
Bags Versus Sets Extended Operators Joins

Extended Operators in SQL and Relational Algebra

T. M. Murali

September 16, 2009

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Bags or Sets?

I So far, we have said that relational algebra and SQL operate on
relations that are sets of tuples.

I Real RDBMSs treat relations as bags of tuples.
I A tuple can appear multiple times in a relation.

I Performance is one of the main reasons; duplicate elimination is
expensive since it requires sorting.

I If we use bag semantics, we may have to redefine the meaning of each
relation algebra operator.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Bags or Sets?

I So far, we have said that relational algebra and SQL operate on
relations that are sets of tuples.

I Real RDBMSs treat relations as bags of tuples.
I A tuple can appear multiple times in a relation.
I Performance is one of the main reasons;

duplicate elimination is
expensive since it requires sorting.

I If we use bag semantics, we may have to redefine the meaning of each
relation algebra operator.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Bags or Sets?

I So far, we have said that relational algebra and SQL operate on
relations that are sets of tuples.

I Real RDBMSs treat relations as bags of tuples.
I A tuple can appear multiple times in a relation.
I Performance is one of the main reasons; duplicate elimination is

expensive since it requires sorting.

I If we use bag semantics, we may have to redefine the meaning of each
relation algebra operator.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Bag Semantics: Projection and Selection

I Projection (π()): process each tuple independently; a tuple may
appear in the resulting relation multiple times.

I Selection (σ()): process each tuple independently; a tuple may appear
in the resulting relation multiple times.

R

A B C

1 2 3

1 2 4

2 3 4

2 3 4

πA,B(R)

A B

1 2

1 2

2 3

2 3

σC≥3(R)

A B C

1 2 3

1 2 4

2 3 4

2 3 4

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Bag Semantics: Projection and Selection

I Projection (π()): process each tuple independently; a tuple may
appear in the resulting relation multiple times.

I Selection (σ()): process each tuple independently; a tuple may appear
in the resulting relation multiple times.

R

A B C

1 2 3

1 2 4

2 3 4

2 3 4

πA,B(R)

A B

1 2

1 2

2 3

2 3

σC≥3(R)

A B C

1 2 3

1 2 4

2 3 4

2 3 4

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Bag Semantics: Projection and Selection

I Projection (π()): process each tuple independently; a tuple may
appear in the resulting relation multiple times.

I Selection (σ()): process each tuple independently; a tuple may appear
in the resulting relation multiple times.

R

A B C

1 2 3

1 2 4

2 3 4

2 3 4

πA,B(R)

A B

1 2

1 2

2 3

2 3

σC≥3(R)

A B C

1 2 3

1 2 4

2 3 4

2 3 4

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Bag Semantics: Projection and Selection

I Projection (π()): process each tuple independently; a tuple may
appear in the resulting relation multiple times.

I Selection (σ()): process each tuple independently; a tuple may appear
in the resulting relation multiple times.

R

A B C

1 2 3

1 2 4

2 3 4

2 3 4

πA,B(R)

A B

1 2

1 2

2 3

2 3

σC≥3(R)

A B C

1 2 3

1 2 4

2 3 4

2 3 4

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Bag Semantics: Projection and Selection

I Projection (π()): process each tuple independently; a tuple may
appear in the resulting relation multiple times.

I Selection (σ()): process each tuple independently; a tuple may appear
in the resulting relation multiple times.

R

A B C

1 2 3

1 2 4

2 3 4

2 3 4

πA,B(R)

A B

1 2

1 2

2 3

2 3

σC≥3(R)

A B C

1 2 3

1 2 4

2 3 4

2 3 4

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Bag Semantics: Projection and Selection

I Projection (π()): process each tuple independently; a tuple may
appear in the resulting relation multiple times.

I Selection (σ()): process each tuple independently; a tuple may appear
in the resulting relation multiple times.

R

A B C

1 2 3

1 2 4

2 3 4

2 3 4

πA,B(R)

A B

1 2

1 2

2 3

2 3

σC≥3(R)

A B C

1 2 3

1 2 4

2 3 4

2 3 4

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Bag Semantics: Union, Intersection, and Difference

I R ∪ S : if tuple t appears k
times in R and l times in S , t
appears in R ∪ S k + l times.

I R ∩ S : if tuple t appears k times
in R and l times in S , t appears
in R ∩ S min{k, l} times.

