
of nested tags.

Prakash 2015 VT CS 4604 24

MVirginiaTech
What an < 'ELEMENT> Can Contain

" An <!ELEMENT> declaration can contain several
different types of content which include the

following:
: EMPTY.
. PCDATA.
. ANY.

. Children Elements

Prakash 2015 VT CS 4604

25

MVirginiaTech
EMPTY

= <!ELEMENT> declarations that include the EMPTY value
allow us to create empty elements within our xml.

- Theword EMPTY must be entered in uppercase as it is
case-sensitive.

<!ELEMENT element name EMPTY >

Prakash 2015 VT CS 4604

MVirginiaTech
PCDATA

= < IELEMENT> declarations that include the value PCDATA
allow us to include text and other parsable content in our
elements within our XML instance file.

- Theword PCDATA must be enclosed in parenthesis with a
preceding # and entered in uppercase as it is case-
sensitive.

- PCDATA is text that will be parsed by a parser. Tags inside
the text will treated as markup and entities will be
expanded.

<!ELEMENT element name (#PCDATA) >

Prakash 2015 VT CS 4604 27

MVirginiaTech
ANY

= <!ELEMENT> declarations that include the value ANY allow
us include any type of parsable content, including text and
other elements, in our elements within our XML instance file.

e The word ANY must be entered in uppercase as it is case-
sensitive.

<!ELEMENT element_name ANY>

Prakash 2015 VT CS 4604 28

MVirginiaTech
Element Descriptions

= Subtags must appear in order shown.

= A tag may be followed by a symbol to indicate
its multiplicity.
— * = zero or more.
— + = 0ne or more.

— ? = 7ero or one.

= Symbol | can connect alternative sequences
of tags.

Prakash 2015 VT CS 4604 29

MVirginiaTech
Example: DTD

A BARS object has
<IDOCTYPE Bars | zero or more BAR’ s

ted within.
<IELEMENT BARS (BAR*)> nested within
|
<IELEMENT BAR (NAME, BEER+)> A BAR e o
<!ELEMENT|NAME (#PCDATA)> NAME and one

or more BEER

<IELEMENT|BEER| (NAME, PRICE)> subobijects.

<IELEMENT[PRICE (#PCDATA)> | -

/ A BEER has a

NAME and PRICE NAME and a
are text. PRICE.

Prakash 2015 VT CS 4604 30

MVirginiaTech
Example: Element Description

= A name is an optional title (e.g., “Prof.”), a
first name, and a last name, in that order, or it
is an |P address:

<!ELEMENT NAME (
(TITLE?, FIRST, LAST) | IPADDR
) >

Prakash 2015 VT CS 4604 31

MVirginiaTech
Use of DTD s

1. Set STANDALONE = “no”.

2. Either:

a) Include the DTD as a preamble of the XML
document, or

b) Follow DOCTYPE and the <root tag> by SYSTEM
and a path to the file where the DTD can be

found.

Prakash 2015 VT CS 4604

32

giniaTech

Example (a)

<? XML VERSION = “1.0” STANDALONE = “no” ?>

<!

1>

DOCTYPE Bars |
<IELEMENT BARS (BAR*)>
<IELEMENT BAR (NAME, BEER+)> The DTD
<IELEMENT NAME (#PCDATA)> /
<IELEMENT BEER (NAME, PRICE)>
<IELEMENT PRICE (#PCDATA)>

The document
<BARS> /

<BAR><NAME>Joe’ s Bar</NAME>
<BEER><NAME>Bud</NAME> <PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME> <PRICE>3.00</PRICE></BEER>

</BAR>

<BAR> ...

</BARS>

Prakash 2015 VT CS 4604

33

MVirginiaTech
Example (b)
= Assume the BARS DTD is in file bar.dtd.

