VirginiaTech

CS 4604: Introduction to
Database Management Systems

B. Aditya Prakash

Lecture #11: Query Processing and
Midterm Review

MVirginiaTech
Outline

" introduction

" selection

= projection

= join

" set & aggregate operations

Prakash 2014 VT CS 4604

MVirginiaTech
Introduction

» Today s topic: QUERY PROCESSING
" Some database operations are EXPENSIVE

" Can greatly improve performance by being
“smart”

— e.g., can speed up 1,000,000x over naive approach

Prakash 2014 VT CS 4604 3

MVirginiaTech
Introduction (cnt’ d)

= Main weapons are:
— clever implementation techniques for operators
— exploiting “equivalencies” of relational operators

— using statistics and cost models to choose among
these.

Prakash 2014 VT CS 4604

MVirginiaTech
A Really Bad Query Optimizer

" For each Select-From-Where query block

— do cartesian products first .
— then do selections ?predlcates

— etc, ie.:
e GROUP BY; HAVING

X
* projections /\
* ORDER BY t bl
G . ables
" |Incredibly inefficient

— Huge intermediate results!

Prakash 2014 VT CS 4604 5

”~

ginialeck hst-based Query Sub-System

Queries From Blah B

_Where B.blah = blah

..... Usually there is a

< heuristics-based
rewriting step before

Query Parser the cost-based steps.
Query Optimizer
—=
Plan Generatdr | Plan Cost Estimatpr | Catalog Manager

Q. = ‘

s

Query Plan Evaluator

Prakash 2014

MVirginiaTech
The Query Optimization Game

= “Optimizer” is a bit of a misnomer...

» Goal is to pick a “good” (i.e., low expected
cost) plan.

— Involves choosing access methods, physical
operators, operator orders, ...

— Notion of cost is based on an abstract “cost
model”

Prakash 2014 VT CS 4604

WVirginiaTech
Relational Operations

= We will consider how to implement:
— Selection (o) Selects a subset of rows from relation.

— Projection (m) Deletes unwanted columns from relation.

— Join (p><q) Allows us to combine two relations.
— Set-difference (-) Tuplesinreln. 1, but notin reln. 2.

— Union (U) Tuplesinreln.1and in reln. 2.
— Aggregation (SUM, MIN, etc.) and GROUP BY

= Recall: ops can be composed !

= Later (after spring break), we’ Il see how to optimize
gueries with many ops

Prakash 2014 VT CS 4604

MVirginiaTech
Schema for Examples

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

= Similar to old schema; rname added for variations.

= Sailors:

— Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
— N=500, p.=80.

= Reserves:
— Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.

— M=1000, p,=100.

Prakash 2014 VT CS 4604 9

MVirginiaTech

Simple Selections

= Of the form OR.attr op value (R)
= Question: how best to perform?

Prakash 2014

SELECT *
FROM Reserves R
WHERE R.rname< ‘C%’

VT CS 4604

10

MVirginiaTech
Simple Selections

= A: Depends on:
— what indexes/access paths are available

— what is the expected size of the result (in terms of
number of tuples and/or number of pages)

Prakash 2014 VT CS 4604 11

MVirginiaTech
Simple Selections

= Size of result approximated as
size of R * reduction factor

— “reduction factor” is also called selectivity.

— estimate of reduction factors is based on statistics —
we will discuss shortly.

Prakash 2014 VT CS 4604 12

WVirginiaTech
Alternatives for Simple Selections

= With no index, unsorted:
— Must essentially scan the whole relation

— cost is M (#pages in R). For “reserves” =1000 I/
Os.

Prakash 2014 VT CS 4604 13

WVirginiaTech
Simple Selections (cnt’ d)

= \With no index, sorted:

— cost of binary search + number of pages
containing results.

— For reserves = 10 1/Os + [selectivity*#pages]|

Prakash 2014 VT CS 4604

14

MVirginiaTech

Simple Selections (cnt’ d)

= With an index on selection attribute:
— Use index to find qualifying data entries,
— then retrieve corresponding data records.
— (Hash index useful only for equality selections.)