I R−S : if tuple t appears k times
in R and l times in S , t appears
in R − S max{0, k − l} times.

R

A B

1 2
1 2
2 3
2 3

S

A B

1 2
1 2
1 2
2 3
2 4

R ∪ S

A B

1 2
1 2
1 2
1 2
1 2
2 3
2 3
2 3
2 4

R ∩ S

A B

1 2
1 2
2 3

R − S

A B

2 3

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Bag Semantics: Union, Intersection, and Difference

I R ∪ S : if tuple t appears k
times in R and l times in S , t
appears in R ∪ S k + l times.

I R ∩ S : if tuple t appears k times
in R and l times in S , t appears
in R ∩ S min{k, l} times.

I R−S : if tuple t appears k times
in R and l times in S , t appears
in R − S max{0, k − l} times.

R

A B

1 2
1 2
2 3
2 3

S

A B

1 2
1 2
1 2
2 3
2 4

R ∪ S

A B

1 2
1 2
1 2
1 2
1 2
2 3
2 3
2 3
2 4

R ∩ S

A B

1 2
1 2
2 3

R − S

A B

2 3

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Bag Semantics: Union, Intersection, and Difference

I R ∪ S : if tuple t appears k
times in R and l times in S , t
appears in R ∪ S k + l times.

I R ∩ S : if tuple t appears k times
in R and l times in S , t appears
in R ∩ S min{k, l} times.

I R−S : if tuple t appears k times
in R and l times in S , t appears
in R − S max{0, k − l} times.

R

A B

1 2
1 2
2 3
2 3

S

A B

1 2
1 2
1 2
2 3
2 4

R ∪ S

A B

1 2
1 2
1 2
1 2
1 2
2 3
2 3
2 3
2 4

R ∩ S

A B

1 2
1 2
2 3

R − S

A B

2 3

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Bag Semantics: Union, Intersection, and Difference

I R ∪ S : if tuple t appears k
times in R and l times in S , t
appears in R ∪ S k + l times.

I R ∩ S : if tuple t appears k times
in R and l times in S , t appears
in R ∩ S min{k, l} times.

I R−S : if tuple t appears k times
in R and l times in S , t appears
in R − S max{0, k − l} times.

R

A B

1 2
1 2
2 3
2 3

S

A B

1 2
1 2
1 2
2 3
2 4

R ∪ S

A B

1 2
1 2
1 2
1 2
1 2
2 3
2 3
2 3
2 4

R ∩ S

A B

1 2
1 2
2 3

R − S

A B

2 3

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Bag Semantics: Union, Intersection, and Difference

I R ∪ S : if tuple t appears k
times in R and l times in S , t
appears in R ∪ S k + l times.

I R ∩ S : if tuple t appears k times
in R and l times in S , t appears
in R ∩ S min{k, l} times.

I R−S : if tuple t appears k times
in R and l times in S , t appears
in R − S max{0, k − l} times.

R

A B

1 2
1 2
2 3
2 3

S

A B

1 2
1 2
1 2
2 3
2 4

R ∪ S

A B

1 2
1 2
1 2
1 2
1 2
2 3
2 3
2 3
2 4

R ∩ S

A B

1 2
1 2
2 3

R − S

A B

2 3

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Bag Semantics: Union, Intersection, and Difference

I R ∪ S : if tuple t appears k
times in R and l times in S , t
appears in R ∪ S k + l times.

I R ∩ S : if tuple t appears k times
in R and l times in S , t appears
in R ∩ S min{k, l} times.

I R−S : if tuple t appears k times
in R and l times in S , t appears
in R − S max{0, k − l} times.

R

A B

1 2
1 2
2 3
2 3

S

A B

1 2
1 2
1 2
2 3
2 4

R ∪ S

A B

1 2
1 2
1 2
1 2
1 2
2 3
2 3
2 3
2 4

R ∩ S

A B

1 2
1 2
2 3

R − S

A B

2 3

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Bag Semantics: Union, Intersection, and Difference

I R ∪ S : if tuple t appears k
times in R and l times in S , t
appears in R ∪ S k + l times.

I R ∩ S : if tuple t appears k times
in R and l times in S , t appears
in R ∩ S min{k, l} times.

I R−S : if tuple t appears k times
in R and l times in S , t appears
in R − S max{0, k − l} times.

