CS 4604: Introduction to Database Management Systems

B. Aditya Prakash

Lecture #6: Extended Operators in Relational Algebra
Announcements

- Homework 1 due today
- Project Assignment 2 released
 - Due on Friday Feb 22nd, beginning of the class
- NO class and office hours on Wednesday Feb 20th
Specific Project Guidelines

- We will create an account and a database for each student.
- A database for each project group will be created.
 - The name of the database is the name of your group name.
 - Only the members of each project will be able to access the database for their project.
- A webpage detailing how you can access the database is maintained.
- You can create as many tables within a database as you want.
General Project Guidelines

- The database schema is not something that should change often.
 - Think long and hard about your schema.
 - DROP may be better than ALTER TABLE.

- Do not delete the files containing raw data.

- Read documentation for the RDBMS you are using.
Bags

- A *bag* (or *multi-set*) is like a set, but an element may appear more than once.

- Example: \{1,2,1,3\} is a bag.

- Example: \{1,2,3\} is also a bag that happens to be a set.
Why Bags?

- So far, we said RA and SQL operate on sets.
- Real RDBMSs treat relations as bags of tuples.
 - SQL, is actually a bag language.
- Performance is one of the main reasons; duplicate elimination is expensive since it requires sorting.
 - Some operations, like projection, are much more efficient on bags than sets.
- If we use bag semantics, we may have to redefine the meaning of each relation algebra operator.

Prakash 2013
Operations on Bags

- **Selection** applies to each tuple, so its effect on bags is like its effect on sets.

- **Projection** also applies to each tuple, but as a bag operator, we do not eliminate duplicates.

- **Products** and **joins** are done on each pair of tuples, so duplicates in bags have no effect on how we operate.
Bag Semantics: Projection and Selection

- Project: process each tuple independently; a tuple might occur multiple times
- Selection: process each tuple independently...

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

\[\pi_{A,B}(R)\]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

\[\sigma_{C \geq 3}(R)\]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Bag Union

- An element appears in the union of two bags the sum of the number of times it appears in each bag.
- \(R \cup S \): if tuple \(t \) appears \(k \) times in \(R \) and \(l \) times in \(S \), \(t \) appears in \(R \cup S \) \(k + l \) times.
Bag Intersection

- An element appears in the intersection of two bags the minimum of the number of times it appears in either.
- $R \cap S$: if tuple t appears k times in R and l times in S, t appears $\min\{k, l\}$ times in $R \cap S$
Bag Difference

- An element appears in the difference $R - S$ of bags as many times as it appears in R, minus the number of times it appears in S.
 – But never less than 0 times.

- $R - S$: if tuple t appears k times in R and l times in S, t appears in $R - S$ $\max\{0, k - l\}$ times.

\begin{array}{|c|c|}
\hline
R & \hline
A & B \\
1 & 2 \\
1 & 2 \\
2 & 3 \\
2 & 3 \\
\hline
\end{array}

\begin{array}{|c|c|}
\hline
S & \hline
A & B \\
1 & 2 \\
1 & 2 \\
2 & 3 \\
2 & 4 \\
\hline
\end{array}

\begin{array}{|c|c|}
\hline
R - S & \hline
A & B \\
2 & 3 \\
\hline
\end{array}
Bag Semantics: Products and Joins

- **Product (×):** If a tuple r appears k times in a relation R and tuple s appears l times in a relation S, then the tuple <r, s> appears kl times in R × S.

- **Theta-join and Natural join (⋈):** Since both can be expressed as applying a selection followed by a projection to a product, use the semantics of selection, projection, and the product.
Extended Operators

- Powerful operators based on basic relational operators and bag semantics.
- **Sorting**: convert a relation into a list of tuples.
- **Duplicate elimination**: turn a bag into a set by eliminating duplicate tuples.
- **Grouping**: partition the tuples of a relation into groups, based on their values among specified attributes.
- **Aggregation**: used by the grouping operator and to manipulate/combine attributes.
- **Extended projections**: projection on steroids.
- **Outerjoin**: extension of joins that make sure every tuple is in the output.
Sorting

\[\tau_{A_1,A_2,\ldots}(R) \]

SQL

\[
\text{SELECT \ldots FROM \ldots WHERE \ldots ORDER BY } A_1, A_2, \ldots
\]

- The result is a list of tuples in \(R \) but with the tuples sorted by their values in attributes \(A_1, A_2, \ldots \)
- In SQL, use \texttt{DESC} after an attribute to specify sorting in descending order; \texttt{ASC} is the default.
- If you use the result in another query, sorted order is lost.
Example: Sorting

\[R = \begin{pmatrix}
 A & B \\
 1 & 2 \\
 3 & 4 \\
 5 & 2 \\
\end{pmatrix} \]

\[\tau_B(R) = [(5,2), (1,2), (3,4)] \]
Duplicate Elimination

\[\delta(R) \] is the relation containing exactly one copy of each tuple in \(R \).

