CS 4604: Introduction to Database Management Systems

B. Aditya Prakash

Lecture #11: Query Optimization
Notes

- Some parts from (a copy of the paper is on the course webpage)
Cost-based Query Sub-System

Queries

- Select * From Blah B Where B.blah = blah

Usually there is a heuristics-based rewriting step before the cost-based steps.

Catalog Manager

- Schema
- Statistics

Query Parser

Query Optimizer

- Plan Generator
- Plan Cost Estimator

Query Plan Evaluator
Multiple Algorithms: Range Searches

- Sequential Scan
- Hashes
- B-Trees
-

- Saw some of them in previous lectures
Multiple Algorithms: Joins

- Merge-Join (like merge-sort)
- Hash-Join (using hashes)
- Indexed-Join (using indexes)
- Nested loops Join (most obvious)
-

- Saw some of them in previous lectures
Why Query optimization?

- SQL: ~declarative
- good q-opt -> big difference
 - eg., seq. Scan vs
 - B-tree index, on P=1,000 pages
Q-opt steps

- bring query in internal form (e.g., parse tree)
- ... into ‘canonical form’ (syntactic q-opt)
- generate alt. plans
- estimate cost; pick best
Q-opt - example

```
select name
from STUDENT, TAKES
where c-id = '4604' and
STUDENT.ssn = TAKES.ssn
```
Q-opt - example

```
select name
from STUDENT, TAKES
where c-id = '4604' and
STUDENT.ssn = TAKES.ssn
```

Join Predicate => STUDENT.ssn = TAKES.ssn
(is assumed to be part of the join)

Non-join Predicate => c-id = '4604'
(part of the explicit selection)
Q-opt - example

Canonical form

STUDENT TAKES CANONICAL FORM

STUDENT TAKES
Q-opt - example

Canonical Form has the following properties:
1. Push Selections as much as possible.
2. Push Projections as much as possible
3. It is a left-deep join tree (we will see this later)
Q-opt - example

Hash join; merge join; nested loops;
Equivalence of expressions

- A.k.a.: syntactic q-opt
- in short: perform selections and projections early
Equivalence of expressions

- **Q:** How to prove a transformation rule?
 \[\sigma_P(R1 \bowtie R2) = \sigma_P(R1) \bowtie \sigma_P(R2) \]

- **A:** use RA, to show that LHS = RHS, eg:
 \[\sigma_P(R1 \cup R2) = \sigma_P(R1) \cup \sigma_P(R2) \]
Equivalence of expressions

\[\sigma_p(R_1 \cup R_2) = \sigma_p(R_1) \cup \sigma_p(R_2) \]

\[t \in LHS \iff \]

\[t \in (R_1 \cup R_2) \land P(t) \iff \]

\[(t \in R_1 \lor t \in R_2) \land P(t) \iff \]

\[(t \in R_1 \land P(t)) \lor (t \in R_2 \land P(t)) \iff \]
Equivalence of expressions

\[\sigma_p(R1 \cup R2) = \sigma_p(R1) \cup \sigma_p(R2) \]

\[... \]

\[(t \in R1 \land P(t)) \lor (t \in R2) \land P(t)) \iff \]

\[(t \in \sigma_p(R1)) \lor (t \in \sigma_p(R2)) \iff \]

\[t \in \sigma_p(R1) \cup \sigma_p(R2) \iff \]

\[t \in RHS \]

QED
Equivalence of expressions

- Q: how to disprove a rule??

\[\pi_A(R1 - R2) = \pi_A(R1) - \pi_A(R2) \]

Construct a counter-example!
Equivalence of expressions

- Selections
 - perform them early
 - break a complex predicate, and push
 \[\sigma_{p_1 \land p_2 \land \ldots \land p_n}(R) = \sigma_{p_1}(\sigma_{p_2}(\ldots \sigma_{p_n}(R))\ldots) \]
 - simplify a complex predicate
 • (‘X=Y and Y=3’) -> ‘X=3 and Y=3’
Equivalence of expressions

- Projections
 - perform them early (but carefully...)
 - Smaller tuples
 - Fewer tuples (if duplicates are eliminated)
 - project out all attributes except the ones requested or required (e.g., joining attr.)
Equivalence of expressions

