CS 4604: Introduction to Database Management Systems

B. Aditya Prakash

Lecture #19: Query Optimization
Notes

- Material NOT in the book!

- Some parts from (a copy of the paper is on the course webpage)

Select * From Blah B Where B.blah = blah

Usually there is a heuristics-based rewriting step before the cost-based steps.
Multiple Algorithms: Range Searches

- Sequential Scan
- Hashes
- B-Trees
-

- Saw some of them in previous lecture
Multiple Algorithms: Joins

- Merge-Join (like merge-sort)
- Hash-Join (using hashes)
- Indexed-Join (using indexes)
- Nested loops Join (most obvious)
- ...

- We haven’t covered them in class
Why Query optimization?

- SQL: ~declarative
- good q-opt -> big difference
 - eg., seq. Scan vs
 - B-tree index, on P=1,000 pages

- We had some ‘manual q-opt’ in Project Assignment 3 ➔ too much effort!
Q-opt steps

- bring query in internal form (eg., parse tree)
- ... into ‘canonical form’ (syntactic q-opt)
- generate alt. plans
- estimate cost; pick best
Q-opt - example

```
select name
from STUDENT, TAKES
where c-id = '4604' and
STUDENT.ssn = TAKES.ssn
```
Q-opt - example

Canonical form

STUDENT TAKES STUDENT TAKES

\[\pi \sigma\]

Prakash 2013 VT CS 4604
Q-opt - example

Hash join; merge join; nested loops;

\(\pi \)

\(\sigma \) \(\rightarrow \) Index; seq scan

STUDENT \hspace{1cm} TAKES
Equivalence of expressions

- A.k.a.: syntactic q-opt
- in short: perform selections and projections early
Equivalence of expressions

Q: How to prove a transformation rule?

\[\sigma_P(R1 \bowtie R2) = \sigma_P(R1) \bowtie \sigma_P(R2) \]

A: use RA, to show that LHS = RHS, eg:

\[\sigma_P(R1 \cup R2) = \sigma_P(R1) \cup \sigma_P(R2) \]
Equivalence of expressions

\[\sigma_p(R1 \cup R2) = \sigma_p(R1) \cup \sigma_p(R2) \]

\[t \in LHS \iff \]

\[t \in (R1 \cup R2) \land P(t) \iff \]

\[(t \in R1 \lor t \in R2) \land P(t) \iff \]

\[(t \in R1 \land P(t)) \lor (t \in R2 \land P(t)) \iff \]
Equivalence of expressions

\[\sigma_P(R1 \cup R2) = \sigma_P(R1) \cup \sigma_P(R2) \]

...

\[(t \in R1 \land P(t)) \lor (t \in R2 \land P(t)) \iff (t \in \sigma_P(R1)) \lor (t \in \sigma_P(R2)) \iff t \in \sigma_P(R1) \cup \sigma_P(R2) \iff t \in RHS \]

QED
Equivalence of expressions

Q: how to disprove a rule??

\[\pi_A(R1 - R2) = \pi_A(R1) - \pi_A(R2) \]

Construct a counter-example!
Equivalence of expressions

- Selections
 - perform them early
 - break a complex predicate, and push
 $$\sigma_{p_1 \land p_2 \land \ldots \land p_n}(R) = \sigma_{p_1}(\sigma_{p_2}(\ldots \sigma_{p_n}(R))\ldots)$$
 - simplify a complex predicate
 - (‘X=Y and Y=3’) -> ‘X=3 and Y=3’
Equivalence of expressions

- Projections
 - perform them early (but carefully...)
 - Smaller tuples
 - Fewer tuples (if duplicates are eliminated)
 - project out all attributes except the ones requested or required (e.g., joining attr.)
Equivalence of expressions

- Joins
 - Commutative, associative
 \[
 R \Join S = S \Join R \\
 (R \Join S) \Join T = R \Join (S \Join T)
 \]
 - Q: n-way join - how many diff. orderings?
Equivalence of expressions

- Joins - Q: n-way join - how many diff. orderings?
- A: Catalan number \(\sim 4^n \)
 - Exhaustive enumeration: too slow.