R

A B

1 2
1 2
2 3
2 3

S

A B

1 2
1 2
1 2
2 3
2 4

R ∪ S

A B

1 2
1 2
1 2
1 2
1 2
2 3
2 3
2 3
2 4

R ∩ S

A B

1 2
1 2
2 3

R − S

A B

2 3

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Bag Semantics: Products and Joins

I Product (×): If a tuple r appears k times in a relation R and tuple s
appears l times in a relation S , then the tuple rs appears kl times in
R × S .

I Theta-join and Natural join (./): Since both can be expressed as
applying a selection followed by a projection to a product, use the
semantics of selection, projection, and the product.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Extended Operators

I Powerful operators based on basic relational operators and bag
semantics.

I Sorting: convert a relation into a list of tuples.

I Duplicate elimination: turn a bag into a set by eliminating duplicate
tuples.

I Grouping: partition the tuples of a relation into groups, based on their
values among specified attributes.

I Aggregation: used by the grouping operator and to
manipulate/combine attributes.

I Extended projections: projection on steroids.

I Outerjoin: extension of joins that make sure every tuple is in the
output.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Extended Operators

I Powerful operators based on basic relational operators and bag
semantics.

I Sorting: convert a relation into a list of tuples.

I Duplicate elimination: turn a bag into a set by eliminating duplicate
tuples.

I Grouping: partition the tuples of a relation into groups, based on their
values among specified attributes.

I Aggregation: used by the grouping operator and to
manipulate/combine attributes.

I Extended projections: projection on steroids.

I Outerjoin: extension of joins that make sure every tuple is in the
output.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Extended Operators

I Powerful operators based on basic relational operators and bag
semantics.

I Sorting: convert a relation into a list of tuples.

I Duplicate elimination: turn a bag into a set by eliminating duplicate
tuples.

I Grouping: partition the tuples of a relation into groups, based on their
values among specified attributes.

I Aggregation: used by the grouping operator and to
manipulate/combine attributes.

I Extended projections: projection on steroids.

I Outerjoin: extension of joins that make sure every tuple is in the
output.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Extended Operators

I Powerful operators based on basic relational operators and bag
semantics.

I Sorting: convert a relation into a list of tuples.

I Duplicate elimination: turn a bag into a set by eliminating duplicate
tuples.

I Grouping: partition the tuples of a relation into groups, based on their
values among specified attributes.

I Aggregation: used by the grouping operator and to
manipulate/combine attributes.

I Extended projections: projection on steroids.

I Outerjoin: extension of joins that make sure every tuple is in the
output.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Extended Operators

I Powerful operators based on basic relational operators and bag
semantics.

I Sorting: convert a relation into a list of tuples.

I Duplicate elimination: turn a bag into a set by eliminating duplicate
tuples.

I Grouping: partition the tuples of a relation into groups, based on their
values among specified attributes.

I Aggregation: used by the grouping operator and to
manipulate/combine attributes.

I Extended projections: projection on steroids.

I Outerjoin: extension of joins that make sure every tuple is in the
output.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Sorting

RA τA1,A2,...(R).

SQL SELECT ... FROM . . . WHERE ... ORDER BY A1, A2, . . ..

I The result is a list of tuples in R but with the tuples sorted by their
values in attributes A1, A2, . . .

I In SQL, use DESC after an attribute to specify sorting in descending
order; ASC is the default.

I If you use the result in another query, sorted order is lost.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Sorting

RA τA1,A2,...(R).

SQL SELECT ... FROM . . . WHERE ... ORDER BY A1, A2, . . ..

I The result is a list of tuples in R but with the tuples sorted by their
values in attributes A1, A2, . . .

I In SQL, use DESC after an attribute to specify sorting in descending
order; ASC is the default.

I If you use the result in another query, sorted order is lost.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Duplicate Elimination

RA δ(R) is the relation containing exactly one copy of each tuple
in R.

SQL SELECT DISTINCT ...

I Duplicate elimination is expensive, since tuples must be sorted or
partitioned.

I Set operations in SQL (UNION, INTERSECT, and EXCEPT) operate on
sets of tuples, i.e., they first eliminate duplicates.

I To make these operators treat relations as bags, follow the operation
with the keyword ALL.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Duplicate Elimination

RA δ(R) is the relation containing exactly one copy of each tuple
in R.

SQL SELECT DISTINCT ...

I Duplicate elimination is expensive, since tuples must be sorted or
partitioned.