Prakash 2014 VT CS 4604

15

MVirginiaTech
Using an Index for Selections

" Cost depends on #qualifying tuples, and
clustering.

— Cost:
* finding qualifying data entries (typically small)

* plus cost of retrieving records (could be large
w/o clustering).

Prakash 2014 VT CS 4604 16

M VirginiaTech

Selections using Index (cnt’ d)

Index entries UNCLUSTERED

CLUSTERED direct search for
data entries

/ N\ / \

Data entries | | Data entries <~ =7
/A \ N (Index File) AN R~ X
/8 NN atatie) /N) N T N
Data Records Data Records

Prakash 2014 VT CS 4604

MVirginiaTech
Selections using Index (cnt’ d)

— In example “reserves’ relation, if 10% of tuples
qualify (100 pages, 10,000 tuples).

 With a clustered index, cost is little more than
100 1/Os;

e if unclustered, could be up to 10,000 I/Os!
unless...

Prakash 2014 VT CS 4604 18

MVirginiaTech
Selections using Index (cnt’ d)

" Important refinement for unclustered indexes:
1. Find qualifying data entries.
2. Sort the rid’ s of the data records to be retrieved.

3. Fetch rids in order. This ensures that each data
page is looked at just once (though # of such pages
likely to be higher than with clustering).

Prakash 2014 VT CS 4604 19

W VirginiaTech

General Selection Conditions

(day<8/9/94 AND rname= ‘Paul’) OR bid=5 OR sid=3 %

" Q: What would you do?

Prakash 2014 VT CS 4604 20

MVirginiaTech

General Selection Conditions

(day<8/9/94 AND rname= ‘Paul’) OR bid=5 OR sid=3 %

" Q: What would you do?

= A:try to find a selective (clustering) index.
Specifically:

Prakash 2014 VT CS 4604 21

MVirginiaTech

General Selection Conditions

(day<8/9/94 AND rname= ‘Paul’) OR bid=5 OR sid=3

= Convert to conjunctive normal form (CNF):
— (day<8/9/94 OR bid=5 OR sid=3) AND
(rname= Paul’ OR bid=5 OR sid=3)

= We only discuss the case with no ORs (a conjunction of
terms of the form attr op value).

Prakash 2014 VT CS 4604

22

WVirginiaTech

General Selection Conditions

(day<8/9/94 AND rname= ‘Paul’) OR bid=5 OR sid=3

= A B-tree index matches (a conjunction of) terms that
involve only attributes in a prefix of the search key.

— Index on <a, b, c> matches a=5 AND b= 3, but not b=3.

» For Hash index, must have all attributes in search key

Prakash 2014 VT CS 4604 23

MVirginiaTech

Two Approaches to General

Selections

" First approach: Find the cheapest ac
path, retrieve tuples using it, and apply any
remaining terms that don’ t match the
index

= Second approach:get rids from first index;
rids from second index; intersect and fetch.

Prakash 2014 VT CS 4604 24

MVirginiaTech
Two Approaches to General

Selections

" First approach: Find the cheapest ac
path, retrieve tuples using it, and apply any
remaining terms that don’ t match the
index:

— Cheapest access path: An index or file scan with
fewest |/Os.

— Terms that match this index reduce the number
of tuples retrieved; other terms help discard
some retrieved tuples, but do not affect
number of tuples/pages fetched.

Prakash 2014 VT CS 4604

25

MVirginiaTech
Cheapest Access Path - Example

» Consider day < 8/9/94 AND bid=5 A/%
sid=3.

= A B+ tree index on day can be used;

— then, bid=5 and sid=3 must be checked
for each retrieved tuple.

= Similarly, a hash index on <bid, sid> could
be used;
— Then, day<8/9/94 must be checked.

Prakash 2014 VT CS 4604 26

WVirginiaTech

Cheapest Access Path - cnt’ d

= Consider day < 8/9/94 AND bid=5 AN

= How about a B+tree on <rname,day>?
" How about a B+tree on <day, rname>?
=" How about a Hash index on <day, rname>?

