VirginiaTech

CS 4604: Introduction to
Database Management Systems

B. Aditya Prakash

Lecture #22: Semi-Structured Data
and XML

MVirginiaTech
Framework

1. Information Integration : Making databases
from various places work as one.

2. Semistructured Data : A (not really) new data
model designed to cope with problems of
information integration.

3. XML : A standard language for describing
semistructured data schemas and
representing data.

Prakash 2013 VT CS 4604

MVirginiaTech
The Information-Integration Problem

= Related data exists in many places and
could, in principle, work together.

= But different databases differ in:
Model (relational, object-oriented?).

2. Schema (normalized/unnormalized?).

3. Terminology: are consultants employees?
Retirees? Subcontractors?

4. Conventions (meters versus feet?).

Prakash 2013 VT CS 4604

MVirginiaTech

Example

= Every bar in Bburg has a database.

— One may use a relational DBMS; another keeps
the menu in an MS-Word document.

— One stores the phones of distributors, another
does not.

— One distinguishes ales from other beers, another
doesn’ t.

— One counts beer inventory by bottles, another by
cases.

[MVirginiaTech
Two Approaches to Integration

1. Warehousing : Make copies of the data sources at a
central site and transform it to a common schema.

— Reconstruct data daily/weekly, but do not try to keep it
more up-to-date than that.

2. Mediation : Create a view of all sources, as if they
were integrated.

— Answer a view query by translating it to terminology of
the sources and querying them.

Prakash 2013 VT CS 4604

MVirginiaTech

Warehouse Diagram

N

Wrapper Adapter

Prakash 2013 VT CS 4604

VirginiaTech

A Mediator

User query

Result

Query Result
Avlt Query

Adapter

A

Query Result

Prakash 2013

Wrappe

A

Query Result

VT CS 4604

MVirginiaTech
Semistructured Data

" Purpose: represent data from independent
sources more flexibly than either relational or

object-oriented models.

" Think of objects, but with the type of each
object its own business, not that of its “class.’

’

= Labels to indicate meaning of substructures.

Prakash 2013 VT CS 4604

MVirginiaTech
Graphs of Semistructured Data

" Nodes = objects.
= Labels on arcs (attributes, relationships).

= Atomic values at leaf nodes (nodes with no
arcs out).

= Flexibility: no restriction on:

— Labels out of a node.

— Number of successors with a given label.

Prakash 2013 VT CS 4604

name'/ : addr S
S S |
'@. ‘@D S The beer object

giniaTech

Example: Data Graph

new kind
beer of data.

bar

manf manf

prize

a \O N

@ year award
S e K /

servedAt

N for Bud
The bar object
for Joe’ s Bar

Prakash 2013 VT CS 4604 10

IVirginiaTech
XML

= XML = EXtensible Markup Language.

= While HTML uses tags for formatting (e.g.,
“italic”), XML uses tags for semantics (e.g.,
“this is an address”).

= Key idea: create tag sets for a domain (e.g.,
genomics), and translate all data into properly
tagged XML documents.

[MVirginiaTech
Well-Formed and Valid XML

= Well-Formed XML allows you to invent your

own tags.
— Similar to labels in semistructured data.

" Valid XML involves a DTD (Document Type
Definition), which limits the labels and gives a

grammar for their use.

Prakash 2013 VT CS 4604 12

MVirginiaTech
Is a Well-formed Document Valid?

" An XML document is said to be well-formed if it
follows all of the "rules" of XML, such as proper
nesting and attribute use, so by definition all XML
documents are well-formed.

= Avalid document, on the other hand, is one that is
not only well-formed, but also follows the
restrictions set out in a specific grammar, typically
specified in a Document Type Definition (DTD) or
some form of XML Schema.

Prakash 2013 VT CS 4604 13

MVirginiaTech
Is a Wellformed Document Valid?

= An example of a document that is well-
formed but not valid based upon the XHTML

grammar.
<body>
<p>Example of Well-formed HTML<L/p> -
<head> ®
<title>Example</title> ,©
</head>

<zorko>What is this?</zorko>
</body>

Prakash 2013 VT CS 4604 14

MVirginiaTech

HTML vs. XML

" |n the case of HTML, browsers have been taught
how to ignore invalid HTML such as the <zorko>
element and generally do their best when dealing
with badly placed HTML elements.

" The XML processor, on the other hand, can not
tell us which elements and attributes are valid. As
a result we need to define the XML markup we
are using. To do this, we need to define the
markup language’ s grammar.

Prakash 2013 VT CS 4604 15

MVirginiaTech
Well-Formed XML

= Start the document with a declaration,
surrounded by <? ... ?>.

= Normal declaration is:
<? XML VERSION = “1.0” STANDALONE

7

= “yes 2>
— “Standalone” = “no DTD provided.”

" Balance of document is a root tag surrounding
nested tags.

Prakash 2013 VT CS 4604 16

IVirginiaTech
Tags

" Tags, as in HTML, are normally matched pairs,
as <FOO> ... </FOO>.