I Set operations in SQL (UNION, INTERSECT, and EXCEPT) operate on
sets of tuples, i.e., they first eliminate duplicates.

I To make these operators treat relations as bags, follow the operation
with the keyword ALL.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Duplicate Elimination

RA δ(R) is the relation containing exactly one copy of each tuple
in R.

SQL SELECT DISTINCT ...

I Duplicate elimination is expensive, since tuples must be sorted or
partitioned.

I Set operations in SQL (UNION, INTERSECT, and EXCEPT) operate on
sets of tuples, i.e., they first eliminate duplicates.

I To make these operators treat relations as bags, follow the operation
with the keyword ALL.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Aggregation

I Operators that summarise or aggregate the values in a single attribute
of a relation.

I Operators are the same in relational algebra and SQL.

I All operators treat a relation as a bag of tuples.

I SUM: computes the sum of a column with numerical values.

I AVG: computes the average of a column with numerical values.
I MIN and MAX:

I for a column with numerical values, computes the smallest or largest
value, respectively.

I for a column with string or character values, computes the
lexicographically smallest or largest values, respectively.

I COUNT: computes the number of non-NULL tuples in a column.
I In SQL, can use COUNT (*) to count the number of tuples in a relation.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Aggregation

I Operators that summarise or aggregate the values in a single attribute
of a relation.

I Operators are the same in relational algebra and SQL.

I All operators treat a relation as a bag of tuples.

I SUM: computes the sum of a column with numerical values.

I AVG: computes the average of a column with numerical values.

I MIN and MAX:
I for a column with numerical values, computes the smallest or largest

value, respectively.
I for a column with string or character values, computes the

lexicographically smallest or largest values, respectively.

I COUNT: computes the number of non-NULL tuples in a column.
I In SQL, can use COUNT (*) to count the number of tuples in a relation.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Aggregation

I Operators that summarise or aggregate the values in a single attribute
of a relation.

I Operators are the same in relational algebra and SQL.

I All operators treat a relation as a bag of tuples.

I SUM: computes the sum of a column with numerical values.

I AVG: computes the average of a column with numerical values.
I MIN and MAX:

I for a column with numerical values, computes the smallest or largest
value, respectively.

I for a column with string or character values, computes the
lexicographically smallest or largest values, respectively.

I COUNT: computes the number of non-NULL tuples in a column.
I In SQL, can use COUNT (*) to count the number of tuples in a relation.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Aggregation

I Operators that summarise or aggregate the values in a single attribute
of a relation.

I Operators are the same in relational algebra and SQL.

I All operators treat a relation as a bag of tuples.

I SUM: computes the sum of a column with numerical values.

I AVG: computes the average of a column with numerical values.
I MIN and MAX:

I for a column with numerical values, computes the smallest or largest
value, respectively.

I for a column with string or character values, computes the
lexicographically smallest or largest values, respectively.

I COUNT: computes the number of non-NULL tuples in a column.
I In SQL, can use COUNT (*) to count the number of tuples in a relation.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Grouping

I How do we answer the query “Count the number of classes and the
total enrollment of the classes each department teaches”?

I Can we answer the query using the operators discussed so far?

I We need to group the tuples of Teach by DeptName and then
aggregate within each group.

I Use the grouping operator.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Grouping

I How do we answer the query “Count the number of classes and the
total enrollment of the classes each department teaches”?

I Can we answer the query using the operators discussed so far?

I We need to group the tuples of Teach by DeptName and then
aggregate within each group.

I Use the grouping operator.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Grouping

I How do we answer the query “Count the number of classes and the
total enrollment of the classes each department teaches”?

I Can we answer the query using the operators discussed so far?

I We need to group the tuples of Teach by DeptName and then
aggregate within each group.

I Use the grouping operator.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Grouping

I How do we answer the query “Count the number of classes and the
total enrollment of the classes each department teaches”?

I Can we answer the query using the operators discussed so far?

I We need to group the tuples of Teach by DeptName and then
aggregate within each group.

I Use the grouping operator.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Example of Grouping in Relational Algebra

I How do we answer the query “Count the number of classes and total
enrollment of the classes each department teaches”?

1. Group Courses by DeptName.
2. For each group, create a new attribute that stores the number of

classes taught by the department.
3. For each group, create a new attribute that stores the total enrollment

of the classes taught by the department.