- Joins
 - Commutative, associative
 \[R \bowtie S = S \bowtie R \]
 \[(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T) \]
 - Q: n-way join - how many diff. orderings?
Equivalence of expressions

- Joins - Q: n-way join - how many diff. orderings?
- A: Catalan number \(\sim 4^n \)
 - Exhaustive enumeration: too slow.
(Some) Transformation Rules (1)

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.
 \[\sigma_{\theta_1 \wedge \theta_2} (E) = \sigma_{\theta_1} (\sigma_{\theta_2} (E)) \]

2. Selection operations are commutative.
 \[\sigma_{\theta_1} (\sigma_{\theta_2} (E)) = \sigma_{\theta_2} (\sigma_{\theta_1} (E)) \]

3. Only the last in a sequence of projection operations is needed, the others can be omitted.
 \[\Pi_{L_1} (\Pi_{L_2} (\ldots (\Pi_{L_n} (E)) \ldots)) = \Pi_{L_1} (E) \]

4. Selections can be combined with Cartesian products and theta joins.
 a. \[\sigma_{\theta}(E_1 \times E_2) = E_1 \bowtie_{\theta} E_2 \]
 b. \[\sigma_{\theta_1}(E_1 \bowtie_{\theta_2} E_2) = E_1 \bowtie_{\theta_1 \wedge \theta_2} E_2 \]
5. Theta-join operations (and natural joins) are commutative.
\[E_1 \Join_\theta E_2 = E_2 \Join_\theta E_1 \]

6. (a) Natural join operations are associative:
\[(E_1 \Join E_2) \Join E_3 = E_1 \Join (E_2 \Join E_3) \]

(b) Theta joins are associative in the following manner:
\[(E_1 \Join_{\theta_1} E_2) \Join_{\theta_2 \land \theta_3} E_3 = E_1 \Join_{\theta_1 \land \theta_3} (E_2 \Join_{\theta_2} E_3) \]

where \(\theta_2\) involves attributes from only \(E_2\) and \(E_3\).
(Some) Transformation Rules (3)

7. The selection operation distributes over the theta join operation under the following two conditions:
 (a) When all the attributes in θ_0 involve only the attributes of one of the expressions (E_1) being joined.

$$\sigma_{\theta_0}(E_1 \bowtie_{\theta} E_2) = (\sigma_{\theta_0}(E_1)) \bowtie_{\theta} E_2$$

(b) When θ_1 involves only the attributes of E_1 and θ_2 involves only the attributes of E_2.

$$\sigma_{\theta_1 \land \theta_2}(E_1 \bowtie_{\theta} E_2) = (\sigma_{\theta_1}(E_1)) \bowtie_{\theta} (\sigma_{\theta_2}(E_2))$$
Q-opt steps

- bring query in internal form (e.g., parse tree)
- ... into ‘canonical form’ (syntactic q-opt)
- generate alt. plans
- estimate cost; pick best
Cost-based Query Sub-System

Queries

```sql
Select *
From Blah B
Where B.blah = blah
```

Usually there is a heuristics-based rewriting step before the cost-based steps.

- Query Parser
- Query Optimizer
 - Plan Generator
 - Plan Cost Estimator
- Catalog Manager
 - Schema
 - Statistics
- Query Plan Evaluator
Cost estimation

- Eg., find ssn’s of students with an ‘A’ in 4604 (using seq. scanning)
- How long will a query take?
 - CPU (but: small cost; decreasing; tough to estimate)
 - Disk (mainly, # block transfers)
- How many tuples will qualify?
- (what statistics do we need to keep?)
Cost estimation

- Statistics: for each relation ‘r’ we keep
 - nr : # tuples;
 - Sr : size of tuple in bytes
Cost estimation

- Statistics: for each relation ‘r’ we keep
 - …
 - $V(A,r)$: number of distinct values of attr. ‘A’
 - (recently, histograms, too)
Derivable statistics

- blocking factor = max# records/block (=??
- br: # blocks (=??
- SC(A,r) = selection cardinality = avg# of records with A=given (=??)
Derivable statistics

- blocking factor = max# records/block (= B/Sr ; B: block size in bytes)
- br: # blocks (= nr / (blocking-factor))
Derivable statistics

- \(\text{SC}(A,r) = \text{selection cardinality} = \text{avg}\# \text{ of records with } A=\text{given} \ (= \text{nr} / V(A,r) \) \) (assumes uniformity...)