Prakash 2014 VT CS 4604 27

MVirginiaTech

Intersection of RIDs

= Second approach: if we have 2 or more

indexes (w/Alternatives (2) or (3) for data entries):
— Get sets of rids of data records using each matching
index.

— Then intersect these sets of rids.
— Retrieve the records and apply any remaining terms.

Prakash 2014 VT CS 4604 28

WVirginiaTech
Intersection of RIDs (cnt’ d)

= EXAMPLE: Consider day<8/9/94 AND bid=
sid=3.

= With a B+ tree index on day and an index on sid,

= we can retrieve rids of records satisfying day<8/9/94
using the first,

" rids of recs satisfying sid=3 using the second,
" intersect,

= retrieve records and check bid=5.

Prakash 2014 VT CS 4604 29

[MVirginiaTech . . .
The Projection Operation

SELECT DISTINCT
R.sid, R.bid

" |ssue is removing duplicates. FROM Reserves R

= Basic approach: sorting

— 1. Scan R, extract only the needed attrs (why?)
— 2. Sort the resulting set
— 3. Remove adjacent duplicates

Cost: Reserves with size ratio 0.25 = 250 pages. With 20
buffer pages can sort in 2 passes, so

1000 +250+2 * 2 * 250 + 250 = 2500 1/Os

Prakash 2014 VT CS 4604 30

WVirginiaTech

Projection

= Can improve by modifying external sort
algorithm (see chapter 13):

— Modify Pass O of external sort to eliminate
unwanted fields.

— Modify merging passes to eliminate duplicates.

Cost: for above case: read 1000 pages, write out 250
in runs of 40 pages, merge runs = 1000 + 250 +250
= 1500.

Prakash 2014 VT CS 4604 31

MVirginiaTech
Discussion of Projection

= |f an index on the relation contains all wanted
attributes in its search key, can do index-only
scan.

— Apply projection techniques to data entries (much
smaller!)

Prakash 2014 VT CS 4604 32

MVirginiaTech
Discussion of Projection

" |f an ordered (i.e., tree) index contains all

wanted attributes as prefix of search key, can

do even better:
— Retrieve data entries in order (index-only scan),

discard unwanted fields, compare adjacent tuples

to check for duplicates.

/A B-tree index matches (a conjunction of) terms that
involve only attributes in a prefix of the search key.

— Index on <a, b, c> matches a=5 AND b= 3, but not b=3.
For Hash index, must have all attributes in search key

-

Prakash 2014 VT CS 4604

~

/

33

MVirginiaTech

Joins

= Joins are very common.

= Joins can be very expensive (cross product in
worst case).

" Many approaches to reduce join cost.

Prakash 2014 VT CS 4604

34

MVirginiaTech

Joins

" Join techniques we will cover:

— Nested-loops join

— Index-nested loops join
— Sort-merge join

— Hash join

Prakash 2014 VT CS 4604

35

MVirginiaTech
Equality Joins With One Join Column

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid=S1.sid

" |n algebra: R ><1S. Common! Must be
carefully optimized. R x Sis large; so, R x S
followed by a selection is inefficient.

= Remember, join is associative and
commutative.

Prakash 2014 VT CS 4604 36

MVirginiaTech
Equality Joins

= Assume:
— M pages in R, p; tuples per page, m tuples total
— N pages in S, ps tuples per page, n tuples total
— In our examples, R is Reserves and S is Sailors.

= We will consider more complex join
conditions later.

= Cost metric: # of 1/0s. We will ignore output
costs.

Prakash 2014 VT CS 4604

37

MVirginiaTech
Nested loops

= Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)

S(A,)

Prakash 2014 VT CS 4604

38

MVirginiaTech
Nested loops

= Algorithm #0: (naive) nested loop (SLOW!)

for each tuple r of R
for each tuple s of S

print, if they match
R(A,..)