I γL(Courses), where L is a list containing three elements:

1. DeptName: the grouping attribute,
2. COUNT(Number) → NumCourses: an aggregated attribute computing

the count of the Number attribute in each group and naming the new
attribute NumCourses, and

3. SUM(Enrollment) → TotalEnrollment: an aggregated attribute
computing the total of the Enrollment attribute and naming the new
attribute TotalEnrollment.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Example of Grouping in Relational Algebra

I How do we answer the query “Count the number of classes and total
enrollment of the classes each department teaches”?

1. Group Courses by DeptName.

2. For each group, create a new attribute that stores the number of
classes taught by the department.

3. For each group, create a new attribute that stores the total enrollment
of the classes taught by the department.

I γL(Courses), where L is a list containing three elements:

1. DeptName: the grouping attribute,
2. COUNT(Number) → NumCourses: an aggregated attribute computing

the count of the Number attribute in each group and naming the new
attribute NumCourses, and

3. SUM(Enrollment) → TotalEnrollment: an aggregated attribute
computing the total of the Enrollment attribute and naming the new
attribute TotalEnrollment.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Example of Grouping in Relational Algebra

I How do we answer the query “Count the number of classes and total
enrollment of the classes each department teaches”?

1. Group Courses by DeptName.
2. For each group, create a new attribute that stores the number of

classes taught by the department.

3. For each group, create a new attribute that stores the total enrollment
of the classes taught by the department.

I γL(Courses), where L is a list containing three elements:

1. DeptName: the grouping attribute,
2. COUNT(Number) → NumCourses: an aggregated attribute computing

the count of the Number attribute in each group and naming the new
attribute NumCourses, and

3. SUM(Enrollment) → TotalEnrollment: an aggregated attribute
computing the total of the Enrollment attribute and naming the new
attribute TotalEnrollment.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Example of Grouping in Relational Algebra

I How do we answer the query “Count the number of classes and total
enrollment of the classes each department teaches”?

1. Group Courses by DeptName.
2. For each group, create a new attribute that stores the number of

classes taught by the department.
3. For each group, create a new attribute that stores the total enrollment

of the classes taught by the department.

I γL(Courses), where L is a list containing three elements:

1. DeptName: the grouping attribute,
2. COUNT(Number) → NumCourses: an aggregated attribute computing

the count of the Number attribute in each group and naming the new
attribute NumCourses, and

3. SUM(Enrollment) → TotalEnrollment: an aggregated attribute
computing the total of the Enrollment attribute and naming the new
attribute TotalEnrollment.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Example of Grouping in Relational Algebra

I How do we answer the query “Count the number of classes and total
enrollment of the classes each department teaches”?

1. Group Courses by DeptName.
2. For each group, create a new attribute that stores the number of

classes taught by the department.
3. For each group, create a new attribute that stores the total enrollment

of the classes taught by the department.

I γL(Courses), where L is a list containing three elements:

1. DeptName: the grouping attribute

,
2. COUNT(Number) → NumCourses: an aggregated attribute computing

the count of the Number attribute in each group and naming the new
attribute NumCourses, and

3. SUM(Enrollment) → TotalEnrollment: an aggregated attribute
computing the total of the Enrollment attribute and naming the new
attribute TotalEnrollment.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Example of Grouping in Relational Algebra

I How do we answer the query “Count the number of classes and total
enrollment of the classes each department teaches”?

1. Group Courses by DeptName.
2. For each group, create a new attribute that stores the number of

classes taught by the department.
3. For each group, create a new attribute that stores the total enrollment

of the classes taught by the department.

I γL(Courses), where L is a list containing three elements:

1. DeptName: the grouping attribute,
2. COUNT(Number) → NumCourses: an aggregated attribute computing

the count of the Number attribute in each group and naming the new
attribute NumCourses, and

3. SUM(Enrollment) → TotalEnrollment: an aggregated attribute
computing the total of the Enrollment attribute and naming the new
attribute TotalEnrollment.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Example of Grouping in Relational Algebra

I How do we answer the query “Count the number of classes and total
enrollment of the classes each department teaches”?

1. Group Courses by DeptName.
2. For each group, create a new attribute that stores the number of

classes taught by the department.
3. For each group, create a new attribute that stores the total enrollment

of the classes taught by the department.

