SQL and Relational Algebra

T. M. Murali

August 31, 2009
What is SQL?

- SQL = Structured Query Language (pronounced “sequel”).
- Language for defining as well as querying data in an RDBMS.
- Primary mechanism for querying and modifying the data in an RDBMS.
- SQL is declarative:
 - Say what you want to accomplish, without specifying how.
 - One of the main reasons for the commercial success of RDBMSs.
- SQL has many standards and implementations:
 - ANSI SQL
 - SQL-92/SQL2 (null operations, outerjoins)
 - SQL-99/SQL3 (recursion, triggers, objects)
 - Vendor-specific variations.
What is Relational Algebra?

- Relational algebra is a notation for specifying queries about the contents of relations.
- Relational algebra eases the task of reasoning about queries.
- Operations in relational algebra have counterparts in SQL.
- To process a query, a DBMS translates SQL into a notation similar to relational algebra.
What is an Algebra?

- An algebra is a set of operators and operands.
What is an Algebra?

- An algebra is a set of operators and operands.
 - Arithmetic: operands are variables and constants, operators are $+,-,\times,\div,/$, etc.
 - Set algebra: operands are sets and operators are \cup,\cap,\setminus.
An algebra is a set of operators and operands.

- Arithmetic: operands are variables and constants, operators are $+, -, \times, \div, /$, etc.
- Set algebra: operands are sets and operators are $\cup, \cap, -$.

An algebra allows us to construct expressions by combining operands and expression using operators and has rules for reasoning about expressions.

- $a^2 + 2 \times a \times b + b^2, (a + b)^2$.
- $R - (R - S), R \cap S$.
Basics of Relational Algebra

- Operands are relations, thought of as sets of tuples.
- Think of operands as variables, whose tuples are unknown.
- Results of operations are also sets of tuples. (Later, we will define a relational algebra on bags.)
- Think of expressions in relational algebra as queries, which construct new relations from given relations.
- Four types of operators:
 - Remove parts of a single relation: projection and selection.
 - Usual set operations (union, intersection, difference).
 - Combine the tuples of two relations, such as cartesian product and joins.
 - Renaming.
The *projection* operator produces from a relation R a new relation containing only some of R’s columns.

To obtain a relation containing only the columns A_1, A_2, \ldots, A_n of R

$$\text{RA } \pi_{A_1,A_2,\ldots,A_n}(R)$$

$$\text{SQL } \text{SELECT } A_1, A_2, \ldots, A_n \text{ FROM } R;$$
Selection

- The selection operator applied to a relation R produces a new relation with a subset of R's tuples.
- The tuples in the resulting relation satisfy some condition C that involves the attributes of R.

\[
\text{RA} \quad \sigma_C(R) \\
\text{SQL} \quad \text{SELECT} \ \star \\
\quad \text{FROM} \ R \\
\quad \text{WHERE} \ C;
\]

- The WHERE clause of an SQL command corresponds to $\sigma()$.

Selection: Syntax of Conditional

- Syntax of C: similar to conditionals in programming languages. Values compared are constants and attributes of the relations mentioned in the FROM clause.
- We may apply usual arithmetic operators to numeric values before comparing them.

 RA Compare values using standard arithmetic operators.
 SQL Compare values using =, <>, <, >, <=, >=.
Set Operations: Union

- The union of two relations R and S is the set of tuples that are in R or in S or in both.
Set Operations: Union

- The *union* of two relations R and S is the set of tuples that are in R or in S or in both.
- R and S must have identical sets of attributes and the types of the attributes must be the same.
- The attributes of R and S must occur in the same order.
Set Operations: Union

- The *union* of two relations R and S is the set of tuples that are in R or in S or in both.
- R and S must have identical sets of attributes and the types of the attributes must be the same.
- The attributes of R and S must occur in the same order.

\[
\text{RA} \quad R \cup S \\
\text{SQL} \quad (\text{SELECT} \ast \text{FROM} \; R) \\
\quad \text{UNION} \\
\quad (\text{SELECT} \ast \text{FROM} \; S); \\
\]
Set Operations: Intersection