S(A,)
v]

Prakash 2014 VT CS 4604

39

MVirginiaTech
Nested loops

= Algorithm #0: (naive) nested loop (SLOW!)

for each tuple r of B ~——— outer relation
for each tuple s o@f

print, if they match

- 1nner relation

R(A,..)

S(A,)
v]

Prakash 2014 VT CS 4604

40

MVirginiaTech
Nested loops

= Algorithm #0: why is it bad?

= how many disk accesses (‘M’ and ‘N’ are
the number of blocks for ‘R’ and ‘S’)?

R(A,..)

M pages, S(A,)

N pages,

m tuples I]
v ‘ I n tuples

Prakash 2014 VT CS 4604 41

MVirginiaTech
Nested loops

= Algorithm #0: why is it bad?

= how many disk accesses (‘M’ and ‘N’ are
the number of blocks for ‘R” and ‘S’)? M

+m*N
R(A,..)
1 S(A
M pages, (A, ...oed)
m tuples I 1 N pages,
v ‘ I n tuples

Prakash 2014 VT CS 4604

42

MVirginiaTech
Simple Nested Loops Join

= Actual number
(pr * M) *N+M =100*1000*500 + 1000 I/Os.
— At 10ms/IO, Total: ???

= What if smaller relation (S) was outer?

" What assumptions are being made here?

Prakash 2014 VT CS 4604

43

MVirginiaTech
Simple Nested Loops Join

= Actual number

" (pg *M)*N+M =100*1000*500 + 1000 1/0Os.
— At 10ms/10, Total: ~6days (!)

= What if smaller relation (S) was outer?
— slightly better

" What assumptions are being made here?
— 1 buffer for each table (and 1 for output)

Prakash 2014 VT CS 4604

44

MVirginiaTech
Nested loops

* Algorithm #1: Blocked nested-loop join

— read 1n a block of R
» read in a block of S
— print matching tuples COST?
R(A,..)

A
M pages, S(A,)
m tuples I ' " pages

| ‘ I n tuples

Prakash 2014 VT CS 4604 45

MVirginiaTech
Nested loops

* Algorithm #1: Blocked nested-loop join

— read 1n a block of R
* read in a block of S
— print matching tuples COST= M+M*N
R(A,..)

1 S(A
M pages, (A,)
m tuples I 1 N pages,

v ‘ I n tuples

Prakash 2014 VT CS 4604 46

[MVirginiaTech
Nested loops

 Which one should be the outer relation?

COST= M+M*N

R(A,..)

M pages, S(A,)

N pages,

m tuples I]
v ‘ I n tuples

Prakash 2014 VT CS 4604 47

MVirginiaTech
Nested loops

* Which one should be the outer relation?
* A: the smallest (page-wise)

COST= M+M*N

R(A,..)

M pages, S(A,)

N pages,

m tuples I]
v ‘ I n tuples

Prakash 2014 VT CS 4604 48

MVirginiaTech
Nested loops

« M=1000, N=500
* Cost=1000+ 1000*500 = 501,000

e =5010 sec ~ 1.4h COST= M+M*N
R(A,..)
M 1 S(A,)
pages,
m tuples I 1 N pages,
v ‘ I n tuples

Prakash 2014 VT CS 4604 49

MVirginiaTech
Nested loops

« M=1000, N=500 - 1f smaller 1s outer:
e Cost=1500+ 1000*500 = 500,500

e =5005 sec ~ 1.4h COST= N+M*N
R(A,..)
M 1 S(A,)
pages,
m tuples I 1 N pages,
v ‘ I n tuples

Prakash 2014 VT CS 4604 50

[MVirginiaTech
Nested loops

« What if we have B bufters available?

R(A,..)