"= Tags may be nested arbitrarily.

= Tags requiring no matching ender, like <P> in
HTML, are also permitted.

MVirginiaTech
Example: Well-Formed XML

<? XML VERSION = “1.0” STANDALONE = “yes” ?>
<BARS>
<BAR>kNAME>Joe’ s Bar</NAME>
<BEER><NAME>Bud</NAME>
<PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME>
<PRICE>3.00</PRICE></BEER>
</BAR>
<BAR> ...
</BARS>

Prakash 2013 VT CS 4604

18

MVirginiaTech
XML and Semistructured Data

= Well-Formed XML with nested tags is exactly
the same idea as trees of semistructured data.

= \We shall see that XML also enables nontree
structures, as does the semistructured data
model.

Prakash 2013 VT CS 4604 19

MVirginiaTech

Example

= The <BARS> XML document is:

BARS

AW BAR
BAR

BEER

BEER

PRICE NAME PRICE

Prakash 2013 VT CS 4604 20

MVirginiaTech
Document Type Definitions

" Essentially a context-free grammar for
describing XML tags and their nesting.

= EFach domain of interest (e.g., electronic
components, bars-beers-drinkers) creates one

DTD that describes all the documents this
group will share.

Prakash 2013 VT CS 4604 21

MVirginiaTech

DTD Structure

<!DOCTYPE <root tag> |
<!ELEMENT <name>
<more elements>

] >

Prakash 2013 VT CS 4604

(

<components>

) >

22

MVirginiaTech
Element Basics

» Defining elements within a DTD is done using an <!
ELEMENT> declaration.

e <!ELEMENT> declarations along with all other declarations within a DTD
have no content.

e <!ELEMENT> declarations are composed of several parts including the
element name and the type of information it will contain.

e The resulting element names will be case sensitive.

<IELEMENT element_name element_contents>

Prakash 2013 VT CS 4604 23

MVirginiaTech

DTD Elements

" The description of an element consists of its
name (tag), and a parenthesized description of
any nested tags.

— Includes order of subtags and their multiplicity.

" | eaves (text elements) have #PCDATA in place
of nested tags.

Prakash 2013 VT CS 4604 24

MVirginiaTech
What an < 'ELEMENT> Can Contain

" An <!ELEMENT> declaration can contain several
different types of content which include the

following:
: EMPTY.
. PCDATA.
. ANY.

. Children Elements

Prakash 2013 VT CS 4604

25

MVirginiaTech
EMPTY

= <!ELEMENT> declarations that include the EMPTY value
allow us to create empty elements within our xml.

- Theword EMPTY must be entered in uppercase as it is
case-sensitive.

<!ELEMENT element name EMPTY >

Prakash 2013 VT CS 4604

MVirginiaTech
PCDATA

= < IELEMENT> declarations that include the value PCDATA
allow us to include text and other parsable content in our
elements within our XML instance file.

- Theword PCDATA must be enclosed in parenthesis with a
preceding # and entered in uppercase as it is case-
sensitive.

- PCDATA is text that will be parsed by a parser. Tags inside
the text will treated as markup and entities will be
expanded.

<!ELEMENT element name (#PCDATA) >

Prakash 2013 VT CS 4604 27

MVirginiaTech
ANY

= <!ELEMENT> declarations that include the value ANY allow
us include any type of parsable content, including text and
other elements, in our elements within our XML instance file.

e The word ANY must be entered in uppercase as it is case-
sensitive.

<!ELEMENT element_name ANY>

Prakash 2013 VT CS 4604 28

MVirginiaTech
Element Descriptions

= Subtags must appear in order shown.

= A tag may be followed by a symbol to indicate
its multiplicity.
— * = zero or more.
— + = 0ne or more.

— ? = 7ero or one.

= Symbol | can connect alternative sequences
of tags.

Prakash 2013 VT CS 4604 29

MVirginiaTech
Example: DTD

A BARS object has
<IDOCTYPE Bars | zero or more BAR’ s

ted within.
<IELEMENT BARS (BAR*)> nested within
|
<IELEMENT BAR (NAME, BEER+)> A BAR e o
<!ELEMENT|NAME (#PCDATA)> NAME and one

or more BEER

<IELEMENT|BEER| (NAME, PRICE)> subobijects.

<IELEMENT[PRICE (#PCDATA)> | -

/ A BEER has a

NAME and PRICE NAME and a
are text. PRICE.

Prakash 2013 VT CS 4604 30

MVirginiaTech
Example: Element Description

= A name is an optional title (e.g., “Prof.”), a
first name, and a last name, in that order, or it
is an |P address:

<!ELEMENT NAME (
(TITLE?, FIRST, LAST) | IPADDR
) >

Prakash 2013 VT CS 4604 31

MVirginiaTech
Use of DTD s

1. Set STANDALONE = “no”.

2. Either:

a) Include the DTD as a preamble of the XML
document, or

b) Follow DOCTYPE and the <root tag> by SYSTEM
and a path to the file where the DTD can be

found.