eg: 10,000 students, 10 departments – how many students in CS?
Additional quantities we need:

- For index ‘i’:
 - f_i: average fanout (~50-100)
 - HT_i: # levels of index ‘i’ (~2-3)
 - $\sim \log(#\text{entries})/\log(f_i)$
 - LB_i: # blocks at leaf level
Statistics

- Where do we store them?
- How often do we update them?
Q-opt steps

- bring query in internal form (eg., parse tree)
- ... into ‘canonical form’ (syntactic q-opt)
- generate alt. plans
- estimate cost; pick best
Selections

- we saw simple predicates (\(A=\text{constant};\) e.g., ‘\(\text{name}=\text{Smith}\)’)
- how about more complex predicates, like
 - ‘\(\text{salary} > 10K\)’
 - ‘\(\text{age} = 30\) and \(\text{job-code}=\text{“analyst”}\)’
- what is their selectivity?
Selections – complex predicates

- selectivity \(sel(P) \) of predicate \(P \) :
 - \(\approx \) fraction of tuples that qualify
 - \(sel(P) = SC(P) / nr \)
Selections – complex predicates

- eg., assume that $V(\text{grade}, \text{TAKES})=5$ distinct values
- simple predicate P: $A=\text{constant}$
 - $\text{sel}(A=\text{constant}) = 1/V(A,r)$
 - eg., $\text{sel}(\text{grade}=\text{`B'}) = 1/5$
- (what if $V(A,r)$ is unknown??)
Selections – complex predicates

- range query: \(\text{sel}(\text{grade} \geq \text{‘C’}) \)
 - \(\text{sel}(A>a) = \frac{(A_{\text{max}} - a)}{(A_{\text{max}} - A_{\text{min}})} \)
Selections - complex predicates

