CS 4604: Introduction to Database Management Systems

B. Aditya Prakash

Final Review
Final Exam

- 30% of the grade
- No books, no notes, no laptops
- Allowed:
 - Only 2 letter-size pages
 - You can use both sides
 - Must be hand-written
 - And a calculator (recommended)
- Duration: 2 hours. 7:45-9:45am Dec 7
 Location: regular classroom
Comprehensive exam

– But main focus towards and emphasis on post-midterm stuff (= starting from lecture 10)
– Will cover all material in all lectures
– EXCEPT (i.e. things NOT in exam)

1. NoSQL/MapReduce

 (No PHP too of course)
Office Hours this week

- All posted on Piazza.
Reminder

- Project Demos on Dec 5 in Torg 3160F.
What you learnt in the course

- **Weeks 1–4: Query/Manipulation Languages and Data Modeling**
 - Relational Algebra
 - Data definition
 - Programming with SQL
 - Entity-Relationship (E/R) approach
 - Specifying Constraints
 - Good E/R design

- **Weeks 5–8: Indexes, Processing and Optimization**
 - Storing
 - Hashing/Sorting
 - Query Optimization
 - NoSQL and Hadoop

- **Week 9-10: Relational Design**
 - Functional Dependencies
 - Normalization to avoid redundancy

- **Week 11-12: Concurrency Control**
 - Transactions
 - Logging and Recovery

- **Week 13–14: Students’ choice**
 - Practice Problems
 - XML
 - Data mining and warehousing
naive | **app. pgmr** | **casual** | **DBA** | **users**

emb. DML
DML proc.
DDL int.

app. pgm(o)

query eval.

trans. mgr
buff. mgr
file mgr

data
meta-data

query proc.

storage mgr.
SQL/RA

- Make sure you know all the operators for SQL and RA
 - Select, From, Where, Group-by, Having, Order-by
 - Set-semantics/Bag-semantics

- The base for DB
ER

- You should already have enough practice!
FDs

- Definitions of FDs, closures (Attributes vs FDs), cover, normal forms, decompositions etc. etc.
 - Pay attention to multiple ways of defining the same thing!
 - E.g. ‘Key’: multiple ways of defining and understanding

- Various procedures to compute the above
Indexing and Hashing

- Know your basic structure, and definitions
- Less emphasis (as we have covered this in the midterm)
Query Processing

- Estimating costs
 - What are you estimating? = #disk accesses
 - How to estimate?
 - sorting
 - Different types of joins (NLJ, Block-NLJ, SMJ, HJ)
 - Don’t just memorize the formulae, understand how they are derived, the ‘best-case’ ‘worst-case’ scenarios
Query Optimization

- Algebraic manipulation
- Selectivity estimation
 - Many cases
 - How to use selectivities to get the output size
Transactions

- ACID
- Problems with concurrency and Serializability concept
- Conflict-Serializability, how to detect
- 2PL, when, why, what, how, limitations
- Strict 2PL, when, why, what, how, limitations
- Know your venn diagrams!
- Deadlocks, how to detect and avoid them
- Dependency graph vs Waits-for graphs
Logging and Recovery: Big Picture

- **LOG**
 - LogRecords
 - prevLSN
 - XID
 - type
 - pageID
 - length
 - offset
 - before-image
 - after-image

- **DB**
 - Data pages each with a pageLSN
 - master record
 - LSN of most recent checkpoint

- **RAM**
 - Xact Table
 - lastLSN
 - status
 - Dirty Page Table
 - recLSN
 - flushedLSN

update

CLR

CLR

- undoNextLSN
Crash Recovery: Big Picture

- Start from a **checkpoint** (found via master record).
- Three phases.
 - **Analysis** - Figure out which Xacts committed since checkpoint, which failed.
 - **REDO** all actions (repeat history)
 - **UNDO** effects of failed Xacts.
Crash Recovery: Big Picture

- Oldest log rec. of Xact active at crash
- Smallest recLSN in dirty page table after Analysis

• Notice: relative ordering of A, B, C may vary!
Logging and Recovery

- Make sure you know *exactly* how recovery takes place, and what is logged
 - Practice, practice
 - Check out problems in lectures, practice problems and hws
 - Be comfortable with small conceptual questions (see practice problems)
Tips

- Know your definitions!
 - Different ways of defining same thing e.g. keys

- Go through the slides
 - Checking the textbook if you are unclear

- **Go through HWs, Handouts, Exams, and Practice problems**
 - Textbook also has good problems! Even numbered problems have solutions on-line
 - Take advantage of our office hours

- Make use of your 2 allowed written notes!

- Bring a calculator
More

- Read the whole question carefully before answering
- Raise your hand if you need any clarification
Data Management

- Is a really exciting field (‘BIG-Data’)

- High commercial *and* academic research interest
Lots more stuff we did not cover

- Storage Manager
 - File organization
- More details about query processing
 - Fine-tuning Join algorithms
- Other powerful query languages
 - Datalog etc.
- More sophisticated locking, concurrency control
 - E.g. Hierarchical locking, time-stamped CC
- Spatial Data Management
- Distributed Databases
- More advanced data mining
- More details on NoSQL/Map Reduce etc.

...............
Course Plug: CS 5614: (Big) Data Management Systems

- Spring 2019: Graduate level course
- Project, research papers
 – Will cover the state-of-the-art
- Would be exciting and fun!
- Good way to get exposed to the state-of-the-art in large data management and mining, network analysis, graph databases etc.
Good Luck!

- Especially for those of you will graduate!

- Feel free to keep in touch 😊
FINAL EXAMS

YES WE CAN