M pages,

m tuples I 1 I N pages,

n tuples

Prakash 2014 VT CS 4604 51

MVirginiaTech
Nested loops

 What if we have B buffers available?
* A: give B-2 buffers to outer, 1 to inner, 1 for

output
R(A,..)
1 S(A
M pages, (A, ...oed)
m tuples I 1 N pages,
v ‘ I n tuples

Prakash 2014 VT CS 4604 52

MVirginiaTech
Nested loops

* Algorithm #1: Blocked nested-loop join

— read 1n B-2 blocks of R
* read in a block of S

— print matching tuples COST=?
R(A...)
1 S(A
M pages, A,)
m tuples I 1 N pages,
v ‘ I n tuples

Prakash 2014 VT CS 4604 53

MVirginiaTech
Nested loops

* Algorithm #1: Blocked nested-loop join

— read 1n B-2 blocks of R
* read in a block of S

— print matching tuples COST= M+M/ (B_Z) *N

R(A,..)

M pages, S(A,)

N pages,

m tuples I]
v ‘ I n tuples

Prakash 2014 VT CS 4604 54

MVirginiaTech
Nested loops

 and, actually:
* Cost=M + ceiling(M/(B-2)) * N

COST= M+M/(B-2)*N

R(A,..)

M pages, S(A,)

m tuples I 1 N pages,

v ‘ I n tuples

Prakash 2014 VT CS 4604 55

[MVirginiaTech
Nested loops

 If smallest (outer) fits in memory
e (1e., B=N+2),

* Cost =7 COST= N+N/(B-2)*M
R(A,..)
M 1 S(A,)
pages,
m tuples I 1 N pages,
v ‘ I n tuples

Prakash 2014 VT CS 4604 56

MVirginiaTech
Nested loops

 If smallest (outer) fits in memory
e (1e., B=N+2),

¢ Cost=N+M (minimum!) COST= N‘|‘N/(B-2)*M

R(A,..)

A

M pages, S(A,)

m tuples I 1 N pages,

v ‘ I n tuples

Prakash 2014 VT CS 4604 57

MVirginiaTech
Nested loops - guidelines

" pick as outer the smallest table (= fewest
pages)

= fit as much of it in memory as possible

" loop over the inner

Prakash 2014 VT CS 4604

58

MVirginiaTech
Index NL join

" use an existing index, or even build one on the
fly

" cost: M+m *c (c:look-up cost)

R(A,..)

M pages,
N pages,

m tuples I]
v 4 ‘ ‘ I n tuples

Prakash 2014 VT CS 4604 59

MVirginiaTech
Index NL join

" cost: M+m *c (c:look-up cost)

= ‘c’ depends whether the index is clustered or
not.

R(A,..)

M pages,

N pages,

m tuples I]
v 4 ‘ ‘ I n tuples

Prakash 2014 VT CS 4604 60

MVirginiaTech

Joins

" Join techniques we will cover:

— Nested-loops join
— Index-nested loops join

— Sort-merge join
— Hash join

Prakash 2014 VT CS 4604

61

MVirginiaTech
Sort-merge join

* sort both on joining attributed
* scan each and merge

* Cost, given B buffers?

R(A,..)

M pages, S(A,)

m tuples I

Prakash 2014 VT CS 4604

N pages,
I n tuples

62

MVirginiaTech
Sort-merge join

* Cost, given B buffers?
o ~2*M*logM/logB + 2*N* logN/logB + M + N

R(A,..)

M pages, S(A,)

m tuples I 1 N pages,

v ‘ I n tuples

Prakash 2014 VT CS 4604 63

MVirginiaTech

= Useful if

Prakash 2014

Sort-Merge Join

VT CS 4604

64

MVirginiaTech
Sort-Merge Join

= Useful if

— one or both inputs are already sorted on join
attribute(s)

— output is required to be sorted on join
attributes(s)

= “Merge” phase can require some back
tracking if duplicate values appear in join
column

Prakash 2014 VT CS 4604

65

MVirginiaTech
Example of Sort-Merge Join

sid |bid day rname

sid |sname |rating |age 28 103 |12/4/96 | guppy

22 |dustin 7 45.0 28 1103 |11/3/96 yuppy
28 |yuppy 0 350 (|31 [101 10/10/96 | dustin

31 |lubber | 8 555 (|31 [102 [10/12/96 | lubber
58 |rusty 10 [35.0 (|58 [103 |11/12/96 | dustin

Prakash 2014 VT CS 4604 66

MVirginiaTech
Example of Sort-Merge Join

= With 35, 100 or 300 buffer pages, both Reserves and
Sailors can be sorted in 2 passes; total join cost: 7500.