I γL(Courses), where L is a list containing three elements:

1. DeptName: the grouping attribute,
2. COUNT(Number) → NumCourses: an aggregated attribute computing

the count of the Number attribute in each group and naming the new
attribute NumCourses, and

3. SUM(Enrollment) → TotalEnrollment: an aggregated attribute
computing the total of the Enrollment attribute and naming the new
attribute TotalEnrollment.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Example of Grouping Continued

I How do we answer the query “Count the number of classes and total
enrollment of the classes each department teaches”?

I The complete operator is
γDeptName,COUNT(Number)→NumCourses,SUM(Enrollment)→TotalEnrollment(Courses)

I The schema of the new relation is
(DeptName, NumCourses, TotalEnrollment).

I We can group by multiple attributes.

I We can create as many new attributes as necessary.

I We can apply other operators to the result, since the grouping
operator produces a relation.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Example of Grouping Continued

I How do we answer the query “Count the number of classes and total
enrollment of the classes each department teaches”?

I The complete operator is
γDeptName,COUNT(Number)→NumCourses,SUM(Enrollment)→TotalEnrollment(Courses)

I The schema of the new relation is
(DeptName, NumCourses, TotalEnrollment).

I We can group by multiple attributes.

I We can create as many new attributes as necessary.

I We can apply other operators to the result, since the grouping
operator produces a relation.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Example of Grouping Continued

I How do we answer the query “Count the number of classes and total
enrollment of the classes each department teaches”?

I The complete operator is
γDeptName,COUNT(Number)→NumCourses,SUM(Enrollment)→TotalEnrollment(Courses)

I The schema of the new relation is
(DeptName, NumCourses, TotalEnrollment).

I We can group by multiple attributes.

I We can create as many new attributes as necessary.

I We can apply other operators to the result, since the grouping
operator produces a relation.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Grouping in SQL

I Syntax is much simpler than relational algebra.

I Use the GROUP BY clause after the WHERE clause or after the FROM, if
there is no WHERE clause.

I List grouping attributes after GROUP BY.

I Use SELECT clause to aggregate attributes.

I How do we answer the query “Count the number of classes and total
enrollment of the classes each department teaches”?

SELECT DeptName, COUNT(Number) AS NumCourses,
SUM(Enrollment) AS TotalEnrollment

FROM COURSES
GROUP BY DeptName;

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Grouping in SQL

I Syntax is much simpler than relational algebra.

I Use the GROUP BY clause after the WHERE clause or after the FROM, if
there is no WHERE clause.

I List grouping attributes after GROUP BY.

I Use SELECT clause to aggregate attributes.
I How do we answer the query “Count the number of classes and total

enrollment of the classes each department teaches”?

SELECT DeptName, COUNT(Number) AS NumCourses,
SUM(Enrollment) AS TotalEnrollment

FROM COURSES
GROUP BY DeptName;

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Grouping in SQL

I Syntax is much simpler than relational algebra.

I Use the GROUP BY clause after the WHERE clause or after the FROM, if
there is no WHERE clause.

I List grouping attributes after GROUP BY.

I Use SELECT clause to aggregate attributes.
I How do we answer the query “Count the number of classes and total

enrollment of the classes each department teaches”?

SELECT DeptName, COUNT(Number) AS NumCourses,
SUM(Enrollment) AS TotalEnrollment

FROM COURSES
GROUP BY DeptName;

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Grouping in SQL

SELECT DeptName, COUNT(Number) AS NumCourses,
SUM(Enrollment) AS TotalEnrollment

FROM COURSES
GROUP BY DeptName;

I Aggregated attributes are evaluated on a per-group basis.

I Only attributes mentioned in the GROUP BY clause may appear
unaggregated in the SELECT clause, e.g., Number must have an
aggregation operator applied to it.

I There need not be any aggregated attribute in the SELECT clause.

I Read Chapter 6.4.6 of the textbook about affect of NULL values on
grouping and aggregation.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Restricting Grouping in SQL

I How do we answer the query “Count the number of classes each
department teaches, restricted to departments that have total
enrollment at least 500 in their classes (the classes taught by that
department)”?

I Need to introduce the HAVING clause

SELECT DeptName, COUNT(Number) AS NumCourses
FROM COURSES
GROUP BY DeptName
HAVING SUM(Enrollment) >= 500;

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Restricting Grouping in SQL

I How do we answer the query “Count the number of classes each
department teaches, restricted to departments that have total
enrollment at least 500 in their classes (the classes taught by that
department)”?