- The *intersection* of two relations R and S is the set of tuples that are in both R and S.
- Same conditions hold on R and S as for the union operator.

```sql
RA  R ∩ S
SQL (SELECT * FROM R)
    INTERSECT
    (SELECT * FROM S);
```
Set Operations: Difference

- The difference of two relations R and S is the set of tuples that are in R but not in S.
- Same conditions hold on R and S as for the union operator.

\[
\text{RA} \quad R - S \\
\text{SQL} \quad (\text{SELECT } * \text{ FROM } R) \text{ EXCEPT} (\text{SELECT } * \text{ FROM } S);\\n\]
Set Operations: Difference

- The *difference* of two relations R and S is the set of tuples that are in R but not in S.
- Same conditions hold on R and S as for the union operator.

 RA \[R - S \]

 SQL \[(\text{SELECT } * \text{ FROM } R) \text{ EXCEPT} (\text{SELECT } * \text{ FROM } S) \];

- \[R - (R - S) = \]
Set Operations: Difference

- The *difference* of two relations R and S is the set of tuples that are in R but not in S.
- Same conditions hold on R and S as for the union operator.

 RA
 $R - S$

 SQL
 $(SELECT * FROM R)$

 `EXCEPT`

 $(SELECT * FROM S)$;

- $R - (R - S) = R \cap S$.
- Compare to

 $(SELECT * FROM R)$ `EXCEPT` $(SELECT * FROM S))$;
 $(SELECT * FROM R)$ `INTERSECT` $(SELECT * FROM S)$;
Cartesian Product

- The Cartesian product (or cross-product or product) of two relations \(R \) and \(S \) is the set of pairs that can be formed by pairing each tuple of \(R \) with each tuple of \(S \).
 - The result is a relation whose schema is the schema for \(R \) followed by the schema for \(S \).
 - We rename attributes to avoid ambiguity or we prefix attribute with the name of the relation it belongs to.

\[
\begin{align*}
\text{RA} & \quad R \times S \\
\text{SQL} & \quad \text{SELECT * FROM } R, S;
\end{align*}
\]
The \textit{theta-join} of two relations R and S is the set of tuples in the Cartesian product of R and S that satisfy some condition C.

\begin{align*}
\text{RA} & \quad R \bowtie_{C} S \\
\text{SQL} & \quad \text{SELECT} \ast \\
& \text{FROM} \ R, S \\
& \text{WHERE} \ C;
\end{align*}
Theta-Join

The *theta-join* of two relations \(R \) and \(S \) is the set of tuples in the Cartesian product of \(R \) and \(S \) that satisfy some condition \(C \).

\[
\begin{align*}
\text{RA} & \quad R \bowtie_C S \\
\text{SQL} & \quad \text{SELECT} \ * \\
& \quad \text{FROM} \ R, \ S \\
& \quad \text{WHERE} \ C;
\end{align*}
\]

\(R \bowtie_C S = \)
The theta-join of two relations R and S is the set of tuples in the Cartesian product of R and S that satisfy some condition C.

\[RA \quad R \bowtie_C S \]

\[SQL \quad SELECT * \]
\[\quad FROM R, S \]
\[\quad WHERE C; \]

\[R \bowtie_C S = \sigma_C(R \times S). \]
Natural Join

- The natural join of two relations R and S is a set of pairs of tuples, one from R and one from S, that agree on whatever attributes are common to the schemas of R and S.
- The schema for the result contains the union of the attributes of R and S.
- Assume the schemas $R(A, B, C)$ and $S(B, C, D)$.

 RA \[R \Join S \]

 SQL \[\text{SELECT R.A, R.B, R.C, S.D} \]
 FROM R,S
 WHERE R.B = S.B AND R.C = S.C;

- A dangling tuple is one that fails to pair with any tuple in the other relation.
Operators Covered So Far

- Remove parts of a single relation:
 - projection: $\pi_{A,B}(R)$ and SELECT A, B FROM R.
 - selection: $\sigma_C(R)$ and SELECT * FROM R WHERE C.