SQL `SELECT DISTINCT ...`

- Duplicate elimination is *expensive*, since tuples must be sorted or partitioned.
- Set operations in SQL (UNION, INTERSECT, and EXCEPT) operate on sets of tuples, i.e., they first eliminate duplicates.
- To make these operators treat relations as bags, follow the operation with the keyword ALL.
Example: Duplicate Elimination

\[R = (\begin{array}{cc} A & B \\ 1 & 2 \\ 3 & 4 \\ 1 & 2 \end{array}) \]

\[\sigma(R) = (\begin{array}{cc} A & B \\ 1 & 2 \\ 3 & 4 \end{array}) \]
Extended Projection

- Using the same π_L operator, we allow the list L to contain arbitrary expressions involving attributes, for example:

 - Arithmetic on attributes, e.g., $A+B$.

 - Duplicate occurrences of the same attribute.
Example: Extended Projection

\[
R = (\begin{array}{cc}
A & B \\
1 & 2 \\
3 & 4 \\
\end{array})
\]

\[\pi_{A+B, A, A} (R) = \]

\[
\begin{array}{|c|c|c|}
\hline
A+B & A1 & A2 \\
\hline
3 & 1 & 1 \\
7 & 3 & 3 \\
\hline
\end{array}
\]
Aggregation Operators

- Operators that summarize or aggregate the values in a single attribute of a relation.
- Operators are the same in relational algebra and SQL.
- All operators treat a relation as a bag of tuples.
- SUM: computes the sum of a column with numerical values.
- AVG: computes the average of a column with numerical values.
- MIN and MAX:
 - for a column with numerical values, computes the smallest or largest value, respectively.
 - for a column with string or character values, computes the lexicographically smallest or largest values, respectively.
- COUNT: computes the number of tuples in a column.
- In SQL, can use COUNT (*) to count the number of tuples in a relation.
Example: Aggregation

\[R = \left(\begin{array}{cc}
A & B \\
1 & 3 \\
3 & 4 \\
3 & 2 \\
\end{array} \right) \]

- \(\text{SUM}(A) = 7 \)
- \(\text{COUNT}(A) = 3 \)
- \(\text{MAX}(B) = 4 \)
- \(\text{AVG}(B) = 3 \)
How do we answer the query “Count the number of classes and the total enrollment of the classes each department teaches”?

Can we answer the query using the operators discussed so far?

We need to group the tuples of Teach by DeptName and then aggregate within each group.

Use the grouping operator.
Applying $\gamma_L(R)$

How do we answer the query "Count the number of classes and total enrollment of the classes each department teaches"?

1. Group Courses by DeptName.
2. For each group, create a new attribute that stores the number of classes taught by the department.
3. For each group, create a new attribute that stores the total enrollment of the classes taught by the department.

$\gamma_L(\text{Courses})$, where L is a list containing three elements:

1. DeptName: the grouping attribute,
2. COUNT(Number) \rightarrow NumCourses: an aggregated attribute computing the count of the Number attribute in each group and naming the new attribute NumCourses, and
3. SUM(Enrollment) \rightarrow TotalEnrollment: an aggregated attribute computing the total of the Enrollment attribute and naming the new attribute TotalEnrollment.
Example: Grouping/Aggregation

\[R = (A, B, C) \]

First, group \(R \) by \(A \) and \(B \):

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Then, average \(C \) within groups:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>AVG(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Suppose we join $R \bowtie_c S$.

A tuple of R that has no tuple of S with which it joins is said to be *dangling*.

– Similarly for a tuple of S.

Outerjoin preserves dangling tuples by padding them with a special NULL symbol in the result.
Example: Outerjoin

\[
R = (\begin{array}{cc}
1 & 2 \\
4 & 5 \\
\end{array})
\quad \quad \quad
S = (\begin{array}{cc}
2 & 3 \\
6 & 7 \\
\end{array})
\]

(1,2) joins with (2,3), but the other two tuples are dangling.

\[
R \text{ OUTERJOIN } S
\]

\[
\begin{array}{ccc}
A & B & C \\
1 & 2 & 3 \\
4 & 5 & \text{NULL} \\
\text{NULL} & 6 & 7 \\
\end{array}
\]