<? XML VERSION = “1.0” STANDALONE = “no” ?>
<IDOCTYPE Bars SYSTEM “bar.dtd”>

<BARS> Get the DTD
<BAR><NAME>Joe’ s Bar</NAME> from the file
bar.dtd

<BEER><NAME>Bud</NAME>
<PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME>
<PRICE>3.00</PRICE></BEER>
</BAR>
<BAR> ...
</BARS>

Prakash 2015 VT CS 4604 34

MVirginiaTech

Attributes
" Opening tags in XML can have attributes, like
 in HTML.
=" |na DTD,

<!ATTLIST <element name>... >

gives a list of attributes and their datatypes
for this element.

Prakash 2015 VT CS 4604

35

[MVirginiaTech
Example: Attributes

= Bars can have an attribute kind, which is
either sushi, sports, or “other.”

<!ELEMENT BAR (NAME BEER*) >
<!ATTLIST BAR kind = “sushi’ |

11 7 14 4
sports | other >

Prakash 2015 VT CS 4604 36

WVirginiaTech
Example: Attribute Use

" |n a document that allows BAR tags, we might see:
<BAR kind = “sushi’>
<NAME>Akasaka</NAME>

<BEER><NAME>Sapporo</NAME>
<PRICE>5.00</PRICE></BEER>

</BAR>

Prakash 2015 VT CS 4604 37

MVirginiaTech
ID’ s and IDREF’ s

" These are pointers from one object to
another, in analogy to HTML's NAME =
“foo” and HREF = “#foo”.

" Allows the structure of an XML document to
be a general graph, rather than just a tree.

Prakash 2015 VT CS 4604 38

MVirginiaTech
Creating ID" s

" Give an element E an attribute A of type ID.

= When using tag <E > in an XML document,
give its attribute A a unique value.

= Example:
<BE A = “xyz">

Prakash 2015 VT CS 4604

39

MVirginiaTech
Creating IDREF’ s

" To allow objects of type F to refer to another
object with an ID attribute, give F an attribute
of type IDREF.

" Or, let the attribute have type IDREFS, so the F
—object can refer to any number of other
objects.

Prakash 2015 VT CS 4604 40

MVirginiaTech
Example: ID’ s and IDREF s

= Let sredesign our BARS DTD to include both BAR
and BEER subelements.

= Both bars and beers will have ID attributes called
name.

= Bars have PRICE subobjects, consisting of a number
(the price of one beer) and an IDREF theBeer
leading to that beer.

= Beers have attribute sol1dBy, which is an IDREFS
leading to all the bars that sell it.

Prakash 2015 VT CS 4604 41

MVirginiaTech

The DTD

Bar objects have name

<!DOCTYPE Bars [as an ID attribute and

1>

have one or more

<|ELEMENT BARS (BAR*, BEERTV PRICE subobjects.

<IELEMENYBAR (PRICE+)> _
PRICE objects have
<IATTLIST BAR name = ID> a number (the

<!ELEMEWCE (#PCDATA)> price) and one
f t ;
<IATTLIST PRICE theBeer = IDREE> reference to a beer.

<IELEMENT BEER ()>
<IATTLIST BEER name = ID, soldBy = IDREFS>

T

Beer objects have an ID attribute called name,
and a soldBy attribute that is a set of Bar names.

Prakash 2015 VT CS 4604

MVirginiaTech
Example Document

<BARS>
<BAR name = “JoesBar >
<PRICE theBeer = “Bud”">2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>
</BAR> ...
<BEER name = “Bud”, soldBy = “JoesBar,

’

SuesBar,...” >
</BEER> ...

</BARS>

Prakash 2015 VT CS 4604

QUERYING XML

Prakash 2015

VT CS 4604

MVirginiaTech
The XPath/XQuery Data Model

= Corresponding to the fundamental
“relation” of the relational model is:
sequence of items.

= Anijtem is either:

1. A primitive value, e.g., integer or string.
2. A node.

Prakash 2015 VT CS 4604 45

MVirginiaTech
Principal Kinds of Nodes

1. Document nodes represent entire
documents.

2. Elements are pieces of a document
consisting of some opening tag, its matching
closing tag (if any), and everything in
between.