- Set operations (R and S must have the same attributes, same attribute types, and same order of attributes):
 - union: $R \cup S$ and (R) UNION (S).
 - intersection: $R \cap S$ and (R) INTERSECT (S).
 - difference: $R - S$ and (R) EXCEPT (S).

- Combine the tuples of two relations:
 - Cartesian product: $R \times S$ and ...
 - Theta-join: $R \Join \sigma_C S$ and ...
 - Natural join: $R \Join S$; in SQL, list the conditions that the common attributes be equal in the WHERE clause.
Operators Covered So Far

- Remove parts of a single relation:
 - projection: \(\pi_{A,B}(R) \) and SELECT A, B FROM R.
 - selection: \(\sigma_C(R) \) and SELECT * FROM R WHERE C.
 - combining projection and selection:
 - \(\pi_{A,B}(\sigma_C(R)) \)
 - SELECT A, B FROM R WHERE C. Canonical SQL query.
Operators Covered So Far

- Remove parts of a single relation:
 - projection: \(\pi_{A,B}(R) \) and SELECT \(A, \ B \) FROM \(R \).
 - selection: \(\sigma_C(R) \) and SELECT * FROM \(R \) WHERE \(C \).
 - combining projection and selection:
 - \(\pi_{A,B}(\sigma_C(R)) \)
 - SELECT \(A, \ B \) FROM \(R \) WHERE \(C \). Canonical SQL query.

- Set operations (\(R \) and \(S \) must have the same attributes, same attribute types, and same order of attributes):
 - union: \(R \cup S \) and \((R) \cup (S)\).
 - intersection: \(R \cap S \) and \((R) \cap (S)\).
 - difference: \(R - S \) and \((R) \setminus (S)\).
Operators Covered So Far

- Remove parts of a single relation:
 - projection: $\pi_{A,B}(R)$ and `SELECT A, B FROM R`.
 - selection: $\sigma_C(R)$ and `SELECT * FROM R WHERE C`.
 - combining projection and selection:
 - $\pi_{A,B}(\sigma_C(R))$
 - `SELECT A, B FROM R WHERE C`. Canonical SQL query.

- Set operations (R and S must have the same attributes, same attribute types, and same order of attributes):
 - union: $R \cup S$ and `(R) UNION (S)`.
 - intersection: $R \cap S$ and `(R) INTERSECT (S)`.
 - difference: $R - S$ and `(R) EXCEPT (S)`.

- Combine the tuples of two relations:
 - Cartesian product: $R \times S$ and `... FROM R, S ...`.
 - Theta-join: $R \bowtie^C S$ and `... FROM R, S WHERE C`.
 - Natural join: $R \bowtie S$; in SQL, list the conditions that the common attributes be equal in the `WHERE` clause.
Other Details in SQL

- Read Chapters 6.1.3-6.1.8 of the textbook for strings comparison, pattern matching, NULL and UNKNOWN values, dates and times, and ordering the output.
Independence of Operators

- The operators we have covered so far are: $\pi_{A,B}(R)$, $\sigma_C(R)$, $\rho_{S(A_1,A_2)}(R)$, $R \cup S$, $R \cap S$, $R - S$, $R \times S$, $R \Join S$, $R \Join_S S$.

- Do we need all these operators?
Independence of Operators

- The operators we have covered so far are: \(\pi_{A,B}(R) \), \(\sigma_C(R) \), \(\rho_{S(A_1, A_2)}(R) \), \(R \cup S \), \(R \cap S \), \(R - S \), \(R \times S \), \(R \bowtie S \), \(R \bowtie_C S \).

- Do we need all these operators? **NO!**

- \(R \cap S = R - (R - S) \).

- \(R \bowtie_C S = \sigma_C(R \times S) \).

- \(R \bowtie S = ?? \).
Independence of Operators

- The operators we have covered so far are: \(\pi_{A,B}(R) \), \(\sigma_C(R) \), \(\rho_{S(A_1,A_2)}(R) \), \(R \cup S \), \(R \cap S \), \(R - S \), \(R \times S \), \(R \bowtie S \), \(R \bowtie_C S \).

