CS 4604: Introduction to Database Management Systems

B. Aditya Prakash

Lecture #16: 3NF
Preserving FDs in a Decomposition

- Consider the relation
 - Teach(CourseNumber, DepartmentName, Professor, Semester, Year)
- The relation models which courses a professor teaches in which semester
- Do not assume that each course is taught by at most one professor
- University introduces two new rules
 - Each professor teaches ≤ 1 course per semester
 Professor Semester Year \rightarrow CourseNumber DepartmentName
 - Each course is taught either in the fall every year or in the spring every year
 CourseNumber DepartmentName \rightarrow Semester
- What are the keys?
 - $\{\text{Professor, Semester, Year}\}$
 - $\{\text{CourseNumber, DepartmentName, Professor, Year}\}$
Preserving FDs in a Decomposition

- Decomposing using
 CourseNumber DepartmentName \rightarrow Semester
 - Teach1 (CourseNumber, DepartmentName, Semester)
 - Teach2 (CourseNumber, DepartmentName, Professor, Year)
- Are both in BCNF?
- How do you enforce
 Professor Semester Year \rightarrow CourseNumber DepartmentName?
 - Only by joining Teach1 and Teach2, which is expensive
- So BCNF is not necessarily dependency preserving!
“Elegant” Workaround

- Let’s define the problem away 😊
Third Normal Form

- A relation R is in Third Normal Form (3NF) iff for every non-trivial FD $A_1 A_2 .. A_n \rightarrow B$ for R, one of the following two conditions is true:
 - $A_1 A_2 ... A_n$ is a superkey for R
 - B is prime i.e., B is an attribute in some key for R

- Note B should be in a key not a superkey
- NP-Complete to test if a relation is in 3NF
Third Normal Form

- A relation R is in Third Normal Form (3NF) iff for every non-trivial FD $A_1 A_2 \ldots A_n \rightarrow B$ for R, one of the following two conditions is true:
 - $A_1 A_2 \ldots A_n$ is a superkey for R
 - B is prime i.e. B is an attribute in some key for R

- What happened to the first two? 😊
 - They were defined, but not very useful today
Third Normal Form

- Teach(C, D, P, S, Y) has FDs
 - PSY → CD
 - CD → S
- Keys are {P, S, Y} and {C, D, P, Y}
- CD → S violates BCNF
- However, Teach is in 3NF because S is part of a key
More 3NF Examples

- Consider the relation Teach(CourseNumber, DepartmentName, Professor, Semester, Year)
- The relation models which courses a professor teaches in which semester

1. Each professor teaches ≤ 1 course per semester.
 \[P \times S \times Y \rightarrow C \times D \]

2. In a year, each course is taught either in the fall or in the spring.
 The semester a course is taught can change from year to year.
 \[C \times D \times Y \rightarrow S \]

- Keys?
 - \{P, S, Y\} and \{C, D, P, Y\}
- In 3NF?
 - Yes
More 3NF Examples

- Consider the relation Teach(CourseNumber, DepartmentName, Professor, Semester, Year)
- The relation models which courses a professor teaches in which semester
 1. Each professor teaches \(\leq 1 \) course per semester.
 \[P \ S \ Y \rightarrow C \ D \]
 2. In a year, each course is taught either in the fall or in the spring. The semester a course is taught can change from year to year.
 \[C \ D \ Y \rightarrow S \]
 3. Every time it is offered, each course is taught by at most one professor
 \[C \ D \ Y \ S \rightarrow P \]
- Keys?
 - \(\{P, S, Y\} \) and \(\{C, D, Y, P\} \) and \(\{C, D, Y, S\} \)
- In 3NF?
 - Yes
More 3NF Examples

- Consider the relation Teach(CourseNumber, DepartmentName, Professor, Semester, Year)
- The relation models which courses a professor teaches in which semester
 1. Each professor teaches \(\leq 1 \) course per semester.

\[P \times S \times Y \rightarrow C \times D \]

2. In a year, each course is taught either in the fall or in the spring. The semester a course is taught can change from year to year.

\[C \times D \times Y \rightarrow S \]

3. Over all offerings, each course is taught by at most one professor.

\[C \times D \rightarrow P \]

- Keys?
 - \{P, S, Y\} and \{C, D, Y\}

- In 3NF?
 - Still Yes!
Decomposition into 3NF

- We can always decompose a relational schema R into a set S of schemas that are dependency-preserving, i.e.
 - each relation in S is in 3NF
 - the decomposition of R into S is lossless-join
 - the decomposition into S is dependency-preserving, i.e., for each FD that holds in R, there is a relation in S that allows that FD to be checked

- Then why bother with BCNF?
 - Unfortunately, can’t guarantee no anomalies above!
3NF Synthesis Algorithm

- Let F be the set of all FDs of R
- We will compute a lossless-join, dependency-preserving decomposition of R into S, where every relation in S is in 3NF

1. Find a minimal basis for F, say G
2. For every FD $X \rightarrow A$ in G, use $X \cup A$ as the schema for one of the relations in S
3. If the attributes in none of the relations in S form a superkey for R, add another relation to S whose schema is a key for R
Computing a Minimal Basis

- See step 3 of Algorithm 3.12 on page 82 of your textbook
- Start with a set F of FDs and compute a minimal basis G

1. If there is an FD D in F that follows from the other FDs in F, remove D from F
2. Let $Y \rightarrow B$ be an FD in F with at least two attributes in Y and let Z be Y with one of its attributes removed. If $Z \rightarrow B$ follows from the FDs in F, replace $Y \rightarrow B$ by $Z \rightarrow B$
3. Repeat the first two steps until no more changes can be made to F
3NF Synthesis Algorithm

- Let F be the set of all FDs of R
- We will compute a lossless-join, dependency-preserving decomposition of R into S, where every relation in S is in 3NF

1. Find a minimal basis for F, say G
2. For every FD $X \rightarrow A$ in G, use $X \cup A$ as the schema for one of the relations in S
3. If the attributes in none of the relations in S form a superkey for R, add another relation to S whose schema is a key for $R
3NF Synthesis Algorithm

- Let F be the set of all FDs of R
- We will compute a lossless-join, dependency-preserving decomposition of R into S, where every relation in S is in 3NF

1. Find a minimal basis for F, say G
2. For every FD X → A in G, use X ∪ A as the schema for one of the relations in S
3. If the attributes in none of the relations in S form a superkey for R, add another relation to S whose schema is a key for R

Correctness? (Tricky Proof)
Example

- Example:
 \[R(A, B, C)\]
 \[F: \{A \rightarrow B, C \rightarrow B\}\]

- Q1: what is the cover?

- Q2: what is the decomposition to 3NF?
Example

- Example:
 \[R(A, B, C) \]
 \[F: \{ A \rightarrow B, C \rightarrow B \} \]

- Q1: what is the cover?
 A1: ‘F’ is the cover

- Q2: what is the decomposition to 3NF?
 A2: \(R1(A,B), R2(C,B), \ldots \) [is it lossless??]
Example

Example:

\[R(A, B, C) \]
\[F: \{A \rightarrow B, \ C \rightarrow B \} \]

Q1: what is the cover?
A1: ‘F’ is the cover

Q2: what is the decomposition to 3NF?
A2: \(R1(A, B), \ R2(C, B), \ R3(A, C) \)
Next Lecture

- Multivalued Dependencies
- 4NF