Prakash 2013 VT CS 4604

32

giniaTech

Example (a)

<? XML VERSION = “1.0” STANDALONE = “no” ?>

<!

1>

DOCTYPE Bars |
<IELEMENT BARS (BAR*)>
<IELEMENT BAR (NAME, BEER+)> The DTD
<IELEMENT NAME (#PCDATA)> /
<IELEMENT BEER (NAME, PRICE)>
<IELEMENT PRICE (#PCDATA)>

The document
<BARS> /

<BAR><NAME>Joe’ s Bar</NAME>
<BEER><NAME>Bud</NAME> <PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME> <PRICE>3.00</PRICE></BEER>

</BAR>

<BAR> ...

</BARS>

Prakash 2013 VT CS 4604

33

MVirginiaTech
Example (b)
= Assume the BARS DTD is in file bar.dtd.

<? XML VERSION = “1.0” STANDALONE = “no” ?>
<IDOCTYPE Bars SYSTEM “bar.dtd”>

<BARS> Get the DTD
<BAR><NAME>Joe’ s Bar</NAME> from the file
bar.dtd

<BEER><NAME>Bud</NAME>
<PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME>
<PRICE>3.00</PRICE></BEER>
</BAR>
<BAR> ...
</BARS>

Prakash 2013 VT CS 4604 34

MVirginiaTech

Attributes
" Opening tags in XML can have attributes, like
 in HTML.
=" |na DTD,

<!ATTLIST <element name>... >

gives a list of attributes and their datatypes
for this element.

Prakash 2013 VT CS 4604

35

[MVirginiaTech
Example: Attributes

= Bars can have an attribute kind, which is
either sushi, sports, or “other.”

<!ELEMENT BAR (NAME BEER*) >
<!ATTLIST BAR kind = “sushi’ |

11 7 14 4
sports | other >

Prakash 2013 VT CS 4604 36

WVirginiaTech
Example: Attribute Use

" |n a document that allows BAR tags, we might see:
<BAR kind = “sushi’>
<NAME>Akasaka</NAME>

<BEER><NAME>Sapporo</NAME>
<PRICE>5.00</PRICE></BEER>

</BAR>

Prakash 2013 VT CS 4604 37

MVirginiaTech
ID’ s and IDREF’ s

" These are pointers from one object to
another, in analogy to HTML's NAME =
“foo” and HREF = “#foo”.

" Allows the structure of an XML document to
be a general graph, rather than just a tree.

Prakash 2013 VT CS 4604 38

MVirginiaTech
Creating ID" s

" Give an element E an attribute A of type ID.

= When using tag <E > in an XML document,
give its attribute A a unique value.

= Example:
<BE A = “xyz">

Prakash 2013 VT CS 4604

39

MVirginiaTech
Creating IDREF’ s

" To allow objects of type F to refer to another
object with an ID attribute, give F an attribute
of type IDREF.

" Or, let the attribute have type IDREFS, so the F
—object can refer to any number of other
objects.

Prakash 2013 VT CS 4604 40

MVirginiaTech
Example: ID’ s and IDREF’ s

= Let sredesign our BARS DTD to include both BAR
and BEER subelements.

= Both bars and beers will have ID attributes called
name.

= Bars have PRICE subobjects, consisting of a number
(the price of one beer) and an IDREF theBeer
leading to that beer.

= Beers have attribute sol1dBy, which is an IDREFS
leading to all the bars that sell it.

Prakash 2013 VT CS 4604 41

MVirginiaTech

The DTD

Bar objects have name

<!DOCTYPE Bars [as an ID attribute and

1>

have one or more

<|ELEMENT BARS (BAR*, BEERTV PRICE subobjects.

<IELEMENYBAR (PRICE+)> _
PRICE objects have
<IATTLIST BAR name = ID> a number (the

<!ELEMEWCE (#PCDATA)> price) and one
f t ;
<IATTLIST PRICE theBeer = IDREE> reference to a beer.

<IELEMENT BEER ()>
<IATTLIST BEER name = ID, soldBy = IDREFS>

T

Beer objects have an ID attribute called name,
and a soldBy attribute that is a set of Bar names.

Prakash 2013 VT CS 4604

MVirginiaTech
Example Document

<BARS>
<BAR name = “JoesBar >
<PRICE theBeer = “Bud”">2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>
</BAR> ...
<BEER name = “Bud”, soldBy = “JoesBar,

’

SuesBar,...” >
</BEER> ...

</BARS>

Prakash 2013 VT CS 4604

MVirginiaTech

Announcements

= Homework 5 due next class

= Project Assignment 6 is out
— Last Assignment (yay!)

— Paper-report due on Monday May 6 in class
* Hard deadline: NO LATE DAYS allowed for this assignment!

— Start early---contact Qianzhou for any problems
— Web-based interface to your database
— ‘value-additions’ important

— One more advice
* START EARLY!!

Prakash 2013 VT CS 4604 44