- Do we need all these operators? NO!

- \(R \cap S = R - (R - S) \).

- \(R \bowtie_C S = \sigma_C(R \times S) \).

- \(R \bowtie S = ?? \).
 - Suppose \(R \) and \(S \) share the attributes \(A_1, A_2, \ldots A_n \).
Independence of Operators

The operators we have covered so far are: $\pi_{A,B}(R)$, $\sigma_{C}(R)$, $\rho_{S(A_1,A_2)}(R)$, $R \cup S$, $R \cap S$, $R - S$, $R \times S$, $R \bowtie S$, $R \bowtie S$.

Do we need all these operators? NO!

$R \cap S = R - (R - S)$.

$R \bowtie S = \sigma_{C}(R \times S)$.

$R \bowtie S = ??.$

Suppose R and S share the attributes $A_1, A_2, \ldots A_n$.

Let L be the list of attributes in R’s schema followed by the list of attributes that are only in S’s schema.
Independence of Operators

- The operators we have covered so far are: \(\pi_{A,B}(R) \), \(\sigma_C(R) \), \(\rho_{S(A_1,A_2)}(R) \), \(R \cup S \), \(R \cap S \), \(R - S \), \(R \times S \), \(R \bowtie S \), \(R \bowtie_C S \).
- Do we need all these operators? NO!
- \(R \cap S = R - (R - S) \).
- \(R \bowtie S = \sigma_C(R \times S) \).
- \(R \bowtie_C S =?? \).
 - Suppose \(R \) and \(S \) share the attributes \(A_1, A_2, \ldots A_n \).
 - Let \(L \) be the list of attributes in \(R \)'s schema followed by the list of attributes that are only in \(S \)'s schema.
 - Let \(C \) be the condition
 \[R.A_1 = S.A_1 \text{ AND } R.A_2 = S.A_2 \text{ AND } \ldots \text{ AND } R.A_n = S.A_n \]
Independence of Operators

- The operators we have covered so far are: \(\pi_{A,B}(R) \), \(\sigma_C(R) \), \(\rho_{S(A_1,A_2)}(R) \), \(R \cup S \), \(R \cap S \), \(R - S \), \(R \times S \), \(R \bowtie S \), \(R \bowtie_C S \).

- Do we need all these operators? NO!

- \(R \cap S = R - (R - S) \).

- \(R \bowtie_C S = \sigma_C(R \times S) \).

- \(R \bowtie_S S = ?? \).

 - Suppose \(R \) and \(S \) share the attributes \(A_1, A_2, \ldots, A_n \).
 - Let \(L \) be the list of attributes in \(R \)'s schema followed by the list of attributes that are only in \(S \)'s schema.
 - Let \(C \) be the condition
 \[R.A_1 = S.A_1 \quad \text{AND} \quad R.A_2 = S.A_2 \quad \text{AND} \quad \ldots \quad \text{AND} \quad R.A_n = S.A_n \]
 - \(R \bowtie_S S = \pi_L(\sigma_C(R \times S)) \)
Introduction to RA and SQL Queries and Operations

Independence of Operators

- The operators we have covered so far are: $\pi_{A,B}(R)$, $\sigma_C(R)$, $\rho_{S(A_1A_2)}(R)$, $R \cup S$, $R \cap S$, $R - S$, $R \times S$, $R \bowtie S$, $R \bowtie_C S$.

- Do we need all these operators? NO!

- $R \cap S = R - (R - S)$.

- $R \bowtie S = \sigma_C(R \times S)$.

- $R \bowtie_C S = ??$.

- Suppose R and S share the attributes $A_1, A_2, \ldots A_n$.

- Let L be the list of attributes in R’s schema followed by the list of attributes that are only in S’s schema.

- Let C be the condition $R.A_1 = S.A_1 \text{ AND } R.A_2 = S.A_2 \text{ AND } \ldots \text{ AND } R.A_n = S.A_n$.

- $R \bowtie S = \pi_L(\sigma_C(R \times S))$.