= (while Block Nested Loop (BNL) cost: 2,500 to 15,000
I/Os)

Prakash 2014 VT CS 4604 67

MVirginiaTech

Sort-merge join

= Worst case for merging phase?

= Cost?

Prakash 2014 VT CS 4604

68

MVirginiaTech
Refinements

= All the refinements of external sorting

" plus overlapping of the merging of sorting
with the merging of joining.

Prakash 2014 VT CS 4604

69

MVirginiaTech

Joins

" Join techniques we will cover:

— Nested-loops join
— Index-nested loops join
— Sort-merge join

— Hash join

Prakash 2014 VT CS 4604

70

MVirginiaTech
Hash joins

" hash join: use hashing function h()
—hash ‘R’ into (0, 1, ..., ‘max’) buckets

— hash ‘S’ into buckets (same hash function)
— join each pair of matching buckets

R(A, ...)

Prakash 2014 VT CS 4604

71

WVirginiaTech

Hash join - details

— how to join each pair of partitions Hr-i, Hs-i ?

— A: build another hash table for Hs-i, and probe
it with each tuple of Hr-i

R(A, .“) Hr-0 Hs-0

Prakash 2014 VT CS 4604

MVirginiaTech
Hash join - details

" |n more detail:

" Choose the (page-wise) smallest - if it fits in
memory, do “NL

— and, actually, build a hash table (with h2() != h())
— and probe it, with each tuple of the other

Prakash 2014 VT CS 4604 73

MVirginiaTech
Hash join details

» what if Hs-i is too large to fit in main-
memory?

= A:recursive partitioning

" more details (overflows, hybrid hash joins): in
book

= cost of hash join? (if we have enough buffers:)
3(M + N) (why? See next slide)

Prakash 2014 VT CS 4604 74

[MVirginiaTech
Cost of Hash-Join

" |n partitioning phase, read+write both
relns; 2(M+N). In matching phase, read
both relns; M+N |/Os.

" |n our running example, this is a total of
4500 1/0Os.

Prakash 2014 VT CS 4604 75

MVirginiaTech
Hash join details

" [cost of hash join? (if we have enough
buffers:)

3(M + N)
]
» Whatis ‘enough’ ? sqrt(N), or sqrt(M)?

Prakash 2014 VT CS 4604

76

MVirginiaTech
Hash join details

= [cost of hash join? (if we have enough buffers:)
3(M + N)
]
= Whatis ‘enough’ ? sqrt(N), or sqrt(M)?
" A:sqrt(smallest) (why?)

— Because you only need enough memory to hold the
hash table partitions of the smaller table in memory
so B > size of smaller/B -1 = B ~ sqgrt(size-of-smaller)

Prakash 2014 VT CS 4604 77

MVirginiaTech
Sort-Merge Join vs. Hash Join

" Given a minimum amount of memory both have a
cost of 3(M+N) 1/Os.

(min. memory for sort-merge = sqrt(larger table)
using aggressive refinements---in textbook)

(min. memory for hash = sgrt(smaller table)---see
previous slides)

Prakash 2014 VT CS 4604 78

MVirginiaTech

Sort-Merge vs Hash join

= Hash Join Pros:
—??

—??
— 7?7

= Sort-Merge Join Pros:
—??

Prakash 2014 VT CS 4604

79

[MVirginiaTech
Sort-Merge vs Hash join

= Hash Join Pros:

— Superior if relation sizes differ greatly

— Shown to be highly parallelizable (beyond scope
of class)

= Sort-Merge Join Pros:
—??