- negation: sel(grade != ‘C’)
 - sel(not P) = 1 – sel(P)
 - (Observation: selectivity =~ probability)

```plaintext
count

<table>
<thead>
<tr>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
</tr>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

‘P’
Conjunction:

- \( \text{sel( grade = 'C' and course = '4604') } \)
- \( \text{sel(P1 and P2) = sel(P1) * sel(P2)} \)
- INDEPENDENCE ASSUMPTION
Selections - complex predicates

- **Disjunction:**
  - \( \text{sel}( \text{grade} = 'C' \text{ or course} = '4604') \)
  - \( \text{sel}(P1 \text{ or } P2) = \text{sel}(P1) + \text{sel}(P2) - \text{sel}(P1 \text{ and } P2) \)
  - \( \text{sel}(P1) + \text{sel}(P2) - \text{sel}(P1)*\text{sel}(P2) \)
  - INDEPENDENCE ASSUMPTION, again
Selections - complex predicates

- disjunction: in general
  \[ \text{sel}(P_1 \textbf{ or } P_2 \textbf{ or } \ldots \textbf{ or } P_n) = 1 - (1 - \text{sel}(P_1)) \times (1 - \text{sel}(P_2)) \times \ldots \times (1 - \text{sel}(P_n)) \]
Selections Selectivity – summary

- \( \text{sel}(A=\text{constant}) = 1/V(A,r) \)
- \( \text{sel}(A>a) = (A_{\text{max}} - a) / (A_{\text{max}} - A_{\text{min}}) \)
- \( \text{sel}(\neg P) = 1 - \text{sel}(P) \)
- \( \text{sel}(P_1 \text{ and } P_2) = \text{sel}(P_1) \times \text{sel}(P_2) \)
- \( \text{sel}(P_1 \text{ or } P_2) = \text{sel}(P_1) + \text{sel}(P_2) - \text{sel}(P_1) \times \text{sel}(P_2) \)
- \( \text{sel}(P_1 \text{ or } \ldots \text{ or } P_n) = 1 - (1 - \text{sel}(P_1)) \times \ldots \times (1 - \text{sel}(P_n)) \)

- UNIFORMITY and INDEPENDENCE ASSUMPTIONS
Result Size Estimation for Joins

- Q: Given a join of R and S, what is the range of possible result sizes (in # of tuples)?
  - Hint: what if $R_{\text{cols}} \cap S_{\text{cols}} = \emptyset$?
  - $R_{\text{cols}} \cap S_{\text{cols}}$ is a key for R (and a Foreign Key in S)?
Result Size Estimation for Joins

- General case: \( R\_cols \cap S\_cols = \{A\} \) (and A is key for neither)
  - match each R-tuple with S-tuples
    \[
    \text{est\_size} \sim NTuples(R) \times NTuples(S) / NKeys(A,S)
    \sim nr \times ns / V(A,S)
    \]
  - symmetrically, for S:
    \[
    \text{est\_size} \sim NTuples(R) \times NTuples(S) / NKeys(A,R)
    \sim nr \times ns / V(A,R)
    \]
  - Overall:
    \[
    \text{est\_size} = NTuples(R) \times NTuples(S) / \text{MAX}\{NKeys(A,S), NKeys(A,R)\}
    \]
On the Uniform Distribution Assumption

- Assuming uniform distribution is rather crude

Distribution D

Uniform distribution approximating D
Histograms

- For better estimation, use a **histogram**

**Equiwidth histogram**

<table>
<thead>
<tr>
<th>Bucket</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
</tbody>
</table>

**Equidepth histogram ~ quantiles**

<table>
<thead>
<tr>
<th>Bucket</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
</tr>
</tbody>
</table>

Prakash 2015

VT CS 4604
Q-opt Steps

- bring query in internal form (e.g., parse tree)
- ... into ‘canonical form’ (syntactic q-opt)
- generate alt. plans
  - single relation
  - multiple relations
- estimate cost; pick best
plan generation

- Selections – eg.,
  
  ```sql
 select *
 from TAKES
 where grade = 'A'
  ```

- Plans?

![Diagram](image)
plan generation

- Plans?
  - seq. scan
  - binary search
    - (if sorted & consecutive)
  - index search
    - if an index exists
plan generation

seq. scan – cost?
- br (worst case)
- br/2 (average, if we search for primary key)
plan generation

binary search – cost?

if sorted and consecutive:
  - $\sim \log(\text{br}) +$
  - $\text{SC}(\text{A}, r)/\text{fr} (= \text{blocks spanned by qual. tuples})$
plan generation

estimation of selection cardinalities SC(A,r):
– we saw it earlier how to do it for general conditions
plan generation

method#3: index – cost?
  – Roughly log(N), but exact cost tricky

SKIP!
Q-opt Steps

- bring query in internal form (eg., parse tree)
- ... into ‘canonical form’ (syntactic q-opt)
- generate alt. plans
  - single relation
  - multiple relations
- estimate cost; pick best
n-way joins

- r1 JOIN r2 JOIN ... JOIN rn
- typically, break problem into 2-way joins
  - choose between NL, sort merge, hash join, ...
Queries Over Multiple Relations

- As number of joins increases, number of alternative plans grows rapidly → *need to restrict search space*
- Fundamental decision in System R (IBM): *only left-deep join trees* are considered. Advantages?

---

Prakash 2015

VT CS 4604
Queries Over Multiple Relations

- As number of joins increases, number of alternative plans grows rapidly → *need to restrict search space*

- Fundamental decision in System R (IBM): *only left-deep join trees* are considered. Advantages?
  - *fully pipelined* plans.
    - Intermediate results not written to temporary files.

![Diagram of join trees](attachment:join_trees.png)
Queries over Multiple Relations

- Enumerate the orderings (= left deep tree)
- enumerate the plans for each operator
- enumerate the access paths for each table

Dynamic programming, to save cost estimations
(we wont cover exact algorithm in class)
1. Enumerate relation orderings:

Prune plans with cross-products immediately!
2. Enumerate join algorithm choices:

+ do same for 4 other plans

→ 4*4 = 16 plans so far..
SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B

3. Enumerate access method choices:

- NLJ
- NLJ
- B
- S
- R

+ do same for other plans

- (heap scan)
- (INDEX scan on R.bid)
Now estimate the **cost** of each plan

Example:

```
S R

NLJ B
 |
 V
NLJ
```

(heap scan)  (heap scan)  (INDEX scan on R.sid)
Conclusions

■ Ideas to remember:
  – canonical parse tree
  – syntactic q-opt – do selections/projections early
    • More complicated rules are also used
  – How to get selectivity estimations (uniformity, independence)
    • We saw mainly range and equality predicates
    • More complicated: histograms; join selectivity
  – left-deep joins
    • dynamic programming