3. Attributes are names that are given values
inside opening tags.

Prakash 2015 VT CS 4604 46

MVirginiaTech
Document Nodes

* Formed by doc(URL) or document(URL) (or
doc(filename) or document(filename)

= Example: doc(”/usr/class/cs4604/bars.xml”)

= All XPath (and XQuery) queries refer to a doc
node, either explicitly or implicitly.

Prakash 2015 VT CS 4604

47

MVirginiaTech
Example DTD

<IDOCTYPE Bars [
<IELEMENT BARS (BAR*, BEER*)>
<IELEMENT BAR (PRICE+)>
<IATTLIST BAR name = ID>
<IELEMENT PRICE (#PCDATA)>
<IATTLIST PRICE theBeer = IDREF>
<IELEMENT BEER ()>

<IATTLIST BEER name = ID, soldBy = IDREFS>
1>

Prakash 2015 VT CS 4604

48

MVirginiaTech

Example Document

<BARS> An element node
<BAR name = "JoesBar > Y
<PRICE theBeer = "Export’>2.50</PRICE>
<PRICE theBeer = "Gr.ls.”>3.00</PRICE>
</BAR> ...

<BEER hame = ”ExportlsoldBy = "JoesBar

SuesBar ... /> ... An attribute node

</BARS> Document node is all of this, plus
the header (<? xml version...).

Prakash 2015 VT CS 4604 49

MVirginiaTech
Nodes as Semistructured Data

BARS

o @B @

"Export’ "Gr.ls.”
@ @ Blue =document
Green = element

Orange = attribute
Purple = primitive

value 50

Prakash 2015 VT CS 4604

MVirginiaTech
XPATH and XQUERY

= XPATH is a language for describing paths in
XML documents.

— Really think of the semi-structured data graph and its
paths.

— The result of the described path is a sequence of items.

— Compare with SQL:

* SQL is a language for describing relations in terms of other
relations.

* The result of a query is a relation (bag) made up of tuples

= XQUERY is a full query language for XML
documents with power similar to SQL.

Prakash 2015 VT CS 4604

51

MVirginiaTech

Path Descriptors

= Simple path descriptors are sequences of tags
separated by slashes (/).

— The format used is strongly reminiscent of UNIX
naming conventions.

— Construct the result by starting with just the doc node
and processing each tag from the left.

= |f the descriptor begins with /, then the path
starts at the root and has those tags, in order.

= |f the descriptor begins with //, then the path can
start anywhere.

Prakash 2015 VT CS 4604 52

MVirginiaTech
Example: /BARS/BAR/PRICE

<BARS>

<BAR name = “JoesBar” >
<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> ...
<BEER name ud”, soldBy = “JoesBar,
>
SuesBar, /BARS/BAR/PRICE describes the
</ BEER> ... set with these two PRICE objects
< /B ARS> as well as the PRICE objects for

any other bars.

Prakash 2015 VT CS 4604 53

MVirginiaTech
Example: //PRICE

<BARS>

<BAR name = “JoesBar’ >
<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> ...
<BEER name ud”, soldBy = “JoesBar,
LS
SuesBar, //PRICE describes the same PRICE
</ BEER> ... objects, but only because the DTD
< /B ARS> forces every PRICE to appear within

a BARS and a BAR.

Prakash 2015 VT CS 4604

MVirginiaTech
Wild-Card *

= Astar (*) in place of a tag represents any one
tag.

= Example: /*/*/PRICE represents all price
objects at the third level of nesting.

Prakash 2015 VT CS 4604

55

MVirginiaTech
Example: /BARS/*

<BARS>
<BAR name = “JoesBar” >
<PRICE theBeer = “Bud”>2.50</PRICE>

<PRICE theBeer = “Miller’>3.00</PRICE>

</BAR> |..

<BEER name\ﬁud”, soldBy = “JoesBar,

SuesBar,...” >

</BEER> /BARS/* captures all BAR
</BARS> and BEER objects, such

as these.

Prakash 2015 VT CS 4604

56

MVirginiaTech
Attributes

= |n XPATH, we refer to attributes by
prepending @ to their name.

= Attributes of a tag may appear in paths as if
they were nested within that tag.