Prakash 2014 VT CS 4604

80

MVirginiaTech
Sort-Merge vs Hash join

= Hash Join Pros:
— Superior if relation sizes differ greatly

— Shown to be highly parallelizable (beyond scope
of class)

= Sort-Merge Join Pros:
— Less sensitive to data skew
— Result is sorted (may help “upstream” operators)
— goes faster if one or both inputs already sorted

Prakash 2014 VT CS 4604 81

MVirginiaTech . o
General Join Conditions

= Equalities over several attributes (e.g., R.sid=S.sid
AND R.rname=S.sname):

— all previous methods apply, using the composite key

Prakash 2014 VT CS 4604 82

MVirginiaTech . o
General Join Conditions

" Inequality conditions (e.g., R.rname < S.sname):
= which methods still apply?

— NL

— index NL

— Sort merge
— Hash join

Prakash 2014 VT CS 4604 83

MVirginiaTech
General Join Conditions

" Inequality conditions (e.g., R.rname < S.sname):

= which methods still apply?
— NL (probably, the best!)
— index NL (only if clustered index)
— Sort merge (does not apply!) (why?)
— Hash join (does not apply!) (why?)

Prakash 2014 VT CS 4604

84

MVirginiaTech
Set Operations

" |ntersection and cross-product: special cases of

join

= Union (Distinct) and Except: similar; we’ |l do
union:

" Effectively: concatenate; use sorting or hashing

= Sorting based approach to union:
— Sort both relations (on combination of all attributes).
— Scan sorted relations and merge them.
— Alternative: Merge runs from Pass O for both relations.

Prakash 2014 VT CS 4604 85

MVirginiaTech

Set Operations, cont’ d

= Hash based approach to union:
— Partition R and S using hash function h.

— For each S-partition, build in-memory hash table
(using h2), scan corresponding R-partition and add
tuples to table while discarding duplicates.

Prakash 2014 VT CS 4604 86

MVirginiaTech)
Aggregate Operations (AVG, MIN,

etc.)

= Without grouping:

— In general, requires scanning the relation.

— Given index whose search key includes all attributes in
the SELECT or WHERE clauses, can do index-only scan.

Prakash 2014 VT CS 4604 87

MVirginiaTech

Summary

= A virtue of relational DBMSs:
— queries are composed of a few basic operators

— The implementation of these operators can be
carefully tuned

— Important to do this!

= Many alternative implementation techniques for
each operator

— No universally superior technique for most operators.

“it depends” [Guy Lohman (IBM)]

Prakash 2014 VT CS 4604 88

MVirginiaTech
Summary cont’ d

" Must consider available alternatives for each
operation in a query and choose best one based on
system statistics, etc.

— Part of the broader task of optimizing a query composed
of several ops.

Prakash 2014 VT CS 4604 89

I Vir

Pra

giniaTech

MIDTERM REVIEW

kash 2014 VT CS 4604

90

MVirginiaTech

Course Outline

= Weeks 1-4: Query/ = \Week 9-10: Relational
Manipulation Languages Design
and Data Modeling — Functional Dependencies
— Relational Algebra — Normalization to avoid
— Data definition redundancy

— Programming with SQL
— Entity-Relationship (E/R) = Week 11-12: Concurrency

approach _ Control
— Specifying Constraints _ Transactions
— Good E/R design — Logging and Recovery
= Weeks 5-8: Indexes, = Week 13-14: Students’
Processing and choice
Optimization — Practice Problems
— Storing/ — XML
— Hashing/Sorting _ T
— Query Optimization %3E%mlaé?§gand

— NoSQL and Hadoop

Prakash 2014 VT CS 4604 91

WVirginiaTech

Course Outline: For Midterm Exam

o Weeks 1—4 Quer v/ = \Week 9-10: Relational
Ifu lation anguages Design
and ata Modeling — Functional Dependencies
— Relational Algebra — Normalization to avoid
— Data definition redundancy
— Programming wit.h SQL
— Entity-Relationship (E/R) = Week 11-12: Concurrency
approach Control
— Specifying Constraints — Transactions
— Good E/R design — Logging and Recovery
= Weeks 5-8: Indexes, = Week 13-14: Students’
Processing and choice