Prakash 2013
(Some) Transformation Rules (1)

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.
\[\sigma_{\theta_1 \land \theta_2}(E) = \sigma_{\theta_1}(\sigma_{\theta_2}(E)) \]

2. Selection operations are commutative.
\[\sigma_{\theta_1}(\sigma_{\theta_2}(E)) = \sigma_{\theta_2}(\sigma_{\theta_1}(E)) \]

3. Only the last in a sequence of projection operations is needed, the others can be omitted.
\[\Pi_{L_1}(\Pi_{L_2}(\ldots(\Pi_{L_n}(E))\ldots)) = \Pi_{L_1}(E) \]

4. Selections can be combined with Cartesian products and theta joins.
 a. \[\sigma_{\theta}(E_1 \times E_2) = E_1 \Join_{\theta} E_2 \]
 b. \[\sigma_{\theta_1}(E_1 \Join_{\theta_2} E_2) = E_1 \Join_{\theta_1 \land \theta_2} E_2 \]
5. Theta-join operations (and natural joins) are commutative.

\[E_1 \Join_{\theta} E_2 = E_2 \Join_{\theta} E_1 \]

6. (a) Natural join operations are associative:

\[(E_1 \Join E_2) \Join E_3 = E_1 \Join (E_2 \Join E_3) \]

(b) Theta joins are associative in the following manner:

\[(E_1 \Join_{\theta_1} E_2) \Join_{\theta_2 \land \theta_3} E_3 = E_1 \Join_{\theta_1 \land \theta_3} (E_2 \Join_{\theta_2} E_3) \]

where \(\theta_2 \) involves attributes from only \(E_2 \) and \(E_3 \).
7. The selection operation distributes over the theta join operation under the following two conditions:

(a) When all the attributes in θ_0 involve only the attributes of one of the expressions (E_1) being joined.

$$\sigma_{\theta_0}(E_1 \Join_\theta E_2) = (\sigma_{\theta_0}(E_1)) \Join_\theta E_2$$

(b) When θ_1 involves only the attributes of E_1 and θ_2 involves only the attributes of E_2.

$$\sigma_{\theta_1 \land \theta_2}(E_1 \Join_\theta E_2) = (\sigma_{\theta_1}(E_1)) \Join_\theta (\sigma_{\theta_2}(E_2))$$
Q-opt steps

- bring query in internal form (eg., parse tree)
- ... into ‘canonical form’ (syntactic q-opt)
- generate alt. plans
- estimate cost; pick best
Cost-based Query Sub-System

Queries

Select *
From Blah B
Where B.blah = blah

Usually there is a heuristics-based rewriting step before the cost-based steps.

Query Parser

Query Optimizer

Plan Generator

Plan Cost Estimator

Catalog Manager

Schema

Statistics

Query Plan Evaluator

Prakash 2013
Cost estimation

- Eg., find ssn’s of students with an ‘A’ in 4604 (using seq. scanning)
- How long will a query take?
 - CPU (but: small cost; decreasing; tough to estimate)
 - Disk (mainly, # block transfers)
- How many tuples will qualify?
- (what statistics do we need to keep?)
Cost estimation

- Statistics: for each relation ‘r’ we keep
 - \(nr : \# \) tuples;
 - \(Sr : \) size of tuple in bytes
Cost estimation

- Statistics: for each relation ‘r’ we keep
 - ...
 - $V(A,r)$: number of distinct values of attr. ‘A’
 - (recently, histograms, too)
Derivable statistics

- blocking factor = max# records/block (=??
- br: # blocks (=??
- SC(A,r) = selection cardinality = avg# of records with A=given (=??

\[\text{Sr} \]

\[\begin{array}{c}
\text{fr} \\
\hline
#1 \\
#2 \\
\vdots \\
\hline
#br
\end{array} \]
Derivable statistics

- blocking factor = max# records/block (= B/Sr; B: block size in bytes)
- br: # blocks (= nr / (blocking-factor))
Derivable statistics

- $SC(A,r) = \text{selection cardinality} = \text{avg# of records with } A=\text{given} \ (= \frac{nr}{V(A,r)}) \ (\text{assumes uniformity...})$

eg: 10,000 students, 10 departments – how many students in CS?
Additional quantities we need:

- For index ‘i’:
 - f_i: average fanout (~50-100)
 - H_{Ti}: # levels of index ‘i’ (~2-3)
 - $\sim \log(#\text{entries})/\log(f_i)$
 - L_{Bi}: # blocks at leaf level
Statistics