Prakash 2015 VT CS 4604

57

MVirginiaTech
Example: /BARS/*/@name

<BARS>
<BAR |name = “JoesBar” >
<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller’>3.00</PRICE>
</BAR> ...
<BEER hame = “Bud”

SuesBar,...” > '\\

</BEER> /BARS/*/@name selects all
name attributes of immediate

</BARS> subobjects of the BARS object.

, soldBy = “JoesBar,

Prakash 2015 VT CS 4604

MVirginiaTech
Selection Conditions

= A condition inside [...] may follow a tag.

" |f so, then only paths that have that tag and
also satisfy the condition are included in the
result of a path expression.

Prakash 2015 VT CS 4604 59

[MVirginiaTech
Example: Selection Condition

= /BARS/BAR/PRICE[PRICE < 2.75]
<BARS>

<BAR name = “JoesBar” >
<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer Winer”>3.00</PRICE>
</BAR> ...

The condition that the PRICE be
< $2.75 makes this price, but not
the Miller price

Prakash 2015 VT CS 4604 60

[MVirginiaTech
Example: Attribute in Selection

= /BARS/BAR/PRICE[@theBeer = “Miller”]
<BARS>

<BAR name = “JoesBar” >
<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> ... |

Now, this PRICE object is
selected, along with any
other prices for Miller.

Prakash 2015 VT CS 4604 61

IVirginiaTech
Axes

" |n general, path expressions allow us to start
at the root and execute a sequence of steps to
find a set of nodes at each step.

= At each step, we may follow any one of
several axes.

"= The default axis is child:: --- go to any child of
the current set of nodes.

MVirginiaTech
Example: Axes

= /BARS/BEER is really shorthand for /BARS/
child::BEER .

= @ is really shorthand for the attribute:: axis.

— Thus, /BARS/BEER[@name = “Bud’] is shorthand
for

/BARS/BEER[attribute::name = “Bud”’]

Prakash 2015 VT CS 4604 63

MVirginiaTech
More Axes

= Some other useful axes are:
— parent:: = parent(s) of the current node(s).

— descendant-or-self:: = the current node(s) and all
descendants.
* Note: // is really a shorthand for this axis.

— ancestor::, ancestor-or-self, etc.

Prakash 2015 VT CS 4604

64

IVirginiaTech
XQuery

= XQuery extends XPath to a query language
that has power similar to SQL.

= Uses the same sequence-of-items data model
as XPath.

= XQuery is an expression language.

— Like relational algebra --- any XQuery expression
can be an argument of any other XQuery
expression.

MVirginiaTech

FLWR Expressions Q

" The most important form of XQuery expressions involves
for-, let-, where-, return- (FLWR) clauses.

= A query begins with one or more for and/or let clauses.
— The for’ s and let’ s can be interspersed.

* Then an optional where clause.
= Asingle return clause.

= Form:
for variable in expression
let variable := expression
where condition
return expression

Prakash 2015 VT CS 4604 66

MVirginiaTech

Example

= Find all the beer objects where the beer is
sold by Joe’ s Bar for less than 3.00.
= Strategy:

1. Sbeer will for-loop over all beer objects.

2. For each Sbeer, let Sjoe be either the Joe’ s-Bar
object, if Joe sells the beer, or the empty set of
bar objects.

3. Test whether Sjoe sells the beer for < 3.00.

Prakash 2015 VT CS 4604 67

MVirginiaTech

Example: The Query g

Attribute soldBy is of type
IDREFS. Follow each ref

to a BAR and check if its
FOR $beer IN /BARS/BEER / name is Joe s Bar.

LET $joe := $beer/@soldBy=>BAR[@name="JoesBar”]
LET $joePrice :=|$joe/PRICE[@theBeer=$beer/@name]
WHERE |$joePrice < 3.00 “
RETURN <CHEAPIBEER>$beer</CHEAPBEER>

Only pass the values of Find that PRICE subobject
$beer, $joe, $joePrice to of the Joe’ s Bar object that
the RETURN clause if the represents whatever beer is
string inside the PRICE currently $beer.

object $joePrice is < 3.00

Prakash 2015 VT CS 4604 68