Optimization — Practice Problems
— Storing — XML

— Hashing/Sorting - D ini

— Query Optimization Optimization W%Eaem)lné?#gand

— NoSQL and Hadoop

Prakash 2014 VT CS 4604 92

W VirginiaTech

FUNDAMENTAL
Relational operators
. SGIECﬁOn Ucondition (R)
= projection T e (1)
= cartesian product RXS
= set union RUS
" set difference R-S

Prakash 2014 VT CS 4604

#93

MVirginiaTech
Relational ops

= Surprisingly, they are enough!

» Derived/convenience operators:
— set intersection [
— join (theta join, natural join) D4
— ‘rename’ operator Pr(R)
—division R+3S

Prakash 2014 VT CS 4604 #94

MVirginiaTech
Extended Operators

= Powerful operators based on basic relational operators
and bag semantics.

= Sorting: convert a relation into a list of tuples.

= Duplicate elimination: turn a bag into a set by eliminating
duplicate tuples.

" Grouping: partition the tuples of a relation into groups,
based on their values among specified attributes.

= Aggregation: used by the grouping operator and to
manipulate/combine attributes.

= Extended projections: projection on steroids.

= Quterjoin: extension of joins that make sure every tuple
is in the output.

Prakash 2014 VT CS 4604 95

WVirginiaTech
Basic SQL Query

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification;

= Relation-list: A list of relation names (possibly with range-
variable after each name).

= Target-list: A list of attributes of relations in relation-list
= (Qualification: conditions on attributes

= DISTINCT: optional keyword for duplicate removal.
— Default = no duplicate removal!

Prakash 2014 VT CS 4604 96

MVirginiaTech
SQL

= Handling Sub-queries

= SQL Data Definition Commands
= Constraints

= Triggers

Prakash 2014 VT CS 4604 97

MVirginiaTech
E/R Diagrams

= IMPORTANT:

— Follow only lecture slides for this topic!
— Differences from the book:

* More details
* Slightly different notation

Prakash 2014 VT CS 4604

98

[MVirginiaTech
Relationships

"= Show a many-one relationship by an arrow entering
the “one” side. Many One

= Show a one-one relationship by arrows entering both
entity sets. One «—— One

= |n some situations, we can also assert “exactly one,”
i.e., each entity of one set must be related to exactly
one entity of the other set. To do so, we use a

rounded arrow. ——) Exactly One

Prakash 2014 VT CS 4604 99

MVirginiaTech
E/R Example (does not contain ISA)

= Each department teaches multiple courses. Each course has a
number. What is the key for the entity set Courses?

Departments

N\

=
Students—@ COUI‘

Professors
Prakash 2014 @ 100

MVirginiaTech
Converting E/R Diagrams to

Relational Designs

= Entity Set - Relation
— Attribute of Entity Set = Attribute of a Relation
= Relationship =2 relation whose attributes are
— Attribute of the relationship itself
— Key attributes of the connected entity sets
= Several special cases:

— Weak entity sets.

— Combining relations (especially for many-one
relationships)

— ISA relationships and subclasses

Prakash 2014 VT CS 4604

101

[MVirginiaTech
Tree Indexes

= B+-Trees
— Carefully internalize the Definition!
— Searching
— Inserting
— Deleting

Prakash 2014 VT CS 4604 102

MVirginiaTech
Hashing/Sorting

= Extendible Hashing
" Linear Hashing

= External Sorting

= Again, how to search and build, internalize the
structure

= Sorting: understand the process, how to cost
it, how many passes it takes etc.

Prakash 2014 VT CS 4604 103

IVirginiaTech
Exam

= No aids allowed EXCEPT:

— Only written (not typed) 1 letter-size page (you may
use both sides)

— A calculator (NOT your smartphone)

" Duration: 75 mins, during class March 6,
Thursday

" More or less equal weightage to all the topics
— Questions will be similar to the HWs, Handouts