- Where do we store them?
- How often do we update them?
Q-opt steps

- bring query in internal form (e.g., parse tree)
- ... into ‘canonical form’ (syntactic q-opt)
- generate alt. plans
- estimate cost; pick best
Selections

- we saw simple predicates (A=constant; eg., ‘name=Smith’)
- how about more complex predicates, like
 - ‘salary > 10K’
 - ‘age = 30 and job-code=“analyst”’
- what is their selectivity?
Selections – complex predicates

- selectivity \(\text{sel}(P) \) of predicate \(P \) :
 - \(\text{sel}(P) = \frac{SC(P)}{nr} \)
 - \(\text{sel}(P) \) is the fraction of tuples that qualify
Selections – complex predicates

- eg., assume that \(V(\text{grade}, \text{TAKES})=5 \) distinct values
- simple predicate \(P: A=\text{constant} \)
 - \(\text{sel}(A=\text{constant}) = 1/V(A,r) \)
 - eg., \(\text{sel} (\text{grade}='B') = 1/5 \)
- (what if \(V(A,r) \) is unknown??)
Selections – complex predicates

- range query: \(\text{sel}(\text{grade} \geq 'C') \)

 \(\text{sel}(A>a) = \frac{(A_{\text{max}} - a)}{(A_{\text{max}} - A_{\text{min}})} \)
Selections - complex predicates

- negation: sel(grade != ‘C’)
 - sel(not P) = 1 – sel(P)
 - (Observation: selectivity =~ probability)
Selections - complex predicates

- Conjunction:
 - `sel(grade = ‘C’ and course = ‘4604’)`
 - `sel(P1 and P2) = sel(P1) * sel(P2)`
 - INDEPENDENCE ASSUMPTION
Selections - complex predicates

- Disjunction:
 - \(\text{sel}(\text{grade} = 'C' \text{ or } \text{course} = '4604') \)
 - \(\text{sel}(P1 \text{ or } P2) = \text{sel}(P1) + \text{sel}(P2) - \text{sel}(P1 \text{ and } P2) \)
 - \(\text{sel}(P1) + \text{sel}(P2) - \text{sel}(P1) \ast \text{sel}(P2) \)
 - INDEPENDENCE ASSUMPTION, again

Prakash 2013
Selections - complex predicates

- disjunction: in general
 - \(\text{sel}(\text{P1 or P2 or } \ldots \text{ Pn}) = 1 - (1 - \text{sel}(\text{P1})) \times (1 - \text{sel}(\text{P2})) \times \ldots \times (1 - \text{sel}(\text{Pn}))\)
Selections – summary

- sel(A=constant) = 1/V(A,r)
- sel(A>a) = (Amax – a) / (Amax – Amin)
- sel(not P) = 1 – sel(P)
- sel(P1 and P2) = sel(P1) * sel(P2)
- sel(P1 or P2) = sel(P1) + sel(P2) – sel(P1)*sel(P2)
- sel(P1 or ... or Pn) = 1 - (1-sel(P1))*...*(1-sel(Pn))

- UNIFORMITY and INDEPENDENCE ASSUMPTIONS
Result Size Estimation for Joins

- **Q:** Given a join of R and S, what is the range of possible result sizes (in #of tuples)?
 - Hint: what if $R_{cols} \cap S_{cols} = \emptyset$?
 - $R_{cols} \cap S_{cols}$ is a key for R (and a Foreign Key in S)?
Result Size Estimation for Joins

- General case: $R_{cols} \cap S_{cols} = \{A\}$ (and A is key for neither)
 - match each R-tuple with S-tuples
 \[
 \text{est_size} \sim N\text{Tuples}(R) \times N\text{Tuples}(S) / N\text{Keys}(A, S) \\
 \sim nr \times ns / V(A, S)
 \]
 - symmetrically, for S:
 \[
 \text{est_size} \sim N\text{Tuples}(R) \times N\text{Tuples}(S) / N\text{Keys}(A, R) \\
 \sim nr \times ns / V(A, R)
 \]
 - Overall:
 \[
 \text{est_size} = N\text{Tuples}(R) \times N\text{Tuples}(S) / \text{MAX}\{N\text{Keys}(A, S), N\text{Keys}(A, R)\}
 \]
On the Uniform Distribution Assumption

- Assuming uniform distribution is rather crude
Histograms

- For better estimation, use a histogram

Equiwidth histogram

Equidepth histogram ~ quantiles

Prakash 2013
Q-opt Steps

- bring query in internal form (e.g., parse tree)
- ... into ‘canonical form’ (syntactic q-opt)
- generate alt. plans
 - single relation
 - multiple relations
- estimate cost; pick best
plan generation

- Selections – eg.,

  ```sql
  select *
  from TAKES
  where grade = 'A'
  ```

- Plans?