I Need to introduce the HAVING clause

SELECT DeptName, COUNT(Number) AS NumCourses
FROM COURSES
GROUP BY DeptName
HAVING SUM(Enrollment) >= 500;

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Rules for HAVING Clauses

I An aggregation in a HAVING clause applies only to the group being
tested.

I If an attribute appears unaggregated in a HAVING clause, it must
appear in the GROUP BY line.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Complete SELECT Statement

SELECT Attribute list
FROM Relation list
WHERE Condition or Subquery
GROUP BY Attribute list
HAVING Condition or Subquery
ORDER BY Attribute list;

I WHERE is evaluated before GROUP BY and HAVING.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Complete SELECT Statement

SELECT Attribute list
FROM Relation list
WHERE Condition or Subquery
GROUP BY Attribute list
HAVING Condition or Subquery
ORDER BY Attribute list;

I WHERE is evaluated before GROUP BY and HAVING.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Joins in Relational Algebra and SQL

I Cross product:

RA R × S
SQL R CROSS JOIN S;

I Theta join:

RA R ./
C

S

SQL R JOIN S ON C;

I Natural join:

RA R ./ S
SQL R NATURAL JOIN S;

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Outer Joins
I A dangling tuple is one that fails to pair with any tuple in the other

relation in a join operation.
I Outer joins allow dangling tuples to be included in the result of join

operations, by padding them with NULL values.

RA R
◦
./ S

SQL R NATURAL FULL OUTER JOIN S;
I Contains all tuples in R ./ S .
I Includes every tuple in R that is not joined with a tuple in S , after

padding a special null symbol ⊥ (NULL in case of SQL).
I Same condition applied to S .

I Left outer join:

RA R
◦
./L S

SQL R NATURAL LEFT OUTER JOIN S;
I Like R

◦
./ S but ignores dangling tuples in S .

I Right outer join is analogous to left outer join.
I All outerjoin operators have theta-join analogues.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Outer Joins
I A dangling tuple is one that fails to pair with any tuple in the other

relation in a join operation.
I Outer joins allow dangling tuples to be included in the result of join

operations, by padding them with NULL values.

RA R
◦
./ S

SQL R NATURAL FULL OUTER JOIN S;
I Contains all tuples in R ./ S .
I Includes every tuple in R that is not joined with a tuple in S , after

padding a special null symbol ⊥ (NULL in case of SQL).
I Same condition applied to S .

I Left outer join:

RA R
◦
./L S

SQL R NATURAL LEFT OUTER JOIN S;
I Like R

◦
./ S but ignores dangling tuples in S .

I Right outer join is analogous to left outer join.
I All outerjoin operators have theta-join analogues.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Outer Joins
I A dangling tuple is one that fails to pair with any tuple in the other

relation in a join operation.
I Outer joins allow dangling tuples to be included in the result of join

operations, by padding them with NULL values.

RA R
◦
./ S

SQL R NATURAL FULL OUTER JOIN S;
I Contains all tuples in R ./ S .
I Includes every tuple in R that is not joined with a tuple in S , after

padding a special null symbol ⊥ (NULL in case of SQL).
I Same condition applied to S .

I Left outer join:

RA R
◦
./L S

SQL R NATURAL LEFT OUTER JOIN S;
I Like R

◦
./ S but ignores dangling tuples in S .

I Right outer join is analogous to left outer join.
I All outerjoin operators have theta-join analogues.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra



Bags Versus Sets Extended Operators Joins

Outer Joins
I A dangling tuple is one that fails to pair with any tuple in the other

relation in a join operation.
I Outer joins allow dangling tuples to be included in the result of join

operations, by padding them with NULL values.

RA R
◦
./ S

SQL R NATURAL FULL OUTER JOIN S;
I Contains all tuples in R ./ S .
I Includes every tuple in R that is not joined with a tuple in S , after

padding a special null symbol ⊥ (NULL in case of SQL).
I Same condition applied to S .

I Left outer join:

RA R
◦
./L S

SQL R NATURAL LEFT OUTER JOIN S;
I Like R

◦
./ S but ignores dangling tuples in S .

I Right outer join is analogous to left outer join.
I All outerjoin operators have theta-join analogues.

T. M. Murali September 16, 2009 Extended Operators in SQL and Relational Algebra


	Bags Versus Sets
	Extended Operators
	Joins