- All other operators are independent, i.e., no operator can be written in terms of the others.

T. M. Murali August 31, 2009 CS4604: SQL and Relational Algebra
Disambiguation and Renaming

- If two relations have the same attribute, disambiguate the attributes by prefixing the attribute with the name of the relation it belongs to.

SQL
- Use the AS keyword in the FROM clause:
 Students AS Students1
 renames Students to Students1.

- Use the AS keyword in the SELECT clause to rename attributes.
Disambiguation and Renaming

- If two relations have the same attribute, disambiguate the attributes by prefixing the attribute with the name of the relation it belongs to.
- How do we answer the query “Name pairs of students who live at the same address”?

SQL

Use the AS keyword in the FROM clause:

Students AS Students1

renames Students to Students1.

SQL

Use the AS keyword in the SELECT clause to rename attributes.
Disambiguation and Renaming

- If two relations have the same attribute, disambiguate the attributes by prefixing the attribute with the name of the relation it belongs to.
- How do we answer the query “Name pairs of students who live at the same address”?
 - We need to take the cross-product of Students with itself.
 - How do we refer to the two “copies” of Students?
Disambiguation and Renaming

- If two relations have the same attribute, disambiguate the attributes by prefixing the attribute with the name of the relation it belongs to.
- How do we answer the query “Name pairs of students who live at the same address”?
 - We need to take the cross-product of Students with itself.
 - How do we refer to the two “copies” of Students?
 - Use the rename operator.

\[
\rho_S(A_1, A_2, \ldots, A_n)(R): \text{give } R \text{ the name } S; \ R \text{ has } n \text{ attributes, which are called } A_1, A_2, \ldots, A_n \text{ in } S.
\]

SQL Use the AS keyword in the FROM clause: Students AS Students1 renames Students to Students1.

SQL Use the AS keyword in the SELECT clause to rename attributes.
Example of Renaming

- Name pairs of students who live at the same address.

\[
\text{RA } \pi_{S1.\text{Name}, S2.\text{Name}}(\sigma_{S1.\text{Address} = S2.\text{Address}}(\rho_{S1}(\text{Students}) \times \rho_{S2}(\text{Students}))).
\]

- Are these correct?
- No, the result includes tuples where a student is paired with himself/herself.
- Add the condition \(S1.\text{Name} < S2.\text{Name} \).
Example of Renaming

Name pairs of students who live at the same address.

\[\text{RA } \pi_{S1.Name, S2.Name} (\sigma_{S1.Address = S2.Address} (\rho_{S1(Students)} \times \rho_{S2(Students)})). \]

\[\text{SQL } \text{SELECT S1.name, S2.name} \]
\[\text{FROM Students AS S1, Students AS S2} \]
\[\text{WHERE S1.address = S2.address}; \]

Are these correct?
Example of Renaming

- Name pairs of students who live at the same address.

\[
\begin{align*}
\text{RA} & \quad \pi_{S1.Name, S2.Name}(\\
& \quad \sigma_{S1.Address = S2.Address}(\rho_{S1}(\text{Students}) \times \rho_{S2}(\text{Students}))). \\
\text{SQL} & \quad \text{SELECT S1.name, S2.name} \\
& \quad \text{FROM Students AS S1, Students AS S2} \\
& \quad \text{WHERE S1.address = S2.address;} \\
\end{align*}
\]

- Are these correct?
- No, the result includes tuples where a student is paired with himself/herself.
Example of Renaming

- Name pairs of students who live at the same address.

 \[
 \text{RA } \pi_{S1.Name,S2.Name} (\sigma_{S1.Address = S2.Address} (\rho_{S1}(\text{Students}) \times \rho_{S2}(\text{Students}))).
 \]

 \[
 \text{SQL } \text{SELECT S1.name, S2.name}
 \text{ FROM Students AS S1, Students AS S2}
 \text{ WHERE S1.address = S2.address;}
 \]

- Are these correct?
- No, the result includes tuples where a student is paired with himself/herself.
- Add the condition \(S1.name < S2.name \).
Example RA/SQL Queries

Solve problems in Handout 1.