...
plan generation

- Plans?
 - seq. scan
 - binary search
 - (if sorted & consecutive)
 - index search
 - if an index exists
plan generation

seq. scan – cost?
- br (worst case)
- $br/2$ (average, if we search for primary key)
plan generation

binary search – cost?

if sorted and consecutive:
 - $\sim \log(\text{br}) +$
 - $\text{SC}(A,r)/\text{fr}$ (=blocks spanned by qual. tuples)
plan generation

estimation of selection cardinalities $SC(A,r)$:

non-trivial — we saw it earlier
plan generation

method#3: index – cost?
– Tricky
Q-opt Steps

- bring query in internal form (eg., parse tree)
- ... into ‘canonical form’ (syntactic q-opt)
- generate alt. plans
 - single relation
 - multiple relations
- estimate cost; pick best
n-way joins

- $r_1 \text{ JOIN } r_2 \text{ JOIN } ... \text{ JOIN } r_n$
- typically, break problem into 2-way joins
 - choose between NL, sort merge, hash join, ...
Queries Over Multiple Relations

- As number of joins increases, number of alternative plans grows rapidly → need to restrict search space

- Fundamental decision in System R (IBM): only left-deep join trees are considered. Advantages?

Prakash 2013
Queries Over Multiple Relations

- As number of joins increases, number of alternative plans grows rapidly → *need to restrict search space*

- Fundamental decision in System R (IBM): *only left-deep join trees* are considered. Advantages?
 - *fully pipelined* plans.
 - Intermediate results not written to temporary files.

Prakash 2013

VT CS 4604
Queries over Multiple Relations

- Enumerate the orderings (= left deep tree)
- Enumerate the plans for each operator
- Enumerate the access paths for each table

Dynamic programming, to save cost estimations
Candidate Plans

1. Enumerate relation orderings:

```
1. S B R
2. S R B
3. B S R
4. B R S
5. S B R
6. S R B
7. B S R
8. B R S
```

Prune plans with cross-products immediately!

SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B
SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B

2. Enumerate **join algorithm** choices:

+ do same for 4 other plans

→ 4*4 = 16 plans so far..
SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B

3. Enumerate access method choices:

+ do same for other plans
Now estimate the **cost** of each plan

Example:

```
  B (heap scan)
 /    \
NLJ   R (INDEX scan on R.sid)
 /     \
NLJ   S (heap scan)
```

Prakash 2013
Query Re-writing

- Re-write nested queries
- to: de-correlate and/or flatten them
Correlated vs Uncorrelated

- The previous subqueries did not depend on anything outside the subquery
 - ...and thus need to be executed just once.
 - These are called **uncorrelated**.

- A **correlated** subquery depends on data from the outer query
 - ... and thus has to be executed for each row of the outer table(s)
Example: Decorrelating a Query

SELECT CourseName, Enrollment
FROM Courses
WHERE EXISTS
(SELECT *
FROM Teaches T
WHERE (T.name = 'Smith')
AND (Courses.num = T.num));

Equivalent uncorrelated query:
SELECT CourseName, Enrollment
FROM Courses
WHERE Courses.Num IN
(SELECT T.num
FROM Teaches T
WHERE T.name = 'Smith')

- **Advantage**: nested block only needs to be executed **once** (rather than once per S tuple)
Example: “Flattening” a Query

```
SELECT CourseName, Enrol
FROM Courses
WHERE Courses.Num IN
    (SELECT T.num
     FROM Teaches T
     WHERE T.name = 'Smith')
```

Equivalent non-nested query:

```
SELECT CourseName, Enrol
FROM Courses C, Teaches T
WHERE Courses.Num = T.num
AND T.name = 'Smith'
```

- **Advantage:** can use a join algorithm + optimizer can select among join algorithms & reorder freely
Conclusions

- Ideas to remember:
 - syntactic q-opt – do selections early
 - selectivity estimations (uniformity, indep.; histograms; join selectivity)
 - left-deep joins
 - dynamic programming
 - handling correlated